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FIXED POINT THEOREMS IN SOME FUZZY METRIC SPACES

VIA INTERPOLATIVE CONTRACTIONS
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Abstract. In this article, an interpolative contraction existing in the liter-

ature is adapted to different fuzzy metric spaces. Using this contraction, a
fixed point theorem in two fuzzy metric spaces is proven and an example is

presented. Thus, a more general form of some concepts and theorems existing

in the literature has been obtained.

1. Introduction

In our daily lives, situations that are uncertain are often faced. For each scenario
encountered,determining what is ”right” or ”wrong” using the logic-based approach
relied upon by modern computers is difficult. Many events in nature involve uncer-
tainty, and the concept of ”fuzziness” provides the flexibility needed to accurately
describe such situations. This idea was introduced by Lotfi Zadeh [12], allowing
phenomena that were once considered unknowable to be explained.

In recent years, various generalizations of the metric concept, which is key in
fixed point theory, have been developed. One such generalization was initially
introduced in [9] and later modified in [2], leading to the development of the fuzzy
metric space.

Following the work of Stefan Banach [1], who laid the foundation for the fixed
point theorem, adaptations of this theorem to different types of spaces have been
made, contributing to research in many scientific fields. It has become a crucial tool,
not only in functional analysis but also in general topology and other disciplines.

After the contributions of Grabiec [3], significant progress has been made on this
theorem in the context of two spaces ([6], [10]). The type of space being studied and
the contraction mapping used are the two main aspects that need to be considered.

2. Preliminaries

After defining the t−norm, which is considered the basic operator of fuzzy logic,
some concepts to be used in this article will be presented.
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Definition 1. [11] Let ∗ : [0, 1] × [0, 1] → [0, 1] be a binary operation that called
a continuous t-norm if the conditions hold; for all ý, ŭ, ž,ġ ∈ [0, 1] ý ∗ 1 = ý and
ý ∗ ŭ < ž ∗ ġ, whenever ý < ž and ŭ < ġ and in addition associative, commutative
and continuous.

After KM [9] and GV [2], a lot of definitions and theorems were created for fuzzy
metric space (FMS). So these important discoveries attracted the attention of many
writers.

Definition 2. [2] (Ŵ , Ŷ , ∗), Ŵ (6= ∅) , is called a FMS; provided that ∗ is a con-

tinuous t − norm, Ŷ is a fuzzy set on Ŵ 2 × (0,∞) satisfying the conditions ∀
γ, ρ, η ∈ Ŵ and ś, ŕ > 0;

(FM1) Ŷ (γ, ρ, ś) > 0;

(FM2) Ŷ (γ, ρ, ś) = 1 ⇐⇒ γ = ρ;

(FM3) Ŷ (γ, ρ, ś) = Ŷ (ρ, γ, ś);

(FM4) Ŷ (γ, ρ, ś) ∗ Ŷ (ρ, η, ŕ) ≤ Ŷ (γ, η, ś+ ŕ);

(FM5) Ŷ (γ, ρ, ·) : (0,∞)→ [0, 1] is continuous,
When (FM4) is replaced by (NA),

(NA) = Ŷ (γ, ρ, ś) ∗ Ŷ (ρ, η, ŕ) ≤ Ŷ (γ, η,max {ś, ŕ})

or

Ŷ (γ, ρ, ś) ∗ Ŷ (ρ, η, ś) ≤ Ŷ (γ, η, ś)

then (Ŵ , Ŷ , ∗) is named Non-Archimedean (NA) FMS [7] .

Metrics that do not depend on ”t” are called stationary fuzzy metrics. When
examined from this aspect; it is clearly seen that these fuzzy metrics are the most
similar to classical ones.

Definition 3. [5] (Ŵ , Ŷ , ∗), Ŵ ( 6= ∅), is called a stationary FMS (SFMS); If ∗ is

a continuous t-norm, Ŷ is a fuzzy set on Ŵ 2 satisfying the conditions ∀ γ, ρ ∈ Ŵ ;
(SF1) Ŷ (γ, ρ) > 0;

(SF2) Ŷ (γ, ρ) = 1 ⇐⇒ γ = ρ;

(SF3) Ŷ (γ, ρ) = Ŷ (ρ, γ);

(SF4) Ŷ (γ, ρ) ∗ Ŷ (ρ, η) ≤ Ŷ (γ, η).

(γi)i∈N in this space (Ŵ , Ŷ ) is Cauchy if lim
i,j→∞

Ŷ (γi, γj) = 1;

(γi)i∈N → γ ∈ Ŵ if lim
i→∞

Ŷ (γi, γ) = 1.

Now a newly fuzzy metrics defined in [4] is presented below that in the study

” ∧t>0 Ŷ (γ, ρ, t) > 0 on Ŵ” were examined.

Definition 4. [4] (Ŵ , Ŷ 0, ∗), Ŵ (6= ∅) ,is called an extended FMS (EFMS);If ∗ is

a continuous t-norm, Ŷ 0 is a fuzzy set on Ŵ 2× [0,∞) satisfying the conditions ∀
γ, ρ, η ∈ Ŵ and ś, ŕ ≥ 0;

(EF1) Ŷ 0(γ, ρ, ś) > 0;

(EF2) Ŷ 0(γ, ρ, ś) = 1 ⇐⇒ γ = ρ;

(EF3) Ŷ 0(γ, ρ, ś) = Ŷ 0(ρ, γ, ś);

(EF4) Ŷ 0(γ, ρ, ś) ∗ Ŷ 0(ρ, η, ŕ) ≤ Ŷ 0(γ, η, ś+ ŕ);

(EF5) Ŷ 0
γ,ρ : [0,∞)→ (0, 1] is continuous.
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Similarly replacing (EF4) by (NA)∗ = Ŷ 0(γ, ρ, ś)∗Ŷ 0(ρ, η, ŕ) ≤ Ŷ 0(γ, η,max {ś, ŕ})
or Ŷ 0(γ, ρ, ś) ∗ Ŷ 0(ρ, η, ś) ≤ Ŷ 0(γ, η, ś) for ∀ γ, ρ, η ∈ Ŵ and ś, ŕ ≥ 0; then

(Ŵ , Ŷ 0, ∗) is named NA EFMS.

Theorem 1. [4] Let Ŷ and its extension set Ŷ 0 be defined on Ŵ 2 × (0,∞), and

Ŵ 2× [0,∞) respectively.

Ŷ 0(γ, ρ, ś) = Ŷ (γ, ρ, ś) for all γ, ρ ∈ Ŵ , ś > 0 and

Ŷ 0(γ, ρ, 0) = ∧t>0Ŷ (γ, ρ, ś).

So, (Ŵ , Ŷ 0, ∗) is an EFMS if and only if (Ŵ .Ŷ , ∗) is a FMS satisfying ∀ γ, ρ ∈ Ŵ
the condition ∧ś>0Ŷ (γ, ρ, ś) > 0.

Proposition 1. [4] (Ŵ ,NŶ , ∗) is a SFMS on X if and only if ∧ś>0Ŷ (γ, ρ, ś) > 0

∀ γ, ρ ∈ Ŵ . That is,

Ŷ 0(γ, ρ, 0) = ∧ś>0Ŷ (γ, ρ, ś) = NŶ (γ, ρ) (2.1)

Proposition 2. [4] (Ŵ , Ŷ 0, ∗) is complete if and only if (Ŵ ,NŶ , ∗) is complete.

In the literature, the concepts of completeness and Caucy have been defined in
various ways and used in fuzzy metric spaces ([2], [3]). One of them is adapted to
EFMS in [4]. It is presented below;

Definition 5. [4] {γn} in Ŵ is named Cauchy sequence if given δ ∈ (0, 1), it can

be find nδ ∈ N such that Ŷ 0 (γn, γm, 0) > 1− δ for all n,m ≥ nδ .{γn} is Cauchy

sequence⇐⇒ limm,n Ŷ
0 (γn, γm, 0) = 1.

Since the spaces to which every Cauchy sequence converges are complete, the
same situation is valid in EFMS.

An interpolative type contraction was studied in [8] in partial metric space
(PMS);

Definition 6. [8] Let (Ŵ , p) be a PMS, = : X −→ X is named an interpolative
Reich-Rus-Ciric type contraction, if there exist constants λ ∈ [0, 1) and α, β ∈ (0, 1)
such that

p(=γ,=ρ) ≤ λ [p(γ, ρ)]
β

[p(γ,=ρ)]
α
. [d(ρ,=ρ)]

1−α−β

for all γ, ρ ∈ X/Fix(=).

Theorem 2. [8] In the framework of a PMS (Ŵ , p), if = : Ŵ −→ Ŵ is an

interpolative Reich-Rus-Ciric type contraction, then = posseses a fixed point in Ŵ .

In this article, it is intended to obtain generalized versions inspired the contrac-
tion obtained by interpolative approach and to adapt this contraction first to fuzzy
metrics and then to extended ones.

3. Main Result

Definition 7. Ω : Ŵ −→ Ŵ is called a fuzzy-interpolative Reich-Rus-Ciric type
contraction; If (Ŵ , Ŷ , ∗) is a FMS and there exist constants λ ∈ [0, 1) and α, β ∈
(0, 1) ;[
1− Ŷ (Ωγ,Ωρ, ś)

]
≥ λ

[
1− Ŷ (γ, ρ, ś)

]β [
1− Ŷ (γ,Ωγ, ś)

]α
.
[
1− Ŷ (ρ,Ωρ, ś)

]1−α−β
(3.1)



36 MERYEM BOZDEMİR

for all γ, ρ ∈ Ŵ/F ix(Ω).

Theorem 3. Let (Ŵ , Ŷ , ∗) be a complete NA FMS. Provided that Ω : Ŵ −→ Ŵ
is a fuzzy-interpolative Reich-Rus-Ciric type contraction, then Ω has a fixed point
in Ŵ .

Proof. Let ρ0 ∈ Ŵ . (ρn)n∈N ∈ Ŵ is a sequence with ρn+1 = Ωρn.
Here, by examining the cases where γn+1 = γn and γn 6= γn+1; it will be obtain

that γ∗ is the fixed point in the both cases.
Let be ρn+1 = ρn (for some n ∈ N), γ∗ = γn .
Let be ρn 6= ρn+1 (∀ n ∈ N);
By replacing the values such as γ = ρn−1, ρ = ρn,[

1− Ŷ (Ωρn−1,Ωρn, ś)
]
≥ λ

[
1− Ŷ (ρn−1, ρn, ś)

]β [
1− Ŷ (ρn−1,Ωρn−1, ś)

]α
.
[
1− Ŷ (ρn,Ωρn, ś)

]1−α−β
[
1− Ŷ (ρn,Ωρn, ś)

]α+β

≥ λ
[
1− Ŷ (ρn, ρn−1, ś)

]β
.
[
1− Ŷ (ρn−1,Ωρn−1, ś)

]α
= λ.

[
1− Ŷ (ρn−1,Ωρn−1, ś)

]α+β

and [
1− Ŷ (ρn,Ωρn, ś)

]α+β

≥ λ.
[
1− Ŷ (ρn−1,Ωρn−1, ś)

]α+β

so
{
Ŷ (ρn−1,Ωρn−1, ś)

}
is non-increasing;[

1− Ŷ (ρn,Ωρn, ś)
]
≥ λ.

[
1− Ŷ (ρn−1,Ωρn−1, ś)

]
this implies that, [

1− Ŷ (ρn,Ωρn, ś)
]
≥ λn.

[
1− Ŷ (ρ0, ρ1, ś)

]
as n→∞,

lim
n→∞

[
1− Ŷ (ρn,Ωρn, ś)

]
≥ λn. lim

n→∞

[
1− Ŷ (ρ0, ρ1, ś

]
λn → 0 we obtain,

lim
n→∞

[
1− Ŷ (ρn,Ωρn, ś)

]
= 0 =⇒ Ŷ (ρn,Ωρn, ś) = 1.

Using Def.4 with (NA), for n < m;

Ŷ (ρn, ρm, ś) ≥ Ŷ (ρ
n
, ρ

n+1
, ś) ∗ Ŷ (ρ

n+1
, ρ

n+2
, ś) ∗ ... ∗ Ŷ (ρ

m−1
, ρ

m
, ś)

and as n,m→∞,
lim

n,m→∞
Ŷ (ρn, ρm, ś) ≥ lim

n→∞
Ŷ (ρ

n
, ρ

n+1
, ś) ∗ lim

n→∞
Ŷ (ρ

n+1
, ρ

n+2
, ś) ∗ ... ∗ lim

n→∞
Ŷ (ρ

m−1
, ρ

m
, ś)

≥ 1 ∗ 1 ∗ ... ∗ 1

≥ 1

and
lim
n→∞

Ŷ (ρn, ρm, ś) = 1.

Because Ŷ is complete and {ρ
n
} is a Cauchy, ∃ ρ∗ ∈ Ŷ : as n→∞ and ρ

n
→ ρ∗.

Assuming Ωρ∗ 6= ρ∗and implementing (3.1) with γ = ρn, ρ = ρ∗,[
1− Ŷ (Ωρn,Ωρ

∗, ś)
]
≥ λ

[
1− Ŷ (ρn, ρ

∗, ś)
]β [

1− Ŷ (ρn,Ωρn, ś)
]α
.
[
1− Ŷ (ρ∗,Ωρ∗, ś)

]1−α−β
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and as n→∞,[
1− Ŷ (Ωρ∗,Ωρ∗, ś)

]
≥ λ

[
1− Ŷ (ρ∗, ρ∗, ś)

]β [
1− Ŷ (ρ∗,Ωρ∗, ś)

]α
.
[
1− Ŷ (ρ∗,Ωρ∗, ś)

]1−α−β
so 1− Ŷ (ρ∗,Ωρ∗, ś) = 0 =⇒ Ωρ∗ = ρ∗. It is a contradiction.
That is Ωρ∗ = ρ∗ and ρ∗ is a fixed point of Ω. �

Definition 8. Let (Ŵ , Ŷ 0, ∗) be an EFMS. Ω : Ŵ −→ Ŵ is a fuzzy−Ŷ 0−interpolative
Reich-Rus-Ciric type contraction, provided that (3.1) is satisfied for all ś ≥ 0. Par-
ticularly, Ω is called fuzzy − 0− interpolative Reich-Rus-Ciric type contraction,
provided that (3.1) is satisfied for ś = 0.

Theorem 4. Let (Ŵ , Ŷ 0, ∗) be a complete NA EFMS. Provided that Ω : Ŵ −→ Ŵ

is a fuzzy− Ŷ 0− interpolative Reich-Rus-Ciric type contraction, then Ω has a fixed
point in Ŵ .

Proof. It will be examine two cases.
I. ś > 0;
The situation where Ŷ 0(γ, ρ, ś) = Ŷ (γ, ρ, ś) ∀ γ, ρ ∈ Ŵ is actually the same as

the case proven in Theorem3.1.
II. ś = 0;
Let γ0 ∈ Ŵ . (γn)n∈N ∈ Ŵ is a sequence with γn+1 = Ωγn
Here, by examining the cases where γn+1 = γn and γn 6= γn+1, it will be obtain

that γ∗ is a fixed point of Ω.
Let be γn+1 = γn (for some n ∈ N), γ∗ = γn .
Let be γn 6= γn+1 (∀ n ∈ N)
Using (2.1) and (3.1) with γ = ρn−1, ρ = ρn, ś = 0[

1− Ŷ 0(Ωρn−1,Ωρn, 0)
]
≥ λ

[
1−NŶ (ρn−1, ρn)

]β [
1−NŶ (ρn−1,Ωρn−1)

]α
.
[
1−NŶ (ρn,Ωρn)

]1−α−β
and so [

1−NŶ (ρn,Ωρn)
]
≥ λ.

[
1−NŶ (ρn−1,Ωρn−1)

]{
NŶ (ρn,ρn+1)

}
is non-increasing and by iterating[

1−NŶ (ρn,ρn+1)
]
≥ λn

[
1−NŶ (ρ0, ρ1)

]
.

Since, as n→∞ and λn → 0,

NŶ (ρn,ρn+1)→ 1.

Using (3.1) with γ = ρn, ρ = ρm, ś = 0 (n < m),

lim
n→∞

NŶ (ρn , ρm) ≥ lim
n→∞

NŶ (ρn , ρn+1) ∗ lim
n→∞

NŶ (ρn+1 , ρn+2) ∗ ... ∗ lim
n→∞

NŶ (ρm−1 , ρm)

≥ 1 ∗ 1 ∗ ... ∗ 1 = 1

it is obtained that

lim
n→∞

NŶ (ρn , ρm) = 1.

{ρn} is a Cauchy and Ŵ is complete,then ∃ ρ∗ ∈ Ŵ : as n→∞ and ρn → ρ∗.
Because of Ω is continuous, Ωρn → Ωρ∗ and by using (2.1),

lim
n→∞

NŶ (Ωρn ,Ωρ
∗) = 1.

the limit is unique and so ρ∗ = Ωρ∗.So the proof is completed. �
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Example 1. Let Ŵ = {1, 2, 3, 4} be a set, ∗ is product t− norm, Ŷ 0 is an EFMS

on Ŵ and for ∀ γ, ρ ∈ Ŵ ;

Ŷ 0(γ, ρ, t) = e−
|γ−ρ|
t+1 .

(Ŵ , Ŷ 0, ∗) is a complete Non-Archimedean EFMS and we define a self mapping

Ω =
(

1 2 3 4
3 1 2 4

)
on Ŵ .

Ω is a fuzzy− Ŷ 0− interpolative Reich-Rus-Ciric type contraction for all ζ, ρ ∈
Ŵ and λ = α = β = 1

2 such that;
I.for γ = 1, ρ = 2

1− Ŷ (3, 1.t) = 1− e−
|γ−ρ|
ś+1

= 1− e−
2
ś+1

=
(

1− e−
1
ś+1

)(
1 + e−

1
ś+1

)
>

(
1− e−

1
ś+1

)
=

√
1− e−

1
ś+1

√
1 + e−

1
ś+1

(
1− e−

1
ś+1

)0

>

√
1− e−

1
ś+1

√
1− e−

2
ś+1

(
1− e−

1
ś+1

)0

>
1

2

(
1− e−

1
ś+1

) 1
2
(

1− e−
2
ś+1

) 1
2
(

1− e−
1
ś+1

)0

= λ
[
1− Ŷ (1, 2, t)

]β [
1− Ŷ (1, 3, t)

]α
.
[
1− Ŷ (2, 1, t)

]1−α−β
Similarly, it can be shown to be true for II.(γ = 1, ρ = 3) and for III.(γ = 2,

ρ = 3).
So the conditions of Theo4. are satisfied. ”4”is unique fixed point of Ω.

4. Conclusion

In the literature, many contraction mappings defined in metric spaces have been
adapted to fuzzy metric spaces. However, the contraction used in this study is
hybrid, that is, a contraction obtained by the interpolative approach. The contrac-
tion is first transferred to a fuzzy metric space and then adapted to an extended
fuzzy metric space. In this way, many contraction mappings can be redefined by
the interpolative approach and transferred to different fuzzy metric spaces.
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