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DRONE SELECTION FOR AGRICULTURAL ENTERPRISES WITH 
INTERVAL TYPE-2 FUZZY COPRAS METHOD

ARALIKLI TİP-2 BULANIK COPRAS YÖNTEMİ İLE TARIM 
İŞLETMELERİ İÇİN DRON SEÇİMİ

Alparslan OĞUZ*
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Abstract
Technological advancements have led to changes in unmanned aerial vehicles, just as in all fields. 
These vehicles, known as drones, are used in many areas such as mapping, logistics, entertainment, and 
agriculture. Especially in agriculture, drones are widely used for various purposes such as mapping, 
detecting weeds, fertilization, and spraying. This situation has increased the market volume of drones 
and many companies have introduced their products for sale. Agriculture plays a significant role in the 
development of developing countries, and drone technologies are of great importance in increasing 
sector productivity. Drone technologies provide transparency and traceability in the cultivation process 
of products. Therefore, the aim of the study is to determine the selection criteria of agricultural drones for 
agricultural enterprises and to select the most suitable alternative among the alternatives. Nine criteria were 
determined through literature review and expert opinion. Seven alternatives from two companies selling in 
Türkiye were evaluated. Alternatives were analyzed using the Interval Type-2 COPRAS method. As a result 
of the evaluation by three experts, alternative A2 was determined as the most suitable alternative.
Key Words: Drone selection, interval type-2 fuzzy sets, COPRAS
JEL Classification: M1, Q16

Öz
Teknolojik gelişmeler tüm alanlarda olduğu gibi insansız hava araçlarında da değişimlere neden olmuştur. 
Dron olarak adlandırılan bu araçlar harita, lojistik, eğlence ve tarım gibi birçok alanda kullanılmaktadır. 
Özellikle tarım alanlarında haritalama, yabani otların tespiti, gübreleme ve ilaçlama gibi çeşitli amaçlarla 
yaygın olarak kullanılmaktadır. Bu durum, dron pazar hacmini artırmış ve birçok firmanın ürünleri satışa 
sunulmuştur. Tarım, özellikle gelişmekte olan ülkelerin kalkınmasında önemli bir rol oynamaktadır. Sektör 
verimliliğinin artırılmasında dron teknolojileri büyük önem taşımaktadır. Dron teknolojileri ürünlerin 
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yetiştirilme sürecinde şeffaflık ve izlenebilirlik sağlamaktadır. Bu nedenle çalışmada tarım işletmelerinin 
dron seçim kriterlerinin belirlenmesi ve alternatifler arasından en uygun olanın seçimi amaçlanmıştır. 
Literatür taraması ve uzman görüşü ile dokuz kriter belirlenmiştir. Türkiye’de satışı bulunan iki firmaya ait 
yedi alternatif değerlendirilmiştir. Alternatifler, Aralıklı Tip-2 COPRAS yöntemi ile analiz edilmiştir. Üç 
uzmanın değerlendirmesi sonucu A2 alternatifi en uygun alternatif olarak belirlenmiştir.
Anahtar Kelimeler: Dron seçimi, aralıklı tip-2 bulanık kümeler, COPRAS
JEL Sınıflandırılması: M1, Q16

1. Introduction

In the last century, rapid population growth and urbanization have increased the demand for 
food. Ensuring food security for the current world population of seven billion is a challenging 
process. Considering the rate of population growth, agricultural production needs to be 
increased by 70% to be sufficient. On the other hand, factors such as soil erosion, improper 
land use, unbalanced fertilization and irrigation, improper crop rotation, and deforestation 
are reducing agricultural production. Additionally, climate change, leading to a decrease in 
available water resources and agricultural land, threatens food security (Ercan et al., 2019; 
Kılavuz & Erdem, 2019). Correcting these adverse conditions with traditional farming practices 
seems difficult. Therefore, agricultural enterprises need to use modern agricultural techniques 
and technologies. In this context, Industry 4.0 applications have begun to be implemented by 
agricultural enterprises.

The digitization of agriculture has affected the sector in many ways. Through digital farming 
applications, agricultural machinery and equipment have been equipped with sensors, and an 
Internet of Things infrastructure has been established. These connected devices provide real-time 
data on parameters such as plant water stress, mineral and fertilizer needs, soil condition, weather 
conditions, pest control, and harvest timing (Kılavuz & Erdem, 2019). These data reduce uncertainties 
in agricultural operations such as water availability, weather conditions, crop productivity, and thus 
increase production efficiency.

When examining global agricultural data, China ranked first in agricultural production with a 
32% share in 2021. The United States ranked second. 80% of farmers in the United States use 
agricultural technologies. Netherlands, Taiwan, and Israel have achieved high yields in small 
agricultural areas using agricultural technologies. The continent with the lowest agricultural 
productivity is Africa (TBB, 2023). Considering these values, it can be stated that countries 
combining agriculture with technology achieve more efficient production. In developing 
countries, the share of agriculture in gross domestic product is higher compared to developed 
countries. Therefore, increasing productivity with digital technologies in agriculture is 
important for national incomes. In Türkiye, while direct agricultural product exports were 8.3 
billion dollars in 2022, imports were 10.6 billion dollars. While the share of agriculture in GDP 
is 4.8% worldwide, this rate was 5.8% in Türkiye (TBB, 2023). Therefore, it is important for 
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agricultural enterprises in developing countries to use digital technologies both to reduce the 
trade deficit and to increase income levels.

In recent years, aerial vehicles have been frequently used in agriculture due to developments in 
digitization of agriculture. Especially, advancements in communication and battery technology have 
enhanced the capabilities of unmanned aerial vehicles and expanded their areas of use. These aircraft, 
also known as drones, are remotely controlled aerial vehicles. Initially, drones were used for military 
purposes by the United States and Japan. However, they have now become widespread in both the 
public and private sectors, creating a growing market for themselves. Drones, becoming increasingly 
accessible and affordable, are used in many fields such as journalism, sports, travel, marketing, 
agriculture, cargo delivery, racing, health, mapping, fashion, emergency aid, and communication 
(Ntalakas et al., 2017; Arslan & Delice, 2020).

Drones have been categorized over time based on technical, software, and hardware aspects, 
depending on their intended use. Depending on the users, a drone can be used for satellite 
connection in mapping, payload capacity in product delivery, flight range in military purposes, 
and image capture in personal use. Similar expectations are undoubtedly valid for drones used 
in agriculture as well. The use of drones in agriculture will create the infrastructure for data to 
be used in smart agriculture. Thus, detection of diseases and pests, water stress detection, yield/
ripeness estimation, identification of weed flora, control of water resources, and monitoring of 
workers based on remote sensing and plant monitoring techniques can be achieved. Therefore, 
drone technologies provide traceability and transparency throughout the entire process of 
product cultivation (Türkseven et al., 2016). Agricultural drones are also used for spraying and 
fertilizing crops. These types of drones provide significant contributions in areas with high 
terrain slope, where other agricultural machinery cannot enter due to large plant sizes, or in 
rapid spraying and fertilization of large areas. This situation paves the way for the proliferation 
of agricultural drones and leads many producers to position themselves in the market with 
different models. Additionally, when drones are used with renewable energy, they contribute 
to sustainable agriculture through lower carbon emissions compared to agricultural tools 
consuming fossil fuels.

The selection of agricultural drones by users can be evaluated based on many criteria. Similar to 
other types of drones, criteria such as flight time, flight range, and communication ability are decisive 
factors. However, agricultural drones have specific criteria such as storage volume, spraying capability, 
and operational efficiency. The presence of many alternatives and criteria creates a selection problem 
for users. Supplier evaluation and selection problem can be considered as a Multi Criteria Decision 
Making (MCDM) problem since it includes some alternatives evaluated according to certain criteria 
(Ho et al., 2010). The aim of the study is to determine the most suitable among agricultural drone 
alternatives. Agricultural activity type should be taken into account when choosing a drone. The 
drone selection problem contains a certain degree of uncertainty arising from the personal views of 
the decision-maker and the linguistic variables used to express them. Therefore, fuzzy sets have been 
included in the study.
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Fuzzy set theory is the most common method used to deal with uncertainty in MCDM problems 
(Mardani et al., 2015). Type-2 Fuzzy Sets (T2FS) are an extension of ordinary fuzzy sets proposed 
by Zadeh (1975). T2FS are quite flexible in modeling uncertainty in the presented information since 
their membership values are also fuzzy sets. As the uncertainty and imprecision of the information 
obtained increase due to the increase in the number of experts, T2FS are more flexible compared 
to Type-1 Fuzzy Sets (T1FS) (Ghorabaee et al., 2017; Mohamadghasemi et al., 2020). The main 
feature of T2FS is its ability to handle uncertainties more appropriately than T1FS. This is possible 
only when there are more parameters and more degrees of freedom in T2FS. Therefore, Interval 
Type-2 Fuzzy Sets (IT2FS) were used in this study to express decision-makers’ uncertainties more 
accurately (Paksoy & Öztürk, 2019: 117). IT2FS is a special case of T2FS commonly used in MCDM 
problems (Mohammadi et al., 2017). In this study, an integrated model based on IT2FS and Complex 
Proportional Assessment (COPRAS) method was proposed for the selection of agricultural drones. 
For this purpose, some steps of the COPRAS method and arithmetic operations of IT2FS were used 
to evaluate drone alternatives. Seven alternatives from two drone manufacturers currently sold in 
Türkiye were included in the study.

The rest of the study is organized as follows. In the second section, MCDM methods with IT2FS 
and literature on drone selection are summarized. The proposed methodology is explained in detail 
in the third section. In the fourth section, the proposed model is applied to the drone selection 
problem. Sensitivity analysis is conducted in the fifth section, and analysis results are compared with 
different MCDM methods. In the final section, conclusions are discussed, and suggestions for future 
studies are presented.

2. Literature Review

Digitization has led to an increase in the utilization of drone technology across various sectors, 
including agriculture. This trend has elevated the usage of drones in agricultural operations, 
akin to its impact in other domains. Selecting the most suitable drone from the array of available 
options poses a MCDM problem for agricultural enterprises. MCDM is a significant branch of 
decision-making focusing on discrete decision spaces where decision alternatives are predefined 
(Triantaphyllou, 2000). In a drone selection problem, various perspectives such as costs, technical 
specifications, and availability need to be considered. Each perspective in MCDM is represented by 
a different criterion, and alternatives are evaluated based on these criteria, allowing decision-makers 
to incorporate diverse aspects into the decision-making process (Öztayşi, 2015).

In this study, T2FS are employed. The concept of T2FS, an extension of T1FS, was developed by 
Zadeh. T2FS offers significant advantages over traditional fuzzy sets in terms of providing more 
precise and robust results while encompassing uncertainties and vagueness. However, it should 
be noted that T2FS entails more computations and formulas alongside its positive aspects (John 
& Coupland, 2007; Aksoy et al., 2015; Kaya & Ayçin, 2021). Specifically, IT2FS, a specialized form 
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of T2FS, are utilized in this study. In the literature, there are numerous studies demonstrating the 
integration of IT2FS with MCDM techniques in situations involving uncertainty and ambiguity. 
Some information regarding studies conducted in this context is presented in Table 1.

Table 1: Examples of Studies Conducted with Interval Type-2 Fuzzy Numbers

Author Year Method Topic
Ghorabaee et al. 2014 Interval Type-2 Fuzzy COPRAS Supplier selection
Ghorabaee et al. 2017 Interval Type-2 Fuzzy EDAS Supplier evaluation
Ighravwea ve Babatunde 2018 Interval Type-2 Fuzzy CRITIC TOPSIS Business model selection
Çalık 2019 Interval Type-2 Fuzzy TOPSIS Contractor selection
Mohamadghasemi et al. 2020 Interval Type-2 Fuzzy FWA ELECTRE Equipment selection
Vatansever ve Tellioğlu 2020 Interval Type-2 Fuzzy TOPSIS Supplier selection
Dorfeshan et al. 2021 Interval Type-2 Fuzzy ARAS Project selection
Ecer 2021 Interval Type-2 Fuzzy AHP Green supplier selection
Sen et al. 2021 Interval Type-2 Fuzzy AHP-ARAS Machine selection
Hoseini et al. 2021 Interval Type-2 Fuzzy BWM TOPSIS Flexible supplier selection
Celik et al. 2021 Interval Type-2 Fuzzy BWM-TODIM Green supplier selection
Kaya ve Aycin 2021 Interval Type-2 Fuzzy AHP – COPRAS-G Supplier selection
Karagöz et al. 2021 Interval Type-2 Fuzzy ARAS Facility location selection
Aka 2022 Interval Type-2 Fuzzy TOPSIS Critical Success Factor
Yıldız et al. 2022 Interval Type-2 Fuzzy AHP Company selection

Table 1 presents various selection and evaluation studies using IT2FS with MCDM techniques. 
Although the literature has matured with respect to product, machine, or supplier selection 
problems, in this study, the problem of drone selection is addressed through the lens of MCDM. 
While there are studies on drone selection using MCDM techniques, they are relatively few. Arslan 
& Delice (2020) employed the KEMIRA-M method for selecting personal drones. They compared 
six different drones based on twelve criteria, both internal and external. The most important 
alternatives were determined to be the camera and usability. Rakhade et al. (2021) investigated 
the selection of the most suitable agricultural drone. They identified ten criteria under functional, 
economic, and technical main categories. These criteria were analyzed using the AHP weighting 
and TOPSIS ranking methods, with real numbers assigned to the drones. Nur et al. (2021) 
evaluated drones used in last-mile delivery based on five main criteria: physical, performance, 
economic, environmental, and payload capacity. They identified four different types of drones 
as alternatives and conducted the analysis using an interval-valued intuitionistic fuzzy number-
based TOPSIS method. Khan et al (2021) ranked twenty-seven drones based on criteria such as 
price, distance, and flight time using the AHP-TOPSIS method. In the literature, the criteria used 
for drone selection are shown in Table 2.



400

Alparslan OĞUZ

Table 2: Drone Criteria Present in the Literature

Author Criteria
Arslan & Delice 
(2020) Camera, control range, flight time, weight, price, aesthetics

Nur et al. (2020)

Physical features: Drone size, weight, drone type, fuel type Performance features: Internal computing 
components, location and proximity accuracy, communication and data quality, traceability 
and reliability Economic features: Repair cost, total unit cost, total lifecycle cost, operating cost, 
training cost Environmental: Adaptability, charging/fueling location, environmental impact, 
required delivery distance Payload capacity: Maximum flight time, total charge/fuel time, charge/
fuel usage rate, maximum payload, maximum carrying dimensions, maximum attainable altitude, 
drone speed, dynamic assignment compatibility, package carrying flexibility, delivery flexibility

Rakhade et al. (2021)
Functional outputs: Flight time, spraying capacity, flight speed, spraying width Economic 
evaluation: Product cost, operating cost Technical inputs: Battery, control range, motor 
specifications, aircraft body

Merkepçi et al. (2021) Weight, size, price, battery, maximum speed, camera, flight range, flight time, obstacle sensor, 
crash protection, automatic return to home, automatic route tracking, fixed altitude.

Studies on agricultural drones in the literature are primarily focused on drone usage (Ahirwar et al., 
2019; Dutta & Goswami, 2020; Özgüven et al., 2022), their spraying capabilities (Mogili & Deepak, 
2018; İnan & Karcı, 2021; Alkan & Ertuğrul, 2022; Özyurt et al., 2022), pollination (Yangal et al., 
2022), and mapping (Puri et al., 2017).

Moreover, it has been observed that MCDM techniques have been employed in drone selection in 
recent years. While some studies have used real values (Rakhade et al., 2021; Khan et al., 2021), 
others have used fuzzy numbers (Nur et al., 2021). There are significant differences between the 
current study and previous literature. Firstly, the study employs newly proposed criteria not used 
in the literature. The criteria of safety, operational efficiency, and spraying speed were introduced 
for the first time based on expert opinions in this study. Additionally, the incorporation of expert 
opinions into the process using fuzzy numbers and the use of IT2FS in drone selection were realized 
in this study. Furthermore, the study contributes to the expansion of the existing IT2FS-based 
MCDM literature by addressing the product-equipment selection problem.

3. Methodology

In this section, IT2FS are defined, and their mathematical formulas are provided. The steps of the 
COPRAS method used for ranking alternatives are outlined.

3.1. Interval Type-2 Fuzzy Numbers

T2FS is one of the primary extensions of T1FS. T2FS are represented by primary and secondary 
membership values and can be beneficial in various fields, including decision-making theory. This 
section introduces the fundamental concepts and arithmetic operations of such fuzzy sets.
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Definition 1. A T2FS is defined by a membership function denoted by 
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𝐿𝐿 ∈ [0,1] (𝑗𝑗 = 1,2) denote the membership values corresponding to the 

elements 𝑎𝑎𝑗𝑗+1
𝑈𝑈  and 𝑎𝑎𝑗𝑗+1 

𝐿𝐿 respectively. 

Definition 3. Let 𝐴̃̃𝐴 and 𝐵̃̃𝐵 be two trapezoidal IT2FSs as shown in Equations 3-4, and let 𝑑𝑑 be a 

real number. 

𝐴̃̃𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (3) 

𝐵̃̃𝐵 = (𝐵̃𝐵𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑏𝑏𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (4) 

For IT2FSs, arithmetic operations are defined as shown in Equations 5-10 (Ghorabaee et al., 

2016): 

Addition: 

𝐴̃̃𝐴 ⊕ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏𝑖𝑖

𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )| 𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (5) 

𝐴̃̃𝐴 + 𝑑𝑑 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑑𝑑; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (6) 

Subtraction: 

𝐴̃̃𝐴 ⊖ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (7) 

Multiplication: 

 be a 
real number.
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Figure 1: Example of a Trapezoidal Interval Type-2 Fuzzy Set 

Definition 2. When both upper and lower membership functions of an IT2FS are trapezoidal 

fuzzy sets, it is referred to as a trapezoidal IT2FS. A trapezoidal IT2FS is expressed as 𝐴̃̂𝐴 in 

Equation 2 (Chen & Lee, 2010): 

𝐴̃̂𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (2) 

Where, 𝐴̃𝐴𝑈𝑈 and 𝐴̃𝐴𝐿𝐿 represent, respectively, the upper and lower membership functions of 𝐴̃̂𝐴. 

𝐻𝐻𝑗𝑗
𝑈𝑈 ∈ [0,1] and 𝐻𝐻𝑗𝑗

𝐿𝐿 ∈ [0,1] (𝑗𝑗 = 1,2) denote the membership values corresponding to the 

elements 𝑎𝑎𝑗𝑗+1
𝑈𝑈  and 𝑎𝑎𝑗𝑗+1 

𝐿𝐿 respectively. 

Definition 3. Let 𝐴̃̃𝐴 and 𝐵̃̃𝐵 be two trapezoidal IT2FSs as shown in Equations 3-4, and let 𝑑𝑑 be a 

real number. 

𝐴̃̃𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (3) 

𝐵̃̃𝐵 = (𝐵̃𝐵𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑏𝑏𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (4) 

For IT2FSs, arithmetic operations are defined as shown in Equations 5-10 (Ghorabaee et al., 

2016): 

Addition: 

𝐴̃̃𝐴 ⊕ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏𝑖𝑖

𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )| 𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (5) 

𝐴̃̃𝐴 + 𝑑𝑑 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑑𝑑; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (6) 

Subtraction: 

𝐴̃̃𝐴 ⊖ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (7) 

Multiplication: 

	            (3)
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Figure 1: Example of a Trapezoidal Interval Type-2 Fuzzy Set 

Definition 2. When both upper and lower membership functions of an IT2FS are trapezoidal 

fuzzy sets, it is referred to as a trapezoidal IT2FS. A trapezoidal IT2FS is expressed as 𝐴̃̂𝐴 in 

Equation 2 (Chen & Lee, 2010): 

𝐴̃̂𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (2) 

Where, 𝐴̃𝐴𝑈𝑈 and 𝐴̃𝐴𝐿𝐿 represent, respectively, the upper and lower membership functions of 𝐴̃̂𝐴. 

𝐻𝐻𝑗𝑗
𝑈𝑈 ∈ [0,1] and 𝐻𝐻𝑗𝑗

𝐿𝐿 ∈ [0,1] (𝑗𝑗 = 1,2) denote the membership values corresponding to the 

elements 𝑎𝑎𝑗𝑗+1
𝑈𝑈  and 𝑎𝑎𝑗𝑗+1 

𝐿𝐿 respectively. 

Definition 3. Let 𝐴̃̃𝐴 and 𝐵̃̃𝐵 be two trapezoidal IT2FSs as shown in Equations 3-4, and let 𝑑𝑑 be a 

real number. 

𝐴̃̃𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (3) 

𝐵̃̃𝐵 = (𝐵̃𝐵𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑏𝑏𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (4) 

For IT2FSs, arithmetic operations are defined as shown in Equations 5-10 (Ghorabaee et al., 

2016): 

Addition: 

𝐴̃̃𝐴 ⊕ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏𝑖𝑖

𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )| 𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (5) 

𝐴̃̃𝐴 + 𝑑𝑑 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑑𝑑; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (6) 

Subtraction: 

𝐴̃̃𝐴 ⊖ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (7) 

Multiplication: 

	          (4)
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Definition 2. When both upper and lower membership functions of an IT2FS are trapezoidal 

fuzzy sets, it is referred to as a trapezoidal IT2FS. A trapezoidal IT2FS is expressed as 𝐴̃̂𝐴 in 

Equation 2 (Chen & Lee, 2010): 

𝐴̃̂𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (2) 

Where, 𝐴̃𝐴𝑈𝑈 and 𝐴̃𝐴𝐿𝐿 represent, respectively, the upper and lower membership functions of 𝐴̃̂𝐴. 

𝐻𝐻𝑗𝑗
𝑈𝑈 ∈ [0,1] and 𝐻𝐻𝑗𝑗

𝐿𝐿 ∈ [0,1] (𝑗𝑗 = 1,2) denote the membership values corresponding to the 

elements 𝑎𝑎𝑗𝑗+1
𝑈𝑈  and 𝑎𝑎𝑗𝑗+1 

𝐿𝐿 respectively. 

Definition 3. Let 𝐴̃̃𝐴 and 𝐵̃̃𝐵 be two trapezoidal IT2FSs as shown in Equations 3-4, and let 𝑑𝑑 be a 

real number. 

𝐴̃̃𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (3) 

𝐵̃̃𝐵 = (𝐵̃𝐵𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑏𝑏𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (4) 

For IT2FSs, arithmetic operations are defined as shown in Equations 5-10 (Ghorabaee et al., 

2016): 

Addition: 

𝐴̃̃𝐴 ⊕ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏𝑖𝑖

𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )| 𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (5) 

𝐴̃̃𝐴 + 𝑑𝑑 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑑𝑑; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (6) 

Subtraction: 

𝐴̃̃𝐴 ⊖ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (7) 

Multiplication: 

     (5)
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Definition 2. When both upper and lower membership functions of an IT2FS are trapezoidal 

fuzzy sets, it is referred to as a trapezoidal IT2FS. A trapezoidal IT2FS is expressed as 𝐴̃̂𝐴 in 

Equation 2 (Chen & Lee, 2010): 

𝐴̃̂𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (2) 

Where, 𝐴̃𝐴𝑈𝑈 and 𝐴̃𝐴𝐿𝐿 represent, respectively, the upper and lower membership functions of 𝐴̃̂𝐴. 

𝐻𝐻𝑗𝑗
𝑈𝑈 ∈ [0,1] and 𝐻𝐻𝑗𝑗

𝐿𝐿 ∈ [0,1] (𝑗𝑗 = 1,2) denote the membership values corresponding to the 

elements 𝑎𝑎𝑗𝑗+1
𝑈𝑈  and 𝑎𝑎𝑗𝑗+1 

𝐿𝐿 respectively. 

Definition 3. Let 𝐴̃̃𝐴 and 𝐵̃̃𝐵 be two trapezoidal IT2FSs as shown in Equations 3-4, and let 𝑑𝑑 be a 

real number. 

𝐴̃̃𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (3) 

𝐵̃̃𝐵 = (𝐵̃𝐵𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑏𝑏𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (4) 

For IT2FSs, arithmetic operations are defined as shown in Equations 5-10 (Ghorabaee et al., 

2016): 

Addition: 

𝐴̃̃𝐴 ⊕ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏𝑖𝑖

𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )| 𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (5) 

𝐴̃̃𝐴 + 𝑑𝑑 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑑𝑑; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (6) 

Subtraction: 

𝐴̃̃𝐴 ⊖ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (7) 

Multiplication: 

	           (6)

Subtraction:
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Figure 1: Example of a Trapezoidal Interval Type-2 Fuzzy Set 

Definition 2. When both upper and lower membership functions of an IT2FS are trapezoidal 

fuzzy sets, it is referred to as a trapezoidal IT2FS. A trapezoidal IT2FS is expressed as 𝐴̃̂𝐴 in 

Equation 2 (Chen & Lee, 2010): 

𝐴̃̂𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (2) 

Where, 𝐴̃𝐴𝑈𝑈 and 𝐴̃𝐴𝐿𝐿 represent, respectively, the upper and lower membership functions of 𝐴̃̂𝐴. 

𝐻𝐻𝑗𝑗
𝑈𝑈 ∈ [0,1] and 𝐻𝐻𝑗𝑗

𝐿𝐿 ∈ [0,1] (𝑗𝑗 = 1,2) denote the membership values corresponding to the 

elements 𝑎𝑎𝑗𝑗+1
𝑈𝑈  and 𝑎𝑎𝑗𝑗+1 

𝐿𝐿 respectively. 

Definition 3. Let 𝐴̃̃𝐴 and 𝐵̃̃𝐵 be two trapezoidal IT2FSs as shown in Equations 3-4, and let 𝑑𝑑 be a 

real number. 

𝐴̃̃𝐴 = (𝐴̃𝐴𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑎𝑎𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (3) 

𝐵̃̃𝐵 = (𝐵̃𝐵𝑇𝑇|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}) = (𝑏𝑏𝑗𝑗
𝑇𝑇; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑗𝑗 = 1,2,3,4) (4) 

For IT2FSs, arithmetic operations are defined as shown in Equations 5-10 (Ghorabaee et al., 

2016): 

Addition: 

𝐴̃̃𝐴 ⊕ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏𝑖𝑖

𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )| 𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (5) 

𝐴̃̃𝐴 + 𝑑𝑑 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑑𝑑; 𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐴𝐴
𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (6) 

Subtraction: 

𝐴̃̃𝐴 ⊖ 𝐵̃̃𝐵 = (𝑎𝑎𝑖𝑖
𝑇𝑇 + 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴
𝑇𝑇 ; 𝐻𝐻1𝐵𝐵

𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴
𝑇𝑇 ; 𝐻𝐻2𝐵𝐵

𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (7) 

Multiplication: 

   (7)

Multiplication:
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

	             (8)
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

	            (9)
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

	         (10)

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 (Ghorabaee, 
2015).
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

	         (11)

Definition 5. 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

 is defined as a function that finds the maximum between a trapezoidal IT2FS 
fuzzy number and zero.
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

			            (12)

Where, 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 
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Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 

9 
 

𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

, is defined by Equation 13.

9 
 

𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

      	

Where, 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

 represents the average of the values 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

 and 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

.
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

		         (14)

The standard deviation for the values 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

 with respect to 
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𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15. 

 and 

9 
 

𝐴̃̃𝐴 ⊗ 𝐵̃̃𝐵 = (𝑋𝑋𝑖𝑖
𝑇𝑇; 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻1𝐴𝐴

𝑇𝑇 ; 𝐻𝐻1𝐵𝐵
𝑇𝑇 ), 𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻2𝐴𝐴

𝑇𝑇 ; 𝐻𝐻2𝐵𝐵
𝑇𝑇 )|𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) (8) 

𝑋𝑋𝑖𝑖
𝑇𝑇 = { 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎𝑖𝑖

𝑇𝑇𝑏𝑏5−𝑖𝑖
𝑇𝑇 , 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏𝑖𝑖
𝑇𝑇, 𝑎𝑎5−𝑖𝑖

𝑇𝑇 𝑏𝑏5−𝑖𝑖
𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 1,2

𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎𝑖𝑖
𝑇𝑇𝑏𝑏5−𝑖𝑖

𝑇𝑇 , 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏𝑖𝑖

𝑇𝑇, 𝑎𝑎5−𝑖𝑖
𝑇𝑇 𝑏𝑏5−𝑖𝑖

𝑇𝑇 ) 𝑖𝑖𝑖𝑖 𝑖𝑖 = 3,4 (9) 

𝑑𝑑. 𝐴̃̃𝐴 = {
(𝑑𝑑. 𝑎𝑎𝑖𝑖

𝑇𝑇; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≥ 0
(𝑑𝑑. 𝑎𝑎5−𝑖𝑖

𝑇𝑇 ; 𝐻𝐻1𝐴𝐴
𝑇𝑇 , 𝐻𝐻2𝐴𝐴

𝑇𝑇 |𝑇𝑇 ∈ {𝑈𝑈, 𝐿𝐿}, 𝑖𝑖 = 1,2,3,4) 𝑖𝑖𝑖𝑖 𝑑𝑑 ≤ 0 (10) 

Definition 4. The crisp value of a trapezoidal IT2FS is defined as shown in Equation 9 

(Ghorabaee, 2015). 

Ϭ (𝐴̃̃𝐴) = 1
2 ( ∑ 𝑎𝑎1

𝑇𝑇 + (1 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 )𝑎𝑎2

𝑇𝑇 + (1 + 𝐻𝐻2𝐴𝐴
𝑇𝑇 )𝑎𝑎3

𝑇𝑇 + 𝑎𝑎4
𝑇𝑇

4 + 𝐻𝐻1𝐴𝐴
𝑇𝑇 + 𝐻𝐻2𝐴𝐴

𝑇𝑇
𝑇𝑇∈{𝑈𝑈,𝐿𝐿}

) (11) 

Definition 5. 𝒵𝒵 (𝐴̃̃𝐴) is defined as a function that finds the maximum between a trapezoidal 

IT2FS fuzzy number and zero. 

𝒵𝒵 (𝐴̃̃𝐴) = {
𝐴̃̃𝐴 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) > 0 

0̃̃ 𝑖𝑖𝑖𝑖 Ϭ (𝐴̃̃𝐴) ≤ 0
 (12) 

Where, 0̃̃ = ((0,0,0,0; 1,1), (0,0,0,0; 1,1)). 

Definition 6. The ranking value of a trapezoidal IT2FS, denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ), is defined by 

Equation 13. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐴̃̃𝐴 𝑖𝑖 ) = 𝑀𝑀1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑀𝑀3(𝐴̃𝐴𝑖𝑖

𝐿𝐿)

− 1
4 (𝑆𝑆1(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆2(𝐴̃𝐴𝑖𝑖
𝐿𝐿) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖

𝑈𝑈) + 𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝐿𝐿)

+ 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝑆𝑆4(𝐴̃𝐴𝑖𝑖

𝐿𝐿)) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻1(𝐴̃𝐴𝑖𝑖

𝐿𝐿) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖
𝑈𝑈) + 𝐻𝐻2(𝐴̃𝐴𝑖𝑖

𝐿𝐿) 

(13) 

Where, 𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) represents the average of the values 𝑎𝑎𝑖𝑖𝑖𝑖

𝑗𝑗  and 𝑎𝑎𝑖𝑖(𝑝𝑝+1)
𝑗𝑗 . 

𝑀𝑀𝑝𝑝 (𝐴̃̃𝐴𝑖𝑖
𝑗𝑗) =

(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 +  𝑎𝑎𝑖𝑖(𝑝𝑝+1)

𝑗𝑗 )
2 , 1 ≤ 𝑝𝑝 ≤ 3 

(14) 

The standard deviation for the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗 , 𝑎𝑎𝑖𝑖4

𝑗𝑗  with respect to 𝑆𝑆1(𝐴̃𝐴𝑖𝑖
𝑗𝑗), 𝑆𝑆2(𝐴̃𝐴𝑖𝑖

𝑗𝑗) and 

𝑆𝑆3(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated using Equation 15.  is calculated using Equation 15.
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𝑆𝑆𝑞𝑞(𝐴̃𝐴𝑖𝑖
𝑗𝑗) = √1

2 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 − 1

2 ∑(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 )

𝑞𝑞+1

𝑘𝑘=𝑞𝑞
) 

𝑞𝑞+1

𝑘𝑘=𝑞𝑞
, 1 ≤ 𝑝𝑝 ≤ 3 (15) 

For the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗  and 𝑎𝑎𝑖𝑖4

𝑗𝑗 the standard deviation 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated as shown in 

Equation 16, differing from the first three. 

𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑗𝑗) = √1

4 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 − 1

2 ∑(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 )

4

𝑘𝑘=1
)

24

𝑘𝑘=4
 

(16) 

3.2. COPRAS Method 

The COPRAS method, introduced by Zavadskas and Kaklauskas (1996), is MCDM method 

that determines a solution based on positive-ideal and negative-ideal solutions, thus being 

considered as a compromise MCDM method. Originally, the COPRAS method was developed 

for decision-making under certain conditions. However, uncertainty is an inevitable 

characteristic of decision-making. In this study, an extended form of the COPRAS method, 

which can be used in decision-making problems with uncertainty, is proposed using T2FS. 

The proposed method in the study is based on applying arithmetic operations among IT2FSs to 

the steps of the COPRAS method. Let 𝐿𝐿 be a set of alternatives, denoted as 𝐿𝐿 = {𝑙𝑙1, 𝑙𝑙2, … 𝑙𝑙𝑙𝑙} 
and 𝑅𝑅 be a set of criteria, denoted as 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑟𝑟, }. Let's assume that there are 𝑘𝑘 decision 

makers, denoted as 𝐷𝐷1,𝐷𝐷2,… , 𝐷𝐷𝐷𝐷. The steps of the proposed method are listed as follows 

(Zavadskas et al., 2009). 

Step 1: The decision matrix 𝑀𝑀𝑝𝑝 for the 𝑝𝑝th decision maker is formed as shown in Equation 17. 

𝑀𝑀𝑝𝑝 = [𝑋̃̃𝑋𝑖𝑖𝑖𝑖
𝑝𝑝]

𝑛𝑛×𝑚𝑚
=

[
 
 
 
 𝑋̃̃𝑋11

𝑝𝑝 𝑋̃̃𝑋12
𝑝𝑝 ⋯ 𝑋̃̃𝑋1𝑚𝑚

𝑝𝑝

𝑋̃̃𝑋21
𝑝𝑝 𝑋̃̃𝑋22

𝑝𝑝 ⋯ 𝑋̃̃𝑋2𝑚𝑚
𝑝𝑝

⋮ ⋮ ⋱ ⋮
𝑋̃̃𝑋𝑛𝑛1

𝑝𝑝 𝑋̃̃𝑋𝑛𝑛2
𝑝𝑝 ⋯ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛

𝑝𝑝 ]
 
 
 
 
 (17) 

Where, 𝑋̃̃𝑋𝑖𝑖𝑖𝑖
𝑝𝑝  denotes the performance value of criterion 𝑟𝑟𝑗𝑗 on alternative 𝑙𝑙𝑖𝑖 assigned by the 𝑝𝑝 th 

decision maker  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 2: The average decision matrix 𝑌̅𝑌 is constructed as shown in Equation 19. 

	          (15)

For the values  and the standard deviation  is calculated as shown in Equation 16, differing from the 
first three.
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𝑆𝑆𝑞𝑞(𝐴̃𝐴𝑖𝑖
𝑗𝑗) = √1

2 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 − 1

2 ∑(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 )

𝑞𝑞+1

𝑘𝑘=𝑞𝑞
) 

𝑞𝑞+1

𝑘𝑘=𝑞𝑞
, 1 ≤ 𝑝𝑝 ≤ 3 (15) 

For the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗  and 𝑎𝑎𝑖𝑖4

𝑗𝑗 the standard deviation 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated as shown in 

Equation 16, differing from the first three. 

𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑗𝑗) = √1

4 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 − 1

2 ∑(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 )

4

𝑘𝑘=1
)

24

𝑘𝑘=4
 

(16) 

3.2. COPRAS Method 

The COPRAS method, introduced by Zavadskas and Kaklauskas (1996), is MCDM method 
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3.2. COPRAS Method 

The COPRAS method, introduced by Zavadskas and Kaklauskas (1996), is MCDM method 

that determines a solution based on positive-ideal and negative-ideal solutions, thus being 

considered as a compromise MCDM method. Originally, the COPRAS method was developed 

for decision-making under certain conditions. However, uncertainty is an inevitable 

characteristic of decision-making. In this study, an extended form of the COPRAS method, 

which can be used in decision-making problems with uncertainty, is proposed using T2FS. 

The proposed method in the study is based on applying arithmetic operations among IT2FSs to 

the steps of the COPRAS method. Let 𝐿𝐿 be a set of alternatives, denoted as 𝐿𝐿 = {𝑙𝑙1, 𝑙𝑙2, … 𝑙𝑙𝑙𝑙} 
and 𝑅𝑅 be a set of criteria, denoted as 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑟𝑟, }. Let's assume that there are 𝑘𝑘 decision 

makers, denoted as 𝐷𝐷1,𝐷𝐷2,… , 𝐷𝐷𝐷𝐷. The steps of the proposed method are listed as follows 

(Zavadskas et al., 2009). 
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Where, 𝑋̃̃𝑋𝑖𝑖𝑖𝑖
𝑝𝑝  denotes the performance value of criterion 𝑟𝑟𝑗𝑗 on alternative 𝑙𝑙𝑖𝑖 assigned by the 𝑝𝑝 th 

decision maker  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 2: The average decision matrix 𝑌̅𝑌 is constructed as shown in Equation 19. Step 2: The average decision matrix 
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𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 3. The weight matrix is formed by the decision makers using Equation 20. 

𝑊𝑊𝑝𝑝 = [𝑤̃̃𝑤𝑗𝑗
𝑝𝑝]
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⋮
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𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
1 ⊕ 𝑤̃̃𝑤𝑗𝑗

2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

		          (18)
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Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

 on alternative 
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𝑘𝑘) /𝑘𝑘) (18) 

𝑌̅𝑌 = [𝑋̃̃𝑋𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚
 (19) 

Where, 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 represents the average performance value of criterion 𝑟𝑟𝑗𝑗 on alternative 𝑙𝑙𝑖𝑖 1 ≤ 𝑖𝑖 ≤
𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 3. The weight matrix is formed by the decision makers using Equation 20. 

𝑊𝑊𝑝𝑝 = [𝑤̃̃𝑤𝑗𝑗
𝑝𝑝]

𝑚𝑚×1
=

[
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𝑝𝑝

𝑤̃̃𝑤2
𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
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2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 
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 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 
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𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

 

Step 3. The weight matrix is formed by the decision makers using Equation 20.
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𝑝𝑝]

𝑚𝑚×1
=

[
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𝑝𝑝

𝑤̃̃𝑤2
𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
1 ⊕ 𝑤̃̃𝑤𝑗𝑗

2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

			            (20)
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=
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𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
1 ⊕ 𝑤̃̃𝑤𝑗𝑗

2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 
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Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

 denotes the weight assigned to criterion 
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𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 
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𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 
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constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

			   (22)

Step 5: The average decision matrix 
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𝑆𝑆𝑞𝑞(𝐴̃𝐴𝑖𝑖
𝑗𝑗) = √1

2 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 − 1

2 ∑(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 )

𝑞𝑞+1

𝑘𝑘=𝑞𝑞
) 

𝑞𝑞+1

𝑘𝑘=𝑞𝑞
, 1 ≤ 𝑝𝑝 ≤ 3 (15) 

For the values 𝑎𝑎𝑖𝑖1
𝑗𝑗 , 𝑎𝑎𝑖𝑖2

𝑗𝑗 , 𝑎𝑎𝑖𝑖3
𝑗𝑗  and 𝑎𝑎𝑖𝑖4

𝑗𝑗 the standard deviation 𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑗𝑗) is calculated as shown in 

Equation 16, differing from the first three. 

𝑆𝑆4(𝐴̃𝐴𝑖𝑖
𝑗𝑗) = √1

4 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 − 1

2 ∑(𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗 )

4

𝑘𝑘=1
)

24

𝑘𝑘=4
 

(16) 

3.2. COPRAS Method 

The COPRAS method, introduced by Zavadskas and Kaklauskas (1996), is MCDM method 

that determines a solution based on positive-ideal and negative-ideal solutions, thus being 

considered as a compromise MCDM method. Originally, the COPRAS method was developed 

for decision-making under certain conditions. However, uncertainty is an inevitable 

characteristic of decision-making. In this study, an extended form of the COPRAS method, 

which can be used in decision-making problems with uncertainty, is proposed using T2FS. 

The proposed method in the study is based on applying arithmetic operations among IT2FSs to 

the steps of the COPRAS method. Let 𝐿𝐿 be a set of alternatives, denoted as 𝐿𝐿 = {𝑙𝑙1, 𝑙𝑙2, … 𝑙𝑙𝑙𝑙} 
and 𝑅𝑅 be a set of criteria, denoted as 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑟𝑟, }. Let's assume that there are 𝑘𝑘 decision 

makers, denoted as 𝐷𝐷1,𝐷𝐷2,… , 𝐷𝐷𝐷𝐷. The steps of the proposed method are listed as follows 

(Zavadskas et al., 2009). 

Step 1: The decision matrix 𝑀𝑀𝑝𝑝 for the 𝑝𝑝th decision maker is formed as shown in Equation 17. 

𝑀𝑀𝑝𝑝 = [𝑋̃̃𝑋𝑖𝑖𝑖𝑖
𝑝𝑝]

𝑛𝑛×𝑚𝑚
=

[
 
 
 
 𝑋̃̃𝑋11

𝑝𝑝 𝑋̃̃𝑋12
𝑝𝑝 ⋯ 𝑋̃̃𝑋1𝑚𝑚

𝑝𝑝

𝑋̃̃𝑋21
𝑝𝑝 𝑋̃̃𝑋22

𝑝𝑝 ⋯ 𝑋̃̃𝑋2𝑚𝑚
𝑝𝑝

⋮ ⋮ ⋱ ⋮
𝑋̃̃𝑋𝑛𝑛1

𝑝𝑝 𝑋̃̃𝑋𝑛𝑛2
𝑝𝑝 ⋯ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛

𝑝𝑝 ]
 
 
 
 
 (17) 

Where, 𝑋̃̃𝑋𝑖𝑖𝑖𝑖
𝑝𝑝  denotes the performance value of criterion 𝑟𝑟𝑗𝑗 on alternative 𝑙𝑙𝑖𝑖 assigned by the 𝑝𝑝 th 

decision maker  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 2: The average decision matrix 𝑌̅𝑌 is constructed as shown in Equation 19.  is normalized, and the normalized N matrix is constructed 
using Equations 23-25.
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𝑋̃̃𝑋𝑖𝑖𝑖𝑖 = ((𝑋̃̃𝑋𝑖𝑖𝑖𝑖
1 ⊕ 𝑋̃̃𝑋𝑖𝑖𝑖𝑖

2 ⊕ …⊕ 𝑋̃̃𝑋𝑖𝑖𝑖𝑖
𝑘𝑘) /𝑘𝑘) (18) 

𝑌̅𝑌 = [𝑋̃̃𝑋𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚
 (19) 

Where, 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 represents the average performance value of criterion 𝑟𝑟𝑗𝑗 on alternative 𝑙𝑙𝑖𝑖 1 ≤ 𝑖𝑖 ≤
𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 3. The weight matrix is formed by the decision makers using Equation 20. 

𝑊𝑊𝑝𝑝 = [𝑤̃̃𝑤𝑗𝑗
𝑝𝑝]

𝑚𝑚×1
=

[
 
 
 
 𝑤̃̃𝑤1

𝑝𝑝

𝑤̃̃𝑤2
𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
1 ⊕ 𝑤̃̃𝑤𝑗𝑗

2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

			   (23)
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𝑝𝑝

𝑤̃̃𝑤2
𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
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2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

			   (24)
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𝑝𝑝]

𝑚𝑚×1
=

[
 
 
 
 𝑤̃̃𝑤1

𝑝𝑝

𝑤̃̃𝑤2
𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
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𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

			   (25)

Where, 
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𝑝𝑝]

𝑚𝑚×1
=
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 𝑤̃̃𝑤1

𝑝𝑝

𝑤̃̃𝑤2
𝑝𝑝

⋮
𝑤̃̃𝑤𝑚𝑚

𝑝𝑝 ]
 
 
 
 
 (20) 

Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤

𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 1 ≤ 𝑝𝑝 ≤ 𝑘𝑘). 

Step 4: The average weight matrix 𝑊̅𝑊 is constructed as shown in Equation 22. 

𝑤̃̃𝑤𝑗𝑗 = ((𝑤̃̃𝑤𝑗𝑗
1 ⊕ 𝑤̃̃𝑤𝑗𝑗

2 ⊕ …⊕ 𝑤̃̃𝑤𝑗𝑗
𝑘𝑘)/𝑘𝑘) (21) 

𝑊̅𝑊 = [𝑤̃̃𝑤𝑗𝑗]𝑚𝑚×1 (22) 

Step 5: The average decision matrix 𝑌̅𝑌 is normalized, and the normalized 𝑁𝑁 matrix is 

constructed using Equations 23-25. 

𝑣̃̃𝑣𝑗𝑗 = (𝑋̃̃𝑋1𝑗𝑗 ⊕ 𝑋̃̃𝑋2𝑗𝑗 ⊕ …⊕ 𝑋̃̃𝑋𝑛𝑛𝑛𝑛) (23) 

𝑛̃̃𝑛𝑖𝑖𝑖𝑖 = 𝑋̃̃𝑋𝑖𝑖𝑖𝑖 ⊘ 𝑣̃̃𝑣𝑗𝑗  (24) 

𝑁𝑁 = [𝑛̃̃𝑛𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚   (25) 

Where, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 𝑣𝑣𝑣𝑣 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 

Step 6: The weighted normalized decision matrix 𝐸𝐸 is determined using Equations 26-27. 

𝑒̃̃𝑒𝑖𝑖𝑖𝑖 = 𝑛̃̃𝑛𝑖𝑖𝑖𝑖 ⊗ 𝑤̃̃𝑤𝑗𝑗 (26) 

𝐸𝐸 = [𝑒̃̃𝑒𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 (27) 

Step 6: The weighted normalized decision matrix E is determined using Equations 26-27.
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=
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Where, 𝑤̃̃𝑤𝑗𝑗
𝑝𝑝 denotes the weight assigned to criterion 𝑟𝑟𝑗𝑗 by the 𝑝𝑝 th decision maker (1 ≤ 𝑖𝑖 ≤
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Step 7: The sum of weighted normalized values for benefit criteria 𝑆𝑆+𝑖𝑖 and non-benefit criteria 

𝑆𝑆−𝑖𝑖  is calculated using Equations 28-29. 

𝑆̃̃𝑆+𝑖𝑖 = (𝑒̃̃𝑒+𝑖𝑖1 ⊕ 𝑒̃̃𝑒+𝑖𝑖2 ⊕ …⊕ 𝑒̃̃𝑒+𝑖𝑖𝑖𝑖) (28) 

𝑆̃̃𝑆−𝑖𝑖 = (𝑒̃̃𝑒−𝑖𝑖1 ⊕ 𝑒̃̃𝑒−𝑖𝑖2 ⊕ …⊕ 𝑒̃̃𝑒−𝑖𝑖𝑖𝑖) (29) 

Where, 𝑒̃̃𝑒+𝑖𝑖𝑖𝑖 and 𝑒̃̃𝑒−𝑖𝑖𝑖𝑖 represent the weighted normalized values for benefit and non-benefit 

criteria, respectively. The value of  𝑆̃̃𝑆+𝑖𝑖 indicates how much better the alternative is as it 

increases, while the value of 𝑆̃̃𝑆−𝑖𝑖 indicates how much better the alternative is as it decreases. In 

other words, the values of 𝑆̃̃𝑆+𝑖𝑖 and 𝑆̃̃𝑆−𝑖𝑖 define the degree to which the objectives achieved by 

each alternative. 

Step 8: Ranking values are determined for both 𝑆̃̃𝑆+𝑖𝑖 and 𝑆̃̃𝑆−𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) using the equations 

presented in the IT2FS section. 

Step 9: 𝑄𝑄𝑖𝑖, which expresses the relative importance of alternatives, is determined using 

Equation 30. 

𝑄𝑄𝑖𝑖 = Rank (𝑆̃̃𝑆+𝑖𝑖) +
Rankmin (𝑆̃̃𝑆−𝑖𝑖)∑ (Rank (𝑆̃̃𝑆−𝑖𝑖))𝑛𝑛

𝑖𝑖=1

Rank (𝑆̃̃𝑆−𝑖𝑖)∑ (
Rankmin (𝑆̃̃𝑆−𝑖𝑖)

Rank (𝑆̃̃𝑆−𝑖𝑖)
⁄ )𝑛𝑛

𝑖𝑖=1

 
(30) 

Where, Rankmin (𝑆̃̃𝑆−𝑖𝑖) represents the minimum value of Rank (𝑆̃̃𝑆−𝑖𝑖). The relative importance 

value defines the degree of satisfaction achieved by an alternative. The formula above can be 

written as Equation 31. 

𝑄𝑄𝑖𝑖 = Rank (𝑆̃̃𝑆+𝑖𝑖) +
∑ (Rank (𝑆̃̃𝑆−𝑖𝑖))𝑛𝑛
𝑖𝑖=1

Rank (𝑆̃̃𝑆−𝑖𝑖) ∑ (1
Rank (𝑆̃̃𝑆−𝑖𝑖)⁄ )𝑛𝑛

𝑖𝑖=1

 (31) 

Step 10: The quantitative aid program 𝑈𝑈𝑖𝑖 is calculated. The degree of benefit of an alternative 

is determined by comparing the relative importance of all alternatives with the most efficient 

one, and it is represented as Equation 32. 

 and non-benefit criteria 
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Rankmin (𝑆̃̃𝑆−𝑖𝑖)

Rank (𝑆̃̃𝑆−𝑖𝑖)
⁄ )𝑛𝑛

𝑖𝑖=1

 
(30) 

Where, Rankmin (𝑆̃̃𝑆−𝑖𝑖) represents the minimum value of Rank (𝑆̃̃𝑆−𝑖𝑖). The relative importance 

value defines the degree of satisfaction achieved by an alternative. The formula above can be 

written as Equation 31. 

𝑄𝑄𝑖𝑖 = Rank (𝑆̃̃𝑆+𝑖𝑖) +
∑ (Rank (𝑆̃̃𝑆−𝑖𝑖))𝑛𝑛
𝑖𝑖=1

Rank (𝑆̃̃𝑆−𝑖𝑖) ∑ (1
Rank (𝑆̃̃𝑆−𝑖𝑖)⁄ )𝑛𝑛

𝑖𝑖=1

 (31) 

Step 10: The quantitative aid program 𝑈𝑈𝑖𝑖 is calculated. The degree of benefit of an alternative 

is determined by comparing the relative importance of all alternatives with the most efficient 

one, and it is represented as Equation 32. 
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the study with ethical rules was determined by the Human Research Social and Humanities 
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the study were performed by the author using the Microsoft Excel program. 
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consulted. The nine criteria determined and their explanations are shown in Table 3. 
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Criteria Target Code Description Author 

Price Min P 
Selling price and operational cost of the 
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Nur et al. 2020; Khan et 

al. 2021; Arslan and 

Delice 2020 

Tank Capacity Max TC Volume of the tank in liters Rakhade et al. 2021 

Operational 

Efficiency 
Max OE 

Area processed per hour in hectares per 
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Safety Max S 
Ability of the product to avoid obstacles 

with its sensors and radars 
Expert 
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4. Analysis and Results

With the advent of Industry 4.0, autonomous technologies widely used in businesses have also 
started to manifest their impact in agricultural enterprises. As a result of this impact, unmanned 
aerial vehicles for spraying and fertilization have gained increasing attention in recent years. This 
technology, becoming important for agricultural enterprises, has led to the production of numerous 
alternative drones. In the study, criteria used in the selection of agricultural drones were determined, 
and alternatives were evaluated based on these criteria. The compliance of the study with ethical 
rules determined by Erzincan Binali Yıldırım Üniversitesi human research social and humanities 
ethics committee with the dated 23/06/2023 and numbered 06/08.

In this section of the study, the integrated IT2FS-COPRAS method was applied to the drone selection 
problem. The alternatives under evaluation were determined from drones belonging to two brands 
commonly used and currently available for sale in Türkiye. All calculations in the study were 
performed by the author using the Microsoft Excel program.
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When determining the criteria used in drone selection, literature and expert opinions were consulted. 
The nine criteria determined and their explanations are shown in Table 3.

Table 3: Criteria for Drone Selection
Criteria Target Code Description Author

Price Min P Selling price and operational cost of the 
product

Nur et al. 2020; Khan et al. 
2021; Arslan and Delice 2020

Tank Capacity Max TC Volume of the tank in liters Rakhade et al. 2021
Operational Efficiency Max OE Area processed per hour in hectares per hour Expert
Spraying Speed Max SS Volume sprayed per minute in liters Expert

Safety Max S Ability of the product to avoid obstacles with 
its sensors and radars Expert

Communication 
Features Max CF Maximum transmission distance and 

connectivity efficiency of the product

Nur et al. 2020; Arslan and 
Delice 2020; Rakhade et al. 
2021

Spraying Abilities Max SA Variety of products sprayed and spraying 
width based on nozzle characteristics Rakhade et al. 2021; Expert

Ease of Use Max EU User interface and flight usability of the 
product

Arslan and Delice 2020; 
Expert

Take off Weight Max TW Maximum takeoff weight of the product in 
kilograms Nur et al. 2020

The price criterion among the determined criteria is cost-oriented, while the other criteria are benefit-
oriented. The criteria of wind resistance and efficient flight time, determined through literature 
review, were excluded from the study based on expert opinion. The necessity for low wind speed in 
spraying and fertilization renders wind resistance not a sought-after criterion in agricultural drones, 
as indicated by expert opinion. Additionally, due to the approximate ten-minute efficient flight time 
for each existing drone, flight time was determined not to be a distinguishing criterion, again based 
on expert opinion. Moreover, safety, operational efficiency, and spraying speed were added to the 
study based on expert opinion.

In the study, linguistic terms used by decision-makers to assess the importance of criteria and the 
performance of alternatives for each criterion, along with their corresponding IT2FS numbers (Chen 
& Lee, 2010), are shown in Table 4.

Table 4: Interval Type-2 Fuzzy Numbers Corresponding to Linguistic Expressions
Linguistic Expressions Interval Type-2 Fuzzy Numbers
Very Low (VL) ((0,0,0,0.1;1,1),(0,0,0,0.005;0.9,0.9))
Low (L) ((0,0.1,0.15,0.3;1,1),(0.05,0.1,0.15,0.2;0.9,0.9))
Medium Low (ML) ((0.1,0.3,0.35,0.5;1,1),(0.2,0.3,0.35,0.4;0.9,0.9))
Medium (M) ((0.3,0.5,0.55,0.7;1,1),(0.4,0.5,0.55,0.6;0.9,0.9))
Medium High (MH) ((0.5,0.7,0.75,0.9;1,1),(0.6,0.7,0.75,0.8;0.9,0.9))
High (H) ((0.7,0.85,0.9,1;1,1),(0.8,0.85,0.9,0.95;0.9,0.9))
Very High (VH) ((0.9,1,1,1;1,1),(0.95,1,1,1;0.9,0.9))



408

Alparslan OĞUZ

In determining the weights of the criteria, opinions were obtained from five experts. The information 
regarding the experts is shown in Table 5.

Table 5: Information Regarding the Experts

Expert Abbreviation Field of Expertise Experience (Years)
Expert 1 E1 Drone Pilot 4
Expert 2 E2 Drone Pilot 3
Expert 3 E3 Drone Pilot 3
Expert 4 E4 Drone Seller 3
Expert 5 E5 Agricultural Engineer 3

Among the identified experts, there are three drone pilots, a drone sales representative, and an 
agricultural engineer who uses drones. The experts have a minimum of three years of experience 
with drones and are currently active in this sector. The opinions of the experts regarding the criteria 
are presented in Table 5 using linguistic expressions.

Table 6: Linguistic Expressions Corresponding to Criteria Responded by Experts

P TC OE SS S CF SA EU TW
E1 MH M ML M L M M M L
E2 L VH VH VH VH MH H VH VL
E3 M VH VH VH VH VH VH VH M
E4 VL H H H VH VH H M H
E5 M MH H H VH M MH M VL

The evaluations of the five experts regarding the criterion weights specified in Table 6 were used to 
create the average criterion matrix using Equations 21-22. The values in the average decision matrix 
reflect the averages of the values provided by the experts. The average criterion matrix is shown in 
Table 7.

Table 7: Average Criterion Matrix

Criteria Interval Type-2 Fuzzy Numbers
P 0.22 0.36 0.40 0.54 1 1 0.29 0.36 0.40 0.45 0.9 0.9
TC 0.66 0.81 0.84 0.92 1 1 0.74 0.81 0.84 0.87 0.9 0.9
OE 0.66 0.80 0.83 0.90 1 1 0.74 0.80 0.83 0.86 0.9 0.9
SS 0.70 0.84 0.87 0.94 1 1 0.78 0.84 0.87 0.90 0.9 0.9
S 0.72 0.82 0.83 0.86 1 1 0.77 0.82 0.83 0.84 0.9 0.9
CF 0.62 0.78 0.81 0.90 1 1 0.70 0.78 0.81 0.84 0.9 0.9
SA 0.62 0.78 0.82 0.92 1 1 0.71 0.78 0.82 0.86 0.9 0.9
EU 0.54 0.70 0.73 0.82 1 1 0.62 0.70 0.73 0.76 0.9 0.9
TW 0.24 0.39 0.43 0.56 1 1 0.32 0.39 0.43 0.48 0.9 0.9
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When Table 7 is examined, the criterion with the highest weight is the spraying rate. This criterion is 
followed by tank capacity and spraying capability. The criterion with the lowest weight is determined 
to be price.

In the study, seven alternatives were evaluated by three experts. Only opinions from drone pilots 
were obtained for the evaluation of alternatives. These drone pilots have tested all of the alternatives. 
The opinions of the other two experts were not sought because they did not test the flying abilities of 
the drones. The experts have knowledge and experience with all alternatives. The expert opinions for 
each alternative are shown in Table 8.

Table 8: Linguistic Expressions Provided by Experts for Each Criterion for Alternatives

Expert Alternative P TC OE SS S CF SA EU TW

E1

A1 MH L ML ML H MH L H L
A2 MH H VH VH VH MH VH M H
A3 VH L ML ML VL VL ML ML L
A4 H ML M M VL VL ML ML ML
A5 H M MH MH VL VL ML L M
A6 H MH H MH VL VL L ML MH
A7 MH MH H MH VH MH M M MH

E2

A1 VL VL VL VL VL L VL H L
A2 M MH VH H H VH VH VH VH
A3 H VL VL L L ML ML M L
A4 H ML ML ML L ML ML M ML
A5 H ML M M L ML ML M ML
A6 H M M M L ML ML M ML
A7 M M MH MH MH VH MH MH H

E3

A1 ML L M MH MH H ML H L
A2 VH VH VH VH VH VH VH M H
A3 M L ML M L L ML MH L
A4 MH ML M MH L L M M ML
A5 H MH MH H L L M M M
A6 VH MH MH H MH ML H M M
A7 H MH H VH VH VH H MH M

The analysis of experts’ opinions on criteria and alternatives using the Interval Type-2 Fuzzy COPRAS 
method was carried out through the following steps:

Step 1: In the first step of the method, a decision matrix is formed. The decision matrix containing 
evaluations by decision-makers is created with linguistic expressions in Table 8.

Step 2: The expressions of decision-makers are combined into a single decision by equation 18 to 
form the average decision matrix. The average decision matrix is presented in Table 9.
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Table 9: Integrated Average Decision Matrix
Alternative P TC OE

A1 (0.20 0.33 0.37 0.50 1.00 1.00)
(0.27 0.33 0.37 0.42 0.90 0.90)

(0.20 0.33 0.37 0.50 1.00 1.00)
(0.27 0.33 0.37 0.42 0.90 0.90)

(0.13 0.27 0.30 0.43 1.00 1.00)
(0.20 0.27 0.30 0.35 0.90 0.90)

A2 (0.57 0.73 0.77 0.87 1.00 1.00)
(0.65 0.73 0.77 0.80 0.90 0.90)

(0.57 0.73 0.77 0.87 1.00 1.00)
(0.65 0.73 0.77 0.80 0.90 0.90)

(0.90 1.00 1.00 1.00 1.00 1.00)
(0.95 1.00 1.00 1.00 0.90 0.90)

A3 (0.63 0.78 0.82 0.90 1.00 1.00)
(0.72 0.78 0.82 0.85 0.90 0.90)

(0.63 0.78 0.82 0.90 1.00 1.00)
(0.72 0.78 0.82 0.85 0.90 0.90)

(0.07 0.20 0.23 0.37 1.00 1.00)
(0.13 0.20 0.23 0.28 0.90 0.90)

A4 (0.63 0.80 0.85 0.97 1.00 1.00)
(0.73 0.80 0.85 0.90 0.90 0.90)

(0.63 0.80 0.85 0.97 1.00 1.00)
(0.73 0.80 0.85 0.90 0.90 0.90)

(0.23 0.43 0.48 0.63 1.00 1.00)
(0.33 0.43 0.48 0.53 0.90 0.90)

A5 (0.70 0.85 0.90 1.00 1.00 1.00)
(0.80 0.85 0.90 0.95 0.90 0.90)

(0.70 0.85 0.90 1.00 1.00 1.00)
(0.80 0.85 0.90 0.95 0.90 0.90)

(0.43 0.63 0.68 0.83 1.00 1.00)
(0.53 0.63 0.68 0.73 0.90 0.90)

A6 (0.77 0.90 0.93 1.00 1.00 1.00)
(0.85 0.90 0.93 0.97 0.90 0.90)

(0.77 0.90 0.93 1.00 1.00 1.00)
(0.85 0.90 0.93 0.97 0.90 0.90)

(0.50 0.68 0.73 0.87 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)

A7 (0.50 0.68 0.73 0.87 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)

(0.50 0.68 0.73 0.87 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)

(0.63 0.80 0.85 0.97 1.00 1.00)
(0.73 0.80 0.85 0.90 0.90 0.90)

Alternative SS S CF

A1 (0.20 0.33 0.37 0.50 1.00 1.00)
(0.27 0.33 0.37 0.42 0.90 0.90)

(0.40 0.52 0.55 0.67 1.00 1.00)
(0.47 0.52 0.55 0.60 0.90 0.90)

(0.40 0.55 0.60 0.73 1.00 1.00)
(0.48 0.55 0.60 0.65 0.90 0.90)

A2 (0.83 0.95 0.97 1.00 1.00 1.00)
(0.90 0.95 0.97 0.98 0.90 0.90)

(0.83 0.95 0.97 1.00 1.00 1.00)
(0.90 0.95 0.97 0.98 0.90 0.90)

(0.77 0.90 0.92 0.97 1.00 1.00)
(0.83 0.90 0.92 0.93 0.90 0.90)

A3 (0.13 0.30 0.35 0.50 1.00 1.00)
(0.22 0.30 0.35 0.40 0.90 0.90)

(0.00 0.07 0.10 0.23 1.00 1.00)
(0.03 0.07 0.10 0.15 0.90 0.90)

(0.03 0.13 0.17 0.30 1.00 1.00)
(0.08 0.13 0.17 0.22 0.90 0.90)

A4 (0.30 0.50 0.55 0.70 1.00 1.00)
(0.40 0.50 0.55 0.60 0.90 0.90)

(0.00 0.07 0.10 0.23 1.00 1.00)
(0.03 0.07 0.10 0.15 0.90 0.90)

(0.03 0.13 0.17 0.30 1.00 1.00)
(0.08 0.13 0.17 0.22 0.90 0.90)

A5 (0.50 0.68 0.73 0.87 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)

(0.00 0.07 0.10 0.23 1.00 1.00)
(0.03 0.07 0.10 0.15 0.90 0.90)

(0.03 0.13 0.17 0.30 1.00 1.00)
(0.08 0.13 0.17 0.22 0.90 0.90)

A6 (0.50 0.68 0.73 0.87 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)

(0.17 0.27 0.30 0.43 1.00 1.00)
(0.22 0.27 0.30 0.35 0.90 0.90)

(0.07 0.20 0.23 0.37 1.00 1.00)
(0.13 0.20 0.23 0.28 0.90 0.90)

A7 (0.63 0.80 0.83 0.93 1.00 1.00)
(0.72 0.80 0.83 0.87 0.90 0.90)

(0.77 0.90 0.92 1.00 1.00 1.00)
(0.83 0.90 0.92 0.93 0.90 0.90)

(0.77 0.90 0.92 0.97 1.00 1.00)
(0.83 0.90 0.92 0.93 0.90 0.90)

Alternative SA EU TW

A1 (0.03 0.13 0.17 0.30 1.00 1.00)
(0.08 0.13 0.17 0.22 0.90 0.90)

(0.70 0.85 0.90 1.00 1.00 1.00)
(0.80 0.85 0.90 0.95 0.90 0.90)

(0.00 0.10 0.15 0.30 1.00 1.00)
(0.05 0.10 0.15 0.20 0.90 0.90)

A2 (0.90 1.00 1.00 1.00 1.00 1.00)
(0.95 1.00 1.00 1.00 0.90 0.90)

(0.50 0.67 0.70 0.80 1.00 1.00)
(0.58 0.67 0.70 0.73 0.90 0.90)

(0.77 0.90 0.93 1.00 1.00 1.00)
(0.85 0.90 0.93 0.97 0.90 0.90)

A3 (0.10 0.30 0.35 0.50 1.00 1.00)
(0.20 0.30 0.35 0.40 0.90 0.90)

(0.30 0.50 0.55 0.70 1.00 1.00)
(0.40 0.50 0.55 0.60 0.90 0.90)

(0.00 0.10 0.15 0.30 1.00 1.00)
(0.05 0.10 0.15 0.20 0.90 0.90)

A4 (0.17 0.37 0.42 0.57 1.00 1.00)
(0.27 0.37 0.42 0.47 0.90 0.90)

(0.23 0.43 0.48 0.63 1.00 1.00)
(0.33 0.43 0.48 0.53 0.90 0.90)

(0.10 0.30 0.35 0.50 1.00 1.00)
(0.20 0.30 0.35 0.40 0.90 0.90)

A5 (0.17 0.37 0.42 0.57 1.00 1.00)
(0.27 0.37 0.42 0.47 0.90 0.90)

(0.20 0.37 0.42 0.57 1.00 1.00)
(0.28 0.37 0.42 0.47 0.90 0.90)

(0.23 0.43 0.48 0.63 1.00 1.00)
(0.33 0.43 0.48 0.53 0.90 0.90)

A6 (0.27 0.42 0.47 0.60 1.00 1.00)
(0.35 0.42 0.47 0.52 0.90 0.90)

(0.23 0.43 0.48 0.63 1.00 1.00)
(0.33 0.43 0.48 0.53 0.90 0.90)

(0.30 0.50 0.55 0.70 1.00 1.00)
(0.40 0.50 0.55 0.60 0.90 0.90)

A7 (0.63 0.80 0.83 0.93 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)

(0.43 0.63 0.68 0.83 1.00 1.00)
(0.53 0.63 0.68 0.73 0.90 0.90)

(0.50 0.68 0.73 0.87 1.00 1.00)
(0.60 0.68 0.73 0.78 0.90 0.90)
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Step 3: The decision matrix for each decision-maker’s evaluation of the criteria is constructed with 
linguistic expressions in Table 4.

Step 4: The average criterion matrix is formed from the criterion decision matrix using Equations 21-
22. This matrix is presented in Table 7.

Steps 5-6: In these steps, the average decision matrix is normalized using Equations 23-24. Then, the 
normalized matrix is weighted using Equation 24. The values of the weighted normalized matrix are 
provided in Table 10.

Table 10: Weighted Normalized Matrix
Cr Alternative Weighted Interval Type-2 Fuzzy Number

P

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

TC

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

OE

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

SS

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9



412

Alparslan OĞUZ

Cr Alternative Weighted Interval Type-2 Fuzzy Number

S

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

CF

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

SA

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

EU

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

TW

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9

*Cr:Criteria

Step 7: 
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Cr Alternative Weighted Interval Type-2 Fuzzy Number 

CF 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

SA 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

EU 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

TW 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

*Cr:Criteria 

Step 7: Rank (𝑆̃̃𝑆+𝑖𝑖) and ank (𝑆̃̃𝑆−𝑖𝑖)values for each criterion for the alternatives are obtained 

using Equations 28-29. These values are shown in Table 11. 

Table 11: Rank Values for Alternatives 

 
Non Benefit Benefit 

Alternative P TC OE SS S CF SA EU TW 

A1 0.023 0.019 0.05 0.063 0.142 0.139 0.031 0.149 0.014 

A2 0.049 0.219 0.191 0.181 0.258 0.224 0.233 0.113 0.111 

A3 0.053 0.019 0.037 0.055 0.02 0.034 0.064 0.084 0.014 

A4 0.055 0.07 0.08 0.092 0.02 0.034 0.08 0.072 0.035 

A5 0.058 0.123 0.119 0.129 0.02 0.034 0.08 0.062 0.052 

A6 0.061 0.159 0.13 0.129 0.073 0.048 0.097 0.072 0.06 

A7 0.047 0.159 0.154 0.151 0.243 0.224 0.158 0.107 0.084 

Steps 8-10: 𝑄𝑄𝑖𝑖and 𝑈𝑈𝑖𝑖values are calculated using Equations 30-32. Based on these values, the 

alternatives are ranked. The values related to the ranking of alternatives are shown in Table 12. 

 and 
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Cr Alternative Weighted Interval Type-2 Fuzzy Number 

CF 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

SA 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

EU 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

TW 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

*Cr:Criteria 

Step 7: Rank (𝑆̃̃𝑆+𝑖𝑖) and ank (𝑆̃̃𝑆−𝑖𝑖)values for each criterion for the alternatives are obtained 

using Equations 28-29. These values are shown in Table 11. 

Table 11: Rank Values for Alternatives 

 
Non Benefit Benefit 

Alternative P TC OE SS S CF SA EU TW 

A1 0.023 0.019 0.05 0.063 0.142 0.139 0.031 0.149 0.014 

A2 0.049 0.219 0.191 0.181 0.258 0.224 0.233 0.113 0.111 

A3 0.053 0.019 0.037 0.055 0.02 0.034 0.064 0.084 0.014 

A4 0.055 0.07 0.08 0.092 0.02 0.034 0.08 0.072 0.035 

A5 0.058 0.123 0.119 0.129 0.02 0.034 0.08 0.062 0.052 

A6 0.061 0.159 0.13 0.129 0.073 0.048 0.097 0.072 0.06 

A7 0.047 0.159 0.154 0.151 0.243 0.224 0.158 0.107 0.084 

Steps 8-10: 𝑄𝑄𝑖𝑖and 𝑈𝑈𝑖𝑖values are calculated using Equations 30-32. Based on these values, the 

alternatives are ranked. The values related to the ranking of alternatives are shown in Table 12. 

 values for each criterion for the alternatives are obtained using 
Equations 28-29. These values are shown in Table 11.



413

Drone Selection for Agricultural Enterprises with Interval Type-2 Fuzzy Copras Method

Table 11: Rank Values for Alternatives

Non Benefit Benefit
Alternative P TC OE SS S CF SA EU TW
A1 0.023 0.019 0.05 0.063 0.142 0.139 0.031 0.149 0.014
A2 0.049 0.219 0.191 0.181 0.258 0.224 0.233 0.113 0.111
A3 0.053 0.019 0.037 0.055 0.02 0.034 0.064 0.084 0.014
A4 0.055 0.07 0.08 0.092 0.02 0.034 0.08 0.072 0.035
A5 0.058 0.123 0.119 0.129 0.02 0.034 0.08 0.062 0.052
A6 0.061 0.159 0.13 0.129 0.073 0.048 0.097 0.072 0.06
A7 0.047 0.159 0.154 0.151 0.243 0.224 0.158 0.107 0.084

Steps 8-10: 

19 
 

Cr Alternative Weighted Interval Type-2 Fuzzy Number 

CF 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

SA 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

EU 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

TW 

A1 0.011 0.024 0.027 0.044 1 1 0.017 0.024 0.027 0.033 0.9 0.9 
A2 0.031 0.052 0.057 0.077 1 1 0.041 0.052 0.057 0.064 0.9 0.9 
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When Table 12 is examined, it can be seen that A2 is the best alternative. The other alternatives 

are ranked as follows: A7, A6, A5, A1, A4 and A3. 

 

5. Sensitivity Analysis  

In the study, a two-step sensitivity analysis was conducted to validate the results of the proposed 

method. In the first step, analysis was repeated with six different MCDM methods based on 

IT2FS. Ease of use, simplicity, applicability to real problems, and the use of different 

calculation algorithms have been influential in determining these methods (Ecer, 2021:10). The 

ranking results obtained were then determined again using the Borda technique. This technique 

consolidates multiple MCDM results into a single outcome, thereby generating an overall 

ranking from the results obtained with different MCDM methods. The results obtained with 

other MCDM methods and the Borda technique are shown in Figure 2. 

 

Figure 2: Results of the MCDM Methods and Borda Technique 
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A3 0.035 0.055 0.061 0.08 1 1 0.045 0.055 0.061 0.068 0.9 0.9 
A4 0.035 0.057 0.063 0.086 1 1 0.046 0.057 0.063 0.071 0.9 0.9 
A5 0.039 0.06 0.067 0.089 1 1 0.05 0.06 0.067 0.075 0.9 0.9 
A6 0.042 0.064 0.07 0.089 1 1 0.053 0.064 0.07 0.077 0.9 0.9 
A7 0.028 0.048 0.055 0.077 1 1 0.038 0.048 0.055 0.062 0.9 0.9 

*Cr:Criteria 

Step 7: Rank (𝑆̃̃𝑆+𝑖𝑖) and ank (𝑆̃̃𝑆−𝑖𝑖)values for each criterion for the alternatives are obtained 

using Equations 28-29. These values are shown in Table 11. 

Table 11: Rank Values for Alternatives 

 
Non Benefit Benefit 

Alternative P TC OE SS S CF SA EU TW 

A1 0.023 0.019 0.05 0.063 0.142 0.139 0.031 0.149 0.014 

A2 0.049 0.219 0.191 0.181 0.258 0.224 0.233 0.113 0.111 

A3 0.053 0.019 0.037 0.055 0.02 0.034 0.064 0.084 0.014 

A4 0.055 0.07 0.08 0.092 0.02 0.034 0.08 0.072 0.035 

A5 0.058 0.123 0.119 0.129 0.02 0.034 0.08 0.062 0.052 

A6 0.061 0.159 0.13 0.129 0.073 0.048 0.097 0.072 0.06 

A7 0.047 0.159 0.154 0.151 0.243 0.224 0.158 0.107 0.084 

Steps 8-10: 𝑄𝑄𝑖𝑖and 𝑈𝑈𝑖𝑖values are calculated using Equations 30-32. Based on these values, the 

alternatives are ranked. The values related to the ranking of alternatives are shown in Table 12. 

Sıralama

A1 0.606 0.023 1 0.609 39.76 5
A2 1.531 0.049 0.472 1.533 100 1
A3 0.327 0.053 0.44 0.333 21.76 7
A4 0.483 0.055 0.424 0.487 31.8 6
A5 0.62 0.058 0.398 0.624 40.69 4
A6 0.768 0.061 0.381 0.771 50.32 3
A7 1.281 0.047 0.498 1.283 83.69 2

When Table 12 is examined, it can be seen that A2 is the best alternative. The other alternatives are 

ranked as follows: A7, A6, A5, A1, A4 and A3.

5. Sensitivity Analysis

In the study, a two-step sensitivity analysis was conducted to validate the results of the proposed 

method. In the first step, analysis was repeated with six different MCDM methods based on IT2FS. 

Ease of use, simplicity, applicability to real problems, and the use of different calculation algorithms 

have been influential in determining these methods (Ecer, 2021:10). The ranking results obtained 

were then determined again using the Borda technique. This technique consolidates multiple 

MCDM results into a single outcome, thereby generating an overall ranking from the results obtained 

with different MCDM methods. The results obtained with other MCDM methods and the Borda 

technique are shown in Figure 2.
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Figure 2: Results of the MCDM Methods and Borda Technique

When examining Figure 2, it is observed that alternatives A2, A3, A4, A6, and A7 received the same 
ranking value in all methods. To compare the findings obtained from other MCDM methods and 
the Borda technique, the Spearman correlation coefficient was used. The Spearman correlation 
coefficient investigates the consistency between results obtained from different methods. For there to 
be a significant statistical correlation between the results, the Spearman correlation value is expected 
to be greater than 0.6 (Ghorabaee et al., 2016). The results of the Spearman correlation test are shown 
in Table 13.

Table 13: Results of the Spearman Correlation Test
TOPSIS ARAS WASPAS PSI VIKOR EDAS BORDA

COPRAS 0,964** 0,964** 0,964** 1,000** 0,964** 1,000** 0,964**
**Significant at the 0.01 level

Table 13 shows the results of the comparison between the proposed method and other methods. 
According to this table, all correlation coefficients are greater than 0.6. This indicates a strong 
relationship between the ranking results of the extended COPRAS method and other methods. 
Therefore, it can be stated that the results of the proposed method are consistent with the results of 
other methods.

In the second step of the sensitivity analysis, analysis was conducted by assigning different values 
to the criteria. In the analysis, four different linguistic variables (VL, LM, MH, and VH) were 
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assigned to a criterion from low to high, while the other criteria were kept constant. This analysis 
was performed for nine criteria, and the rankings of alternatives were recorded. The results obtained 
for each criterion are shown in Appendix 1.

Upon examining Appendix 1, it is observed that in the analyses conducted by changing the criteria 
weights, A2 is consistently identified as the best alternative in all trials. Similarly, in all trials, 
alternative A7 is ranked second, A6 is ranked third, A4 is ranked sixth, and A3 is ranked seventh. 
While alternative A5 mostly ranks fourth, alternative A1 mostly ranks fifth. Therefore, the ranking of 
alternatives is A2>A7>A6>A1>A5>A4>A3. This ranking result is consistent with the findings of the 
proposed method. Hence, it can be concluded that the results of the study are stable.

Based on the findings obtained in both steps of sensitivity analysis, it is evaluated that the analysis 
results are consistent and stable.

6. Discussion and Conclusion

Industry 4.0 and digitalization have brought significant changes to business operations. Advancements 
in communication, battery, and artificial intelligence have facilitated the progress of drone technology, 
thus enabling its use in various fields. Drones, which have created their own market in agriculture, are 
used for weed detection, land mapping, spraying, and fertilization. Agricultural drones customized 
for use in spraying and fertilization determine the most suitable distribution route according to the 
terrain structure and autonomously complete the operations. With their aerial mobility, drones are 
particularly advantageous in rugged terrain compared to other agricultural tools. As stated, the use 
of agricultural drones, which have significant advantages, has been increasing in recent years. There 
are various criteria depending on different expectations in the selection of agricultural drones. Since 
the evaluation of alternatives considering criteria, the decision problem can be solved using MCDM 
methods. Fuzzy MCDM methods have been used to determine the most suitable agricultural drone 
among alternatives.

Due to the possibility of personal judgments causing uncertainty in drone selection, fuzzy numbers 
have been included in the analysis. Therefore, the most suitable agricultural drone among alternatives 
has been determined using fuzzy MCDM methods.

Since the judgments of users are involved in the process of drone selection, expert opinions have 
been consulted. Three drone pilots who have experienced all the selected alternatives were asked 
to evaluate the alternatives. In determining the weights of criteria, the opinions of drone pilots, as 
well as an agricultural engineer and a representative of a company selling agricultural drones, were 
obtained. Thus, the evaluation of agricultural drones has been made not only in terms of their field 
use impact but also in terms of agricultural and operational costs. The data obtained were analyzed 
using the IT2FS-based COPRAS method. The results obtained indicate that the safety criterion has 
the highest importance. Among the alternatives, A2 has been identified as the most suitable model. 
This model is followed by A7, A6, A5, A1, A4, and A3, respectively.
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It is believed that the study will contribute to the literature in various aspects. Although studies on 
drone selection using MCDM methods exist in the literature, it can be stated that there are gaps in 
terms of research. While some studies use real values (Rakhade et al., 2021; Khan et al., 2021), there 
are also studies using fuzzy numbers (Nur et al., 2021). A different study evaluating agricultural 
drones with expert opinion could not be found. The criteria of safety, operational efficiency, and 
spraying speed have been used for the first time based on expert opinion. In addition, the use of 
IT2FS in drone selection adds original value to the study. Furthermore, it is thought that the study will 
contribute to the literature on product and supplier selection using IT2FS-based MCDM methods.

Although the study has valuable contributions, there are also some limitations. Only seven alternatives 
belonging to two drone brands commonly available and widely used in Türkiye were included in the 
study. Since the results of the study are based on expert opinion, they may be influenced by personal 
judgments. Although there are numerous criteria for evaluating drones in the literature, only nine 
criteria based on expert opinion were used in the study.

In future studies addressing drone selection problems, integrated methods where criteria weights 
are calculated separately can be used. Analyses can be conducted based on unstable, global, 
neutrosophic, or intuitive fuzzy numbers instead of IT2FS numbers. In the study, a subjective result 
based on expert opinion was obtained. Objective results can be obtained by weighting using methods 
such as CRITIC, ENTROPY, MEREC, and SD. Finally, the content of the study can be expanded by 
increasing the number of criteria and alternatives.
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