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Abstract 

Geographic Information Systems and machine learning algorithms suggest good alternatives for producing landslide 

susceptibility maps. In the process of producing these maps with machine learning, alternative data model options exist. 

Success rate of analyses may change according to the preferred data method. In this study, 6 different machine learning 

models were created by passing different data models with the XGBoost algorithm. Study area is located in the cities of 

Ordu and Giresun, Turkiye. 14 different factors and related geographic data layers were used. As a result of the study, the 

most successful model performance was achieved by taking the average values of all pixels of the combined landslide 

record polygons (Accuracy=0,88, Precision=0,86, F1 score=0,87). SHAP method was applied for better interpretation of 

machine learning results The susceptibility map produced with the ideal model, overlapped with 57.556 buildings in the 

region. The buildings were classified in 4 groups (low, moderate, high, and very high) and mapped, indicating their risk 

level. 

Keywords: Landslide susceptibility mapping, machine learning, SHAP, GIS, geospatial data model. 

 

 

XGBoost ve SHAP ile Heyelan Duyarlılık Haritalaması İçin Alternatif CBS Veri 

Modeli Yöntemlerinin Karşılaştırılması 
 

Öz 

Coğrafi Bilgi Sistemleri ve makine öğrenimi algoritmaları, heyelan duyarlılık haritalarının üretilmesi için iyi alternatifler 

önermektedir. Bu haritaların makine öğrenmesi ile üretilmesi sürecinde alternatif veri modeli seçenekleri mevcuttur. 

Tercih edilen veri yöntemine göre analizlerin başarı oranı değişebilir. Bu çalışmada XGBoost algoritması ile farklı veri 

modellerini geçerek 6 farklı makine öğrenmesi modeli oluşturulmuştur. Çalışma alanı Türkiye'nin Ordu ve Giresun 

illerinde bulunmaktadır. 14 farklı faktör ve ilgili coğrafi veri katmanları kullanıldı. Çalışma sonucunda en başarılı model 

performansı, birleştirilmiş heyelan kayıt poligonlarının tüm piksellerinin ortalama değerleri alınarak elde edilmiştir. 

Makine öğrenmesi sonuçlarının daha iyi yorumlanması için SHAP yöntemi uygulandı. İdeal model ile üretilen duyarlılık 

haritası, bölgedeki 57.556 bina ile örtüştü. Binalar 4 grupta (düşük, orta, yüksek ve çok yüksek) sınıflandırılarak risk 

düzeyleri belirtilerek haritalanmıştır. 

Anahtar Kelimeler: Heyelan duyarlılık haritası, Makine öğrenmesi, SHAP, CBS, Coğrafi veri modeli  
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1. Introduction 

 

Landslide susceptibility (LS) is the spatial distribution of the probability of the occurrence of 

landslides as determined by various investigators (Youssef and Pourghasemi, 2021; Constantin et al., 

2011). Landslide susceptibility mapping (LSM) is a functional method to avoid and reduce loses from 

landslide hazards (Hong, 2023). There are many sub-methods for creating LSM, including statistical 

methods, traditional machine learning (ML) methods, deep learning methods, etc. (Zhao et al., 2022). 

Due to the increase in flood events, there is a need to implement new models to enhance the prediction 

capability of flood and landslide hazards (Prasad et  al., 2021; Hong et al. 2018). More hybrid and 

different models are applied in LSM. Each combination gives excellent prediction performance for 

LS mapping; besides this, further exploration and application of more set-based methods are needed 

(Chen and Li, 2020; Hong et al., 2020; Abedini et al., 2019; Pham et al., 2019; Wu et al., 2017). 

ML and deep learning techniques have been proven to be powerful and promising tools in many 

geotechnical applications as well as in landslide identification (Wang et al., 2020; Li et al., 2019; 

Ching and Phoon, 2018; Lo and Leung, 2018; Papaioannou and Straub, 2017). Integration of terrain 

modelling and GIS analysis provides a toolset for rapid spatial prediction of landslide hazards 

(Gorsevski et al., 2006). ML methods are popular for detecting landslide areas. ML methods provide 

support in the process of determining the parameters of where landslide events will occur (Pham et 

al., 2020). 

The quality of training datasets has a crucial influence on the accuracy of LSM (Hong et al., 

2020). The performance of LS models is dependent on the number of training samples and their 

quality. This is more impactful when the training data is scarce (Sameen et al., 2020). As it is difficult 

to reach landslide records stored in the geographic data format in many parts of the world, these scarce 

data must be processed correctly. This process is relevant to ML studies for getting more accurate 

and effective results. 

Most of the previous studies focused on the model development process, which consists of 

adjusting hyperparameters or obtaining hybrid models created by combining several methods (Fanos 

and Pradhan, 2019; Pradhan and Sameen, 2018). Other researchers have studied several approaches 

to improve the performance of LS maps (Sameen et al., 2020; Hong et al., 2018; Hussin et al., 2016; 

Mezaal et al., 2017; Yilmaz, 2010; Nefeslioglu et al., 2008). LS maps were created using machine 

learning in various scientific studies in Turkey. Orhan et al., 2020 aimed trying different machine 

learning models for creating LS maps. Akinci et al, 2020 measured Random Forest performance 

results for same purpose. Sahin 2022, studied on free and open-source semi-automatic feature 

engineering tools for creating LS maps. Kavzoglu and Teke 2022, measured performances of 

ensemble machine learning algorithms. 
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This paper is structured as follows. Ideal spatial data model was investigated for generating LS 

maps with Geographic Information Systems (GIS) and XGBoost algorithm. Two different crossover 

groups were created. In the first group, the presence data of the landslides is classified into groups 

such as recent, relict(old), or combined. In the second group, while transferring data from GIS dataset 

to ML, the data was separated into two classes. Central point of the landslide or average of all the 

pixels in polygon of the landslide record. By crossing three different comparison sample groups, 6 

different analysis results were formed. In previous studies, there were fewer studies focusing on the 

behaviour of LS mapping performance on different data models than in this study. The results of these 

analyses were evaluated in a comparative manner. 

 

2. Material and Methods 

 

2.1. Study Area 

 

Study area includes Ordu and Giresun cities located in the northeast region of Türkiye. Cities 

are located between latitudes of 40o13’ - 41o8’ and longitudes of 36o57’ - 39o14’ (Figure 1). Ordu 

city is 6001 km2 and Giresun city is 6934 km2. The characteristics of these two neighbouring cities 

such as topography, and land structure are similar. 
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Figure 1. Study area 

Ordu and Giresun are coastal cities and the mountains of this region are perpendicular to the 

sea. The region is rich in streams, and there are streams in all canyons. In the natural vegetation; there 

are spruce, pine (larice), alder, beech, carp, oak, and chestnut trees. Seedlings of hazelnuts and kiwis 

dominate agricultural land. According to the Köppen climate classification, the climate in the Black 

Sea region is classified as oceanic climate (Cfb) and subtropical rainy climate (Cfa) (Orman ve Su 

İşleri Bakanlığı, 2023). The area is rainy in all seasons and has a temperate climate with the thermal 

characteristics of the sea. The greatest amount of precipitation occurs during the fall months. The 

average annual precipitation is 1590 mm and the average number of rainy days is 163 days. The 

average annual temperature in the region is 14 oC. The region starts at sea level at an altitude of 0 

and extends to an altitude of 2000. Land use and active population in the region are changeable due 

to the season. People live in coastal areas during the winter months and migrate to villages and 

highland settlements in high-altitude regions in the spring and summer months. Land use in the region 

is transforming rigidly due to human-made structures. Landslides occur frequently in the region. 

Figure 2 shows the settlement pattern in an active landslide zone and the studies carried out after the 

landslide in Ordu / Kabaduz. Due to floods and landslides that occurred in Giresun, 2020 or Ordu, 

2023, a significant amount of life and property has been lost. 

 

 

Figure 2. Landslide risky areas and settlements in study area 

 

 

2. 2. Methodology Schema 

 

A methodology schema showing all steps of study is given in Figure 3. Python was preferred 

as programming language because it is compatible with rich ML libraries such as Scikit-Learn. 

Pandas library was also used. Jupyter-lab platform was used for creating and running ML. Scripts 

were written in Python language. Brief explanation of methods is given in the sections below. ArcMap 

was used at the GIS analysis and spatial data visualisation stages. AutoCAD was used for processing 

a small amount of CAD based data (almost all of the data was provided in GIS format). 
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Figure 3. Methodology schema 

 

2.3. Classification of Landslide Inventory Data 

 

In era of GIS and integration of ML, one of the challenging problems that researchers need to 

solve is how the data model should be structured. In general, raw datasets in GIS cannot be directly 

ready for use in ML algorithms. Same problems arise in the process of producing LSM with ML. 

When converting GIS data into information, diversity of parameters is high, and these options will 

affect analysis results positively or negatively. The fact that datasets are produced according to 

different scales, sensitivity, accuracy, or data format (vector/raster) increases diversity. 

Spatiotemporal parameter of the preferred dataset is also an important criterion. Should we work with 

recent data, relict data or a combination of both? Also, preparation of positive / negative landslide 

data to be used by ML algorithms has an important effect, especially in solving classification 

problems. In the final stage, how to transfer information from the final datasets created in this study 

to the data of the factors affecting the landslide in raster format, and the choices to be made on pixel-

based methods, can directly affect the results. It is aimed to state alternatives in this section and 

planned to compare alternative input and output choices in the following sections. 
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2.3.1. Presence Data 

 

2.3.1.1. Recent Landslide Records  

 

There are some classification types depending on whether the landslides are up-to-date or not. 

They vary by country with criteria such as records of landslide events, time of data collection, active-

passive status, etc. In this study, records of landslide events in the last 10 years have been evaluated 

as "recent landslide records". 248 different "recent landslide records" in the pilot study area are 

organised in GIS data format. The data is collected from Türkiye's landslide public institutions 

producing records, MTA (Maden Tetkik Arama) and other different sources. 

 

2.3.1.2. Relict Landslide Records  

 

Landslide records that occurred more than 10 years ago and have not been repeated recently were 

evaluated as data for relict landslide records. In the area studied, 572 different landslides were 

collected according to this criterion. 

 

2.3.1.3. Combined Landslide Records  

 

Combined landslide record data is combination of recent and relict records in same data. Recent, 

relict landslide records were merged into same dataset (820 landslides) and this dataset. All these 

three datasets are shown in Figure 1. 

 

2.3.2. Absence Data 

 

Landslide absence data also play an important role in regional LSM based on statistical models, 

since they can suppress the statistical model's overestimation of the LS, thus enabling its ability to 

reasonably divide the area into high-susceptibility areas and low-susceptibility areas (Hong et al., 

2019; Zhu et al., 2018). The reason behind creating and using absence data is to teach ML the 

difference between landslide and non-landslide areas. This way, the ML algorithm can define 

characteristics of independent variable parameters, such as LS. The perception of this difference helps 

ML make better decisions in the process of LSM. Absence data is important for teaching non-

landslide areas to the computer and determining the parameters of the landslide event comparatively. 

In the study area, absence data for 248 recent landslides, 572 relict landslides, and 820 combined 

landslides were created randomly. It is considered important to ensure that the average sizes of 
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"presence landslide data" and "absence landslide data" are close to each other. Absence landslide 

record data takes 0 as an attribute before being used in ML. 

 

2.4. Landslide Conditioning Factors and Related GIS Dataset 

 

13 different factors affecting the occurrence of landslide events were determined based on 

different literature studies. These factors are considered in five classes: morphological, hydrological, 

geological, meteorological, and land cover / use types. Morphological factors (Hong et al., 2020) are; 

slope aspect, elevation, plan curvature, and profile curvature. Hydrological factors (Yi et al., 2020; 

Fang et al., 2020; Wang et al., 2019; Shirzadi et al., 2018) are distance to the river and topographic 

wetness index (TWI). Geological factors (Yi et al., 2020; Nsengiyumva and Valentino, 2020; 

Pourghasemi et al., 2020) are geo-lithological structure and distance to fault. The meteorological 

factor is the maximum rainfall value in m2 per month. Land cover / use type factors (Nsengiyumva 

and Valentino, 2020; Wang et al., 2019) are land use types, distance to roads, and soil structure. Each 

landslide affecting factor corresponds to a GIS data layer in the database. Table 1 shows metadata 

information about the collected GIS dataset, such as source of data, accuracy of data, original and 

final format of data, and current literature studies using related data. Graphical views of collected 

datasets related to these factors are given in Figure 3. In addition to these landslide conditioning 

factors, landslide inventory data was collected and inserted into the GIS dataset. 

 

2.5. Cell Center or Average Value within All Pixels Overlaying Landslide Record 

Polygons 

 

In the process of analysing the factors affecting landslide occurrence with ML and producing 

LS maps, the choice of the correct data model is important. Landslide data is in polygon format and 

may cover small, medium or large areas. When transferring landslide data to ML as a dependent 

variable, it must be transferred as a single value. Because this value will be overlapped with pixel-

based dependent variables (factors affecting landslide formation) in the ML environment. While 

obtaining this single value; there are alternatives such as taking the value of a point in the middle of 

the landslide polygon (geometric center), taking a random point or taking the average values of the 

pixels inside the polygon. 
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  Table 1. Detailed information about GIS dataset 

 

 

 

 

Data name Source Original 

Format / 

Accuracy 

Last Format / 

Parameter 

Current Literature Studies 

Slope General 

Command 

of Mapping 

(TR) 

Vector /  

5 mt 

Raster / 

Degree  

Lima et al., 2023; Hong, 2023; Xiao and Zhang, 2023; Saygin 

et al., 2023; Laura et al., 2023; Pham et al., 2020; Pourghasemi 

et al., 2020; Zhao et al., 2022; 

Aspect General 

Command 

of Mapping 

(TR) 

Raster / 

 5 mt 

Raster / 

Aspect Value 

Chen and Li, 2020; Fang, 2020; Hong et al., 2020; Pham et al., 

2020; Pourghasemi et al., 2020; Nsengiyumva and Valentino, 

2020;  Zhao et al., 2022; Lima et al., 2023; Hong, 2023; Laura 

et al., 2023 

Elevation General 

Command 

of Mapping 

(TR) 

Vector /  

5mt 

Raster / 

Height Value 

Hong, 2023; Xiao and Zhang, 2023; Laura et al., 2023; 

Arabameri et al., 2021; Chen and Chen, 2021; Ngo et al., 2021;  

Zhao et al., 2022; Lima et al., 2023 

Plan 

Curvature 

General 

Command 

of Mapping 

(TR) 

Raster /  

5 mt 

Raster / Plann 

Curv. Value 

Chen and Li, 2020; Fang, 2020; Hong et al., 2020; 

Pourghasemi et al., 2020; Nsengiyumva and Valentino, 2020; 

Arabameri et al., 2021; Chen and Chen, 2021; Ngo et al., 2021; 

Lima et al., 2023; Hong, 2023; Laura et al., 2023; Huang et al., 

2023 

Profile 

Curvature 

General 

Command 

of Mapping 

(TR) 

Raster /  

5 mt 

Raster / 

Profile Curv. 

Value 

Chang et al.,2020; Chen and Li, 2020; Fang, 2020; Arabameri 

et al., 2021; Chen and Chen, 2021;  Lima et al., 2023; Hong, 

2023; Laura et al., 2023; Huang et al., 2023 

River 

 

Government 

Water Org.  

Vector /  

4 mt 

Raster / 

Distance to 

River in 

meters 

Hong et al., 2020; Nsengiyumva and Valentino, 2020; 

Pourghasemi et al., 2020; Sameen et al., 2020; Wang et al., 

2020a; Yi et al., 2020;Arabameri et al., 2021; Chen and Chen, 

2021;  Zhao et al., 2022;  Hong, 2023 

TWI  Meteorolog

y 

Raster /  

5 mt 

Raster / Index 

Value 

Wang et al., 2020a; Wang et al., 2020b; Arabameri et al., 2021; 

Chen and Chen, 2021; Hong, 2023 

Geo-

lithologic 

Structure 

Mineral 

Exploration 

(MTA) 

Vector / 

10 mt 

Raster / 

Attribute 

Type 

Hong et al., 2020; Nsengiyumva and Valentino, 2020; Pham et 

al., 2020; Pourghasemi et al., 2020; Yi et al., 2020; Arabameri 

et al., 2021; Chen and Chen, 2021;  Zhao et al., 2022; Lima et 

al., 2023; Hong, 2023; Laura et al., 2023 

Fault Line Mineral 

Exploration 

(MTA) 

Vector /  

10 mt 

Raster / 

Distance to 

Fault Line in 

meters 

Pham et al., 2020; Pourghasemi et al., 2020; Wang et al., 

2020a; Yi et al., 2020; Arabameri et al., 2021; Ngo et al., 2021;  

Zhao et al., 2022; Lima et al., 2023; Hong, 2023; Xiao and 

Zhang, 2023 

Land Use 

Type 

Ministry of 

Agriculture 

and Food 

Vector /  

10 mt 

Raster / Land 

Use Type 

Attribute 

Sameen et al., 2020; Yi et al., 2020; Arabameri et al., 2021; 

Chen and Chen, 2021; Ngo et al., 2021;  Zhao et al., 2022; 

Lima et al., 2023; Hong, 2023; Xiao and Zhang, 2023; Saygin 

et al., 2023; Laura et al., 2023 

Soil Ministry of 

Agriculture 

and Food 

Vector /  

10 mt 

Raster / Soil 

Quality 

Attribute 

Zhang et al., 2017; Chen and Li, 2020; Fang, 2020; 

Pourghasemi et al., 2020; Nsengiyumva and Valentino, 2020; 

Arabameri et al., 2021; Chen and Chen, 2021; Lima et al., 

2023; Saygin et al., 2023; Laura et al., 2023 

Road Municipalit

y 

Vector /  

1 mt 

Raster / 

Distance to 

Roads  

Yi et al., 2020; Arabameri et al., 2021; Chen and Chen, 2021; 

Ngo et al., 2021;  Zhao et al., 2022; Lima et al., 2023; Hong, 

2023; Xiao and Zhang, 2023 

Landslide 

Records 

Mineral 

Exploration 

(MTA) 

Vector /  

5 mt 

Raster / 

Attribute 

Recent – 

Relict – 

Combined  

Wang et al., 2020a; Arabameri et al., 2021; Chen and Chen, 

2021; Ngo et al., 2021; Zhao et al., 2022; Xiao and Zhang, 

2023 

Rainfall Meteorolog

y  

Excel / 3 

mt 

Raster / After 

Interpolation 

Zhang et al., 2017; Chen et al., 2018; Shirzadi et al., 2018; 

Aghlmand et al., 2020; Chen and Li, 2020; Fang, 2020; Wang 

et al., 2020b; Arabameri et al., 2021; Ngo et al., 2021; Hong, 

2023; Xiao and Zhang, 2023 

Building 

Footprints 

Municipalit

y  

Vector / 

30 cm 

Vector / 

Polygon 

Singh et al., 2021; Fu et al., 2020; Ciampalini et al., 2014; 

Martha et al., 2013 
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2.6. Cell Center or Average Value within All Pixels Overlaying Landslide Record Polygons 

 

In the process of analysing the factors affecting landslide occurrence with ML and producing 

LS maps, the choice of the correct data model is important. Landslide data is in polygon format and 

may cover small, medium or large areas. When transferring landslide data to ML as a dependent 

variable, it must be transferred as a single value. Because this value will be overlapped with pixel-

based dependent variables (factors affecting landslide formation) in the ML environment. While 

obtaining this single value; there are alternatives such as taking the value of a point in the middle of 

the landslide polygon (geometric center), taking a random point or taking the average values of the 

pixels inside the polygon. 

 

 

Figure 4. Graphical view of input GIS dataset 
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In this study, the geometric center of the landslide was taken as an alternative to represent the 

landslide areas. Alternatively, the mean value of all pixels in overlapping the relevant level with the 

landslide area was taken (Figure 5). The data obtained from calculations made with these two different 

methods and all the input layers have been prepared for ML. Presence and absence data of Recent, 

Relict and a were arranged and made available in 3 different ML algorithms to be tested 

comparatively. 

 

 

Figure 5. Differences between cell center and average value methods 

 

2.7. Gradient Boosting and XGBoost 

 

Gradient Boosting Decision Tree (GBDT) is a sub-group of decision forests that includes 

models like XGBoost, CatBoost, and LightGBM (Sagi and Rokach, 2021). XGBoost, or eXtreme 

Gradient Boosting, stands as a seminal advancement in machine learning, renowned for its 

exceptional predictive performance and versatility across diverse domains. Among the machine 

learning methods used in practice, gradient tree boosting is one technique that shines in many 

applications. Tree boosting has been shown to give state-of-the-art results on many standard 

classification benchmarks (Li., 2010; Chen and Guestrin, 2016). XGBoost was mainly designed for 

speed and performance using gradient-boosted decision trees. It represents a way for machine 

boosting, or in other words applying boosting to machines, initially done by Tianqi Chen (Dhaliwal 
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et al., 2018). Gradient tree boosting is also known as gradient boosting machine (GBM) or gradient 

boosted regression tree (GBRT) problems. 

 

2.8. Building GIS Based Machine Learning Model  

 

ML model is shown at methodology section. ML learning model of this study has 6 main 

alternatives. These alternatives occur while crossing A) landslide inventory data type (3 alternatives) 

B) cell center or average pixel value data, the method used to transfer information inside the input 

landslide polygon to ML (2 alternatives). So, crossing these alternatives (3*2) generates 6 different 

alternatives.  

Normalising the values of landslide conditioning factors using the min–max method helps 

getting better results (Sameen et al., 2020). In this method, the largest and smallest values in a group 

of data are handled. All other data is normalized to these values. Calculation formula of normalisation 

min-max method is given below.  

x′ =
x−xmin

xmax−xmin
                                        (1) 

During ML analyses normalized independent variables (X values) were used. Training / test 

split method was applied for the validation process (70% train, 30% test). In addition, the k-fold cross 

validation method was applied as k = 10 and compared with the training / test split method. Since 

there is no significant difference in terms of performance, the training / test split method, which is a 

practical method, was preferred in all following analyses. Primitive models were defined directly with 

independent variables. After performing the error tests and performance analyses, the model tuning 

phase was started. At this stage, the most appropriate parameters were found with the GridSearchCV 

method by assigning values at different intervals to the parameter "C", and the analyses were 

performed with that parameter. 

 

3. Results and Discussion 

 

3.1. Model Performance Comparison of Alternatives 

 

This paper aims producing LSM with high prediction accuracy. Assessment of prediction 

accuracy and performance of the models there are alternative methods (Pourghasemi et al., 2020; 

Rahmati et al., 2017). Cross-validation results can be produced quantitatively and graphically by 

means of Accuracy, Precision, F1 Score or confusion matrix. According to the analysis methodology 

applied in the study, performance analyses were carried out under 2 different classes. A) landslide 

inventory data type B) cell center or average pixel value data. For this purpose, XGBoost tuned model 
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result success scores were compared. Table 2 shows model performances and success scores such as 

Accuracy, Precision and F1 score.  

When the model performance is evaluated on the basis of the landslide date, the findings are as 

follows. In all combinations of methods and landslide analysis models, the analyses performed with 

"Combined Landslide Data" gave the highest performance. The best performance in terms of 

Accuracy, Precision and F1Score criteria was in the analyses performed with “Combined Landslide 

Data”. Analyses made with "Recent Landslide Data" ranked second in terms of performance. The 

lowest performance is the analysis with "Relict Landslide Records". The interpretation of this result 

assumes that two different reasons may cause this situation. First, changes in the topographical 

structure and, on the other hand, the fact that the relict landslide zones became more stable compared 

to the past decreased the function of the "Recent Landslide Records" data. This prediction is currently 

in the assumption phase and could become a widely accepted rule if supported and validated in several 

future studies 

The result of two different methods applied in the process of transferring landslide data from 

landslide polygon to the ML environment is the following. Accuracy and precision increases and 

decreases when averaging all pixels of the landslide data polygon. In this method, the accuracy was 

0.86. When the values of the pixel at the center of gravity or the geometric midpoint of the polygon 

are used, the accuracy decreases to 0.81 (Table 2). 

 

Table 2. Model performance evaluation, accuracy, precision and F1 score 

 Accuracy Precision F1 Score 

Recent L. Pixel Average 0,74 0,72 0,80 

Relict L. Pixel Average 0,69 0,68 0,68 

Combined L. Pixel Average 0,88 0,86 0,87 

Recent L. Pixel Center  0,71 0,70 0,76 

Relict L. Pixel Center  0,68 0,67 0,66 

Combined L. Pixel Center  0,84 0,81 0,83 

 

3.2. Landslide Conditioning Factor Effect Analysis and SHAP Method 

 

An important issue in multi-factor analyses made with GIS is to detect the individual effects of 

the input layers on the result. It would be meaningless to use factors that affect the result below 

acceptable values. In addition, these factors in ML can lead to overfitting problems. In the 

classification of factors according to the domain, sensitivity analysis, Pearson correlation coefficient 

(Wang et al., 2020; Chang et al., 2020), spatial heterogeneity (Hong et al., 2019), factor importance 

or partial response curves (Chen et al., 2018). There are different methods such as (Pourghasemi et 
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al., 2020). Input factors should be evaluated one by one before evaluating the success performance 

of the model in ML analysis. 

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of 

any machine learning model. This approach helps us for better understanding and interpretation of 

machine learning results. The local explanation using the SHAP values via each individual SHAP 

value which explains why the ML model gives its decision and the contributions of the 

predictors/features (Le et al., 2022). The results showed that SHAP analysis can effectively improve 

machine learning transparency (Ou et al., 2020; Zhang et al., 2023).  As it is given at previous page 

best score was achieved by applying “Combined Landslide Data” and “averaging all pixels of the 

landslide data polygon”. Results of data model and analysis via XgBoost was evaluated with SHAP 

method. SHAP method is applied after inserting Python-SHAP analysis codes to Jupyter platform.   

Density scatter plot of SHAP values is created for each feature to identify how much impact 

each feature has on the model output for individuals in the validation dataset (Figure 6). Figure 6 

shows SHAP value magnitudes across all samples and we can understand that slope and wetness 

factors are most dominant factors and curvature, rainfall follow them. Less affecting factors are 

proximity to river and roads. Figure 7 also shows dependence scatter plot graphics of each input factor 

used for XGBoost based LSM analysis. 

 

 

Figure 6. SHAP values (impact on model output) 
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Figure 7. SHAP dependence scatter plots 

 

 

3.3. Generating LS Maps and Landslide Risk Assessment of Buildings 

 

More accurate susceptibility map can reduce the cost and damage of environmental disasters 

such as landslides (Chen and Li, 2020). LS map was produced according to the XGBoost results with 

best data model alternative. While producing this map, ArcMap 10.6 / Spatial Analyst / Map Algebra 

/ Raster Calculator tool was used. Map Algebra is a simple and powerful algebra with which you can 

execute all Spatial Analyst tools, operators, and functions to perform geographic analysis. Map 

Algebra supports basic mathematical calculation with overlaying raster based GIS layers such as; 

multiplying, adding or dividing pixel values. In addition to basic math operations map algebra allows 

conditional, trigonometric and logarithmic math calculations. The LS map produced by multiplying 

coefficients with the normalized input layers (Figure 8). 
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Figure 8. LS map of study area 

 

There are 57.601 buildings in the study area. The analysis of susceptibility to landslides was 

overlapped with building footprints prepared in GIS environment. The average value of the landslide 

risk for each building has been calculated. Based on the risk analysis, it was determined that the 

buildings in the region are: 59% (34.006) low,30% (17.342) moderate, 10% (5872) high-risk and 1% 

(291) in very high in terms of landslide risk. Each building is labelled according to its level of risk 

(Figure 9). The production of risk maps and the pre-determination of potential threats with technology 

will significantly contribute to the decision-making processes of decision-makers, planners, and 

managers. Therefore, life and property lose will be reduced and welfare in developing countries will 

be more sustainable. 
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Figure 9. Building risk assessment 

 

4. Conclusions and Recommendations 

 

In this study, LS analysis were made by using XGBoost algorithm. The study was compared 

by applying different model combinations to be formed based on the characteristic structure of the 

landslide data and the method of transferring it to the ML environment. Model success comparisons 

were made using Accuracy, Precision and F1 score. As a result of the study, the most successful 

model performance was achieved by taking the average values of all pixels of the landslide data 

polygon in the XGBoost algorithm, combined landslide data. In addition, the study has shown in a 
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practical way that ML is an effective tool in GIS analysis with multi-criteria structure such as LS map 

generation and in solving similar GIS problems. Study shows that GIS supported machine learning 

methods may give efficient results in the process of producing landslide susceptibility maps. The 

methods / parameters used and the parameters obtained in study are in a structure that can be used 

directly in regions with landslide risk anywhere in the world. SHAP method is an efficient tool for 

evaluation and visualization of input ML factors. Each factor may be evaluated in separate or 

opposing approaches with the help of SHAP. The methods used in the study can be used with some 

model revisions in analysing not only landslide events but also other types of disaster. In addition, as 

a result of the hybrid use of machine learning models with multi-criteria decision support systems, it 

will be beneficial in solving multi-layered problems such as appropriate site or facility location 

selection for settlement or another purposes. In the future, testing and comparing ML algorithms with 

different data model combinations will increase our model success performance and bring us closer 

to ideal solutions and right decisions. 
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