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Abstract 

 

In this paper, a set of compromise solutions is found for the multi-
objective linear programming with rough interval coefficients 

(MOLPRIC) problem by proposing a two-phased algorithm. In the 

first phase, the MOLPRIC problem is separated into single-
objective LPRIC problems considering the number of objective 

functions, and the rough optimal solution of each LPRIC problem is 

found. In the second phase, a zero-sum game is applied to find the 
rough optimal solution. Generally, the weighted sum method is used 

for determining the trade-off weights between the objective 

functions. However, it is quite inapplicable when the number of 
objective functions increases. Thus, the proposed algorithm has an 

advantage such that it provides an easy implementation for the 

MOLPRIC problems having more than two objective functions. 
With this motivation, applying a zero-sum game among the distinct 

objective values yields different compromise solutions. 
 

 

 
 

Keywords: Compromise solution, game theory, multi-objective 

linear programming problem, rough interval coefficient. 

Öz 

 

Kaba sayılardan oluşan aralıklara sahip katsayılar içeren, çok amaçlı 
doğrusal programlama (MOLPRIC) problemi için bir çözüm 

önerisinde bulunulmuştur. Bu çalışmada ele alınan probleme 

uzlaşmacı çözümler kümesi önerilmiş olup çözüm algoritması iki 
aşamalı olarak düzenlenmiştir. İlk aşamada, MOLPRIC probleminin 

barındırdığı amaç fonksiyonlarının sayısı dikkate alınarak her bir tek 

amaçlı LPRIC kaba optimal çözümü bulunmuştur. İkinci aşamada 
ise MOLPRIC probleminin kaba optimal çözümünü bulmak üzere 

sıfır toplamlı oyundan yararlanılmıştır. Çok amaçlı problemlerin 

çözüm sürecinde amaç fonksiyonları arasındaki ödünleşim 
ağırlıklarının belirlenmesinde genellikle ağırlıklı toplam yöntemi 

kullanılmaktadır. Ancak amaç fonksiyonlarının sayısı arttığında bu 

geleneksel yöntem uygulamada zorluk çıkarabilmektedir. 
Dolayısıyla önerilen algoritmanın özgünlüğü, ikiden fazla amaç 

fonksiyonuna sahip MOLPRIC problemlerine kolay uygulanabilir 
olmasıdır. Bu motivasyonla, farklı amaç değerleri arasında sıfır 

toplamlı oyunun uygulanması, farklı uzlaşık çözümlerin 

bulunmasını sağlamaktadır. 
 

Anahtar Kelimeler: Çok amaçlı doğrusal programlama problemi, 

kaba sayılı aralık, oyun teorisi, uzlaşık çözüm.  
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1. INTRODUCTION 

 

Linear Programming (LP) is a type of mathematical programming problem generally used in 

decision-making and optimization. It deals with finding unique or alternative optimal solutions 

under linear constraints and aims to maximize or minimize a linear objective function. LP has a 

wide application area such as economy, industry, marketing, military, transportation, and 

technology. When the parameters of an LP problem are crisp numbers, classical methods are used 

to find the solution. However, the data collected from real life may contain some errors or have 

uncertainty arising from lack of information, these parameters and the variables cannot be 

expressed precisely. Therefore, it is more appropriate to represent these variables and parameters 

by randomness, fuzziness, or roughness. 

 

Pawlak (1982) presented an approach as an alternative to the fuzzy theory and tolerance theory 

and coined a term rough set. Rough set theory expresses the vagueness by defining a boundary 

region of a set, and accordingly, a vague concept is represented by a pair of precise concepts known 

as lower and upper approximations. The lower approximation includes all elements that are surely 

in the vague concept whereas the upper approximation contains all elements that possibly belong 

to the concept. The rough concept has a great importance in areas such as medicine (Fibak & 

Pawlak, 1986; Pawlak et al., 1986), data mining (Munakata, 1997), uncertainty reasoning (Düntsch 

& Gediga, 1998), civil engineering (Arciszewski & Ziarko, 1999), pattern recognition (Mitatha et 

al., 2003), rule extraction (Apolloni et al., 2006), data envelopment analysis (Xu et al., 2009), 

knowledge reduction (Li et al., 2013), transportation (Akilbasha et al., 2017; Das et al., 2016; Roy 

et al., 2018), decision analysis (El-Feky & Abou-El-Enien, 2019; Singh & Huang, 2020), feature 

selection (Zhao et al., 2020), and granular computing (Velázquez-Rodríguez et al., 2020). Rough 

concept is applied to the linear fractional programming (Omran et al., 2016; Khalifa, 2018b) and 

quadraic programming (Saad et al., 2014) problems, game theory (Ammar & Brikaa, 2019; Brikaa 

et al., 2021), and multi-criteria decision-making (Greco et al., 2001; Tanackov et al., 2022).  

 

In some real-life problems, the complexity of the social and economic environment and trade-offs 

between these environments require the consideration of multiple objective functions, which is 

known as a multi-objective programming problem. Since there is more than one objective function 

in a multi-objective problem, an optimal solution is found for each of these objectives. However, 

the aim is to find a single optimal solution for a multi-objective problem. In other words, the found 

solution may not satisfy all the objectives to the same satisfaction degree. Thus, the concept of 

optimal solution is replaced by the concept of non-dominant solution or non-inferior solution in 

multi-objective programming problems, and it would be useful to generate a set of compromise 

solutions to offer them to the decision maker (DM).  

 

The rough concept is also applied to multi-objective programming, and it is called rough multi-

objective programming problem (Youness, 2006). Tao and Xu (2012) presented a general model 

for a rough multiple-objective programming problem and established an application for a solid 

transportation problem. In the study, compromise solutions were found by using the interactive 

fuzzy satisfying method and proposed the rough simulation-based genetic algorithm for solving 

the rough multiple objective solid transportation problem. Atteya (2016) focused on characterizing 

and solving the rough multiple objective programming problems and contributed to the data 

mining process confined only to the “post-processing stage”. They investigated a multiple-

objective programming problem that had a rough decision set, and all the objectives were crisp 

functions. Hamzehee et al. (2016) presented a set of multi-objective programming problems in a 

rough environment. They studied that all the quadratic objective functions were crisp, and the 

feasible region was a rough set. To find solutions to rough multi-objective programming problems, 

they used a scalarization method. Khalifa (2018a) considered a multi-objective nonlinear 

programming problem having rough intervals in the constraints. The problem was converted into 



İstanbul Commerce University Journal of Science  23(45), Spring 2024, 97-113. 

99 

two classical multi-objective nonlinear programming problems which are the lower and the upper 

approximation problems, and these were solved by using the weighting method. Garg and Rizk-

Allah (2021) studied the solution of the multi-objective transportation problems taking the 

transportation cost and demand of the product as rough interval coefficients. Their proposed 

approach exploited the merits of the weighted sum method to find the non-inferior solutions. 

 

This paper aims to find compromise solutions for the multi-objective linear programming with 

rough interval coefficients (MOLPRIC) problem. In the study, to deal with partially unknown or 

ill-defined parameters and variables, rough intervals proposed by Robolledo (2006), which are a 

particular case of rough sets since the rough sets could not represent continuous values, are utilized. 

To find the compromise solutions for the MOLPRIC problem, a two-phased algorithm is proposed. 

In the first phase, the MOLPRIC problem is divided into single-objective LPRIC problems 

according to the number of objective functions. The rough optimal solution of each LPRIC 

problem, if it exists, is found by applying the method proposed in (Hamzehee et al., 2014). In the 

second phase, the approach proposed in (Temelcan, 2023) is used to find the rough optimal 

solution by applying a zero-sum game. The proposed algorithm can contribute to the literature by 

providing ease of implementation when there are more than two objective functions. Accordingly, 

while it is quite applicable to use the weighted-sum or scalarization method in two-objective 

MOLP problems, finding the appropriate combination of the weights between more than two 

objective functions will be difficult. With this motivation, applying a zero-sum game among the 

distinct objective values yields finding compromise solutions. Therefore, it can be presented as the 

originality of the paper that a set of compromise solutions for a multi-objective linear programming 

problem including rough interval coefficients can be found using a zero-sum game to determine 

the weights. 

 

The framework of this paper is presented as follows. The preliminaries including the rough set 

concept, linear programming problem, and their shared usages are given in Section 2. The solution 

algorithm for the MOLPRIC problem is explained in detail in two separate phases in Section 3. 

Illustrative numerical examples are given in Section 4. Finally, the conclusion and future studies 

are declared in Section 5. 

 

 

2. PRELIMINARIES 

 

In this section, some definitions taken from (Hamzehee et al., 2014) and (Temelcan, 2023), are 

given of the rough set concept, linear programming problem, and their shared use. 

 

Definition 1. Consider an LP with interval coefficients (LPIC) problem as follows:  

 

𝑚𝑎𝑥 ∑ [𝑐𝑗, 𝑐�̅�]𝑥𝑗
𝑛
𝑗=1                  (1.a) 

 

s.t. 
 

∑ [𝑎𝑖𝑗, 𝑎𝑖𝑗̅̅ ̅̅ ]𝑥𝑗
𝑛
𝑗=1 ≤ [𝑏𝑖, 𝑏�̅�],  𝑖 = 1, … , 𝑚              (1.b) 

 
𝑥𝑗 ≥ 0,  𝑗 = 1, … , 𝑛                 (1.c) 

 

where [𝑐𝑗, 𝑐�̅�] is the coefficients (profit for max; cost for min) of objective function, [𝑎𝑖𝑗, 𝑎𝑖𝑗̅̅ ̅̅ ] and 

[𝑏𝑖, 𝑏�̅�] are parameters of constraints and all these coefficients are closed intervals on real numbers. 

𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)𝑇 is the vector of decision variables.  
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The best optimal solution to the LPIC problem (1) is obtained by solving the following LP 

problem: 

 

𝐿𝑃𝑏𝑒𝑠𝑡:  

𝑚𝑎𝑥 ∑ 𝑐�̅�
𝑛
𝑗=1 𝑥𝑗                  (2.a) 

 

s.t. 

 

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏�̅�,  ∀𝑖                (2.b) 

 

𝑥𝑗 ≥ 0,  ∀𝑗                  (2.c) 

 

where the problem has the maximum value range inequalities (constraints) and the most favorable 

value (objective function) (Hamzehee et al., 2014).  

  

The worst optimal solution to the LPIC problem (1) is found by solving the following LP problem: 

 

𝐿𝑃𝑤𝑜𝑟𝑠𝑡:   

𝑚𝑎𝑥 ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1                  (3.a) 

 

s.t. 

 
∑ 𝑎𝑖𝑗̅̅ ̅̅𝑛

𝑗=1 𝑥𝑗 ≤ 𝑏𝑖,  ∀𝑖                (3.b) 

 

𝑥𝑗 ≥ 0,  ∀𝑗                  (3.c) 

 

where the problem has the minimum value range inequalities (constraints) and the least favorable 

value (objective function) (Hamzehee et al., 2014, p.1182).  

 

According to 𝐿𝑃𝑏𝑒𝑠𝑡 and 𝐿𝑃𝑤𝑜𝑟𝑠𝑡 problems, the solution of LPIC problem (1) can be found 

considering the following cases:  

• If each 𝐿𝑃𝑏𝑒𝑠𝑡 and 𝐿𝑃𝑤𝑜𝑟𝑠𝑡  problem has optimal solution, then LPIC problem (1) has a 

finite bounded optimal range, 

• If the solution of 𝐿𝑃𝑤𝑜𝑟𝑠𝑡 problem is unbounded, then 𝐿𝑃𝑏𝑒𝑠𝑡 problem has an unbounded 

solution, 

• If the solution of 𝐿𝑃𝑏𝑒𝑠𝑡 problem is infeasible, then 𝐿𝑃𝑤𝑜𝑟𝑠𝑡 problem has an infeasible 

solution. 

 

Definition 2. Let 𝐴 be a qualitative value, 𝐴∗ and 𝐴∗ are lower and upper approximation (closed) 

intervals of 𝐴, respectively. 𝐴 = (𝐴∗, 𝐴∗) is called a rough interval if the following properties are 

satisfied:  

• If 𝑥 ∈ 𝐴∗, then 𝑥 ∈ 𝐴 (i.e. 𝑥 is surely in 𝐴), 

• If 𝑥/∈ 𝐴∗, then 𝑥 /∈ 𝐴 (i.e. 𝑥 is not surely in 𝐴), 

• If 𝑥 ∈ 𝐴∗, then 𝑥 is probably in 𝐴. 

 

It is important to note that the lower approximation interval must be defined inside of the upper 

approximation interval, i.e. 𝐴∗ ⊆ 𝐴∗, however, they are not complements of each other.  
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Definition 3. Consider an LP with rough interval coefficients (LPRIC) problem as 

 

𝑚𝑎𝑥 ∑ ([𝑐𝑗
𝑙 , 𝑐𝑗

𝑢], [𝑐𝑗
�̅�, 𝑐𝑗

𝑢̅̅ ̅])𝑥𝑗
𝑛
𝑗=1                (4.a) 

s.t. 

 

∑ ([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ], [𝑎𝑖𝑗
𝑙̅̅ ̅̅ , 𝑎𝑖𝑗

𝑢̅̅ ̅̅ ])𝑥𝑗 ≤ ([𝑏𝑖
𝑙, 𝑏𝑖

𝑢], [𝑏𝑖
�̅�, 𝑏𝑖

𝑢̅̅ ̅])𝑛
𝑗=1 ,  𝑖 = 1, … , 𝑚           (4.b) 

 

𝑥𝑗 ≥ 0,  𝑗 = 1, … , 𝑛                 (4.c) 

 

where ([𝑐𝑗
𝑙 , 𝑐𝑗

𝑢], [𝑐𝑗
�̅�, 𝑐𝑗

𝑢̅̅ ̅]), ([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ], [𝑎𝑖𝑗
𝑙̅̅ ̅̅ , 𝑎𝑖𝑗

𝑢̅̅ ̅̅ ]), and ([𝑏𝑖
𝑙, 𝑏𝑖

𝑢], [𝑏𝑖
�̅�, 𝑏𝑖

𝑢̅̅ ̅]) are rough interval 

coefficients of the objective function and the constraints, respectively, and 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)𝑇 

is the vector of decision variables.  

 

Consider the following LPIC problem:  

 

𝑚𝑎𝑥 ∑ [𝑐𝑗
𝑙 , 𝑐𝑗

𝑢]𝑥𝑗
𝑛
𝑗=1                  (5.a) 

 

s.t. 

 

∑ [𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ]𝑥𝑗 ≤ [𝑏𝑖
𝑙, 𝑏𝑖

𝑢]𝑛
𝑗=1 ,  𝑖 = 1, … , 𝑚              (5.b) 

 

𝑥𝑗 ≥ 0,  ∀𝑗.                  (5.c) 

 

If the optimal range of the LPIC problem (5) exists, then it is also the surely optimal range [𝑧𝑙∗, 𝑧𝑢∗] 
of the LPRIC problem (4).  

 

Similarly, consider the LPIC problem as 

 

𝑚𝑎𝑥 ∑ [𝑐𝑗
�̅� , 𝑐𝑗

𝑢̅̅ ̅]𝑥𝑗
𝑛
𝑗=1                  (6.a) 

 

s.t. 

 

∑ [𝑎𝑖𝑗
𝑙̅̅ ̅̅ , 𝑎𝑖𝑗

𝑢̅̅ ̅̅ ]𝑥𝑗 ≤ [𝑏𝑖
�̅�, 𝑏𝑖

𝑢̅̅ ̅]𝑛
𝑗=1 ,  𝑖 = 1, … , 𝑚              (6.b) 

 

𝑥𝑗 ≥ 0,  ∀𝑗.                 (6.c) 

 

If the optimal range of the LPIC problem (6) exists, then it is also the possibly optimal range 

[𝑧𝑙∗̅̅ ̅̅ , 𝑧𝑢∗̅̅ ̅̅ ] of the LPRIC problem (4) (Osman et al., 2011).  

 

As a result, the rough interval ([𝑧𝑙∗, 𝑧𝑢∗], [𝑧𝑙∗̅̅ ̅̅ , 𝑧𝑢∗̅̅ ̅̅ ]) is called the rough optimal range of the LPRIC 

problem (4). Moreover, the optimal solution of each corresponding LP problem of the LPRIC 

problem which its optimal value belongs to [𝑧𝑙∗, 𝑧𝑢∗], ([𝑧𝑙∗̅̅ ̅̅ , 𝑧𝑢∗̅̅ ̅̅ ]) is called a completely (rather) 

satisfactory solution of the LPRIC problem.  

 

Definition 4. Considering Definition 1 and Definition 3, we can construct the following LP 

problems: 

  

𝑆𝑢𝑟𝑒𝑙𝑦 𝐵𝑒𝑠𝑡 𝐿𝑃: 𝐿𝑃𝑆𝐵𝑒𝑠𝑡  

𝑚𝑎𝑥 ∑ 𝑐𝑗
𝑢𝑥𝑗

𝑛
𝑗=1                  (7.a) 
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s.t. 

 

∑ 𝑎𝑖𝑗
𝑙 𝑥𝑗

𝑛
𝑗=1 ≤ 𝑏𝑖

𝑢,  ∀𝑖                (7.b) 

 

𝑆𝑢𝑟𝑒𝑙𝑦 𝑊𝑜𝑟𝑠𝑡 𝐿𝑃: 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡  

𝑚𝑎𝑥 ∑ 𝑐𝑗
𝑙𝑥𝑗

𝑛
𝑗=1                  (8.a) 

 

s.t. 

 

∑ 𝑎𝑖𝑗
𝑢 𝑥𝑗

𝑛
𝑗=1 ≤ 𝑏𝑖

𝑙 ,  ∀𝑖                (8.b) 

 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝐵𝑒𝑠𝑡 𝐿𝑃: 𝐿𝑃𝑃𝐵𝑒𝑠𝑡  

𝑚𝑎𝑥 ∑ 𝑐𝑗
𝑢̅̅ ̅𝑛

𝑗=1 𝑥𝑗                 (9.a) 

 

s.t. 

 

∑ 𝑎𝑖𝑗
𝑙̅̅ ̅̅𝑛

𝑗=1 𝑥𝑗 ≤ 𝑏𝑖
𝑢̅̅ ̅,  ∀𝑖                (9.b) 

 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑊𝑜𝑟𝑠𝑡 𝐿𝑃: 𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡  

𝑚𝑎𝑥 ∑ 𝑐𝑗
�̅�𝑛

𝑗=1 𝑥𝑗                (10.a) 

 

s.t. 

 

∑ 𝑎𝑖𝑗
𝑢̅̅ ̅̅𝑛

𝑗=1 𝑥𝑗 ≤ 𝑏𝑖
�̅� ,  ∀𝑖              (10.b) 

 

where 𝑥𝑗 ≥ 0 ∀𝑗. The solution set of these LP problems is written as 

 

𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡 ⊂ 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡 ⊂ 𝐿𝑃𝑃𝐵𝑒𝑠𝑡 ⊂ 𝐿𝑃𝑆𝐵𝑒𝑠𝑡.              (11) 

 

For proof, please check the study (Hamzehee et al., 2014, p.1184).  

 

Definition 5. Consider a Multi-Objective LP with rough interval coefficients (MOLPRIC) 

problem as 

 

𝑚𝑎𝑥 𝑧𝑘 = ∑ ([𝑐𝑘𝑗
𝑙 , 𝑐𝑘𝑗

𝑢 ], [𝑐𝑘𝑗
𝑙̅̅ ̅̅ , 𝑐𝑘𝑗

𝑢̅̅ ̅̅ ])𝑥𝑗
𝑛
𝑗=1 ,  𝑘 = 1, … , 𝑞          (12.a) 

 

s.t. 

 

∑ ([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ], [𝑎𝑖𝑗
𝑙̅̅ ̅̅ , 𝑎𝑖𝑗

𝑢̅̅ ̅̅ ])𝑥𝑗 ≤ ([𝑏𝑖
𝑙, 𝑏𝑖

𝑢], [𝑏𝑖
�̅�, 𝑏𝑖

𝑢̅̅ ̅])𝑛
𝑗=1 ,  𝑖 = 1, … , 𝑚         (12.b) 

𝑥𝑗 ≥ 0,  𝑗 = 1, … , 𝑛               (12.c) 

 

where ([𝑐𝑘𝑗
𝑙 , 𝑐𝑘𝑗

𝑢 ], [𝑐𝑘𝑗
𝑙̅̅ ̅̅ , 𝑐𝑘𝑗

𝑢̅̅ ̅̅ ]), ([𝑎𝑖𝑗
𝑙 , 𝑎𝑖𝑗

𝑢 ], [𝑎𝑖𝑗
𝑙̅̅ ̅̅ , 𝑎𝑖𝑗

𝑢̅̅ ̅̅ ]), and ([𝑏𝑖
𝑙, 𝑏𝑖

𝑢], [𝑏𝑖
�̅� , 𝑏𝑖

𝑢̅̅ ̅]) are rough interval 

parameters of the objective functions and the constraints, respectively, and 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)𝑇 

is the vector of decision variables. 

 

It is seen that the MOLPRIC problem (12) has 𝑞 −LPRIC problems, so there are 2𝑞-LPIC 

problems, and 4𝑞-LP problems accordingly. Since each parameter in each LPRIC problem belongs 

to the upper approximation interval or lower approximation interval of its rough intervals, different 

LPIC problems emerge. 
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Definition 6. According to the properties of a rough interval, the components of each rough 

interval coefficient are sorted as  

 

𝑐𝑘𝑗
𝑙̅̅ ̅̅ ≤ 𝑐𝑘𝑗

𝑙 ≤ 𝑐𝑘𝑗
𝑢 ≤ 𝑐𝑘𝑗

𝑢̅̅ ̅̅  

 

𝑎𝑖𝑗
𝑙̅̅ ̅̅ ≤ 𝑎𝑖𝑗

𝑙 ≤ 𝑎𝑖𝑗
𝑢 ≤ 𝑎𝑖𝑗

𝑢̅̅ ̅̅  

 

𝑏𝑖
�̅� ≤ 𝑏𝑖

𝑙 ≤ 𝑏𝑖
𝑢 ≤ 𝑏𝑖

𝑢̅̅ ̅ 

 

for all  𝑖, 𝑗, 𝑎𝑛𝑑 𝑘. 

 

 

3. SOLUTION ALGORITHM FOR MOLPRIC PROBLEM 

 

The solution process is separated into two main phases and each phase is explained using the 

following steps.  

 

3.1. First Phase 

 

In this phase, the MOLPRIC problem (12) is separated into 𝑞 −LPRIC problem for each objective 

function, and the optimal rough solution of each LPRIC problem, if there exists, is found by 

applying the method proposed in (Hamzehee et al., 2014).  The following steps are iterated for 

𝑞 −LPRIC problems, independently, as follows: 

Step 0. Consider a MOLPRIC problem as given in (12). 

Step 1. Separate the MOLPRIC problem into 𝑞 −LPRIC problem for each objective 

function. 

Step 2. Construct each LPRIC problem of the MOLPRIC problem as given in (4). Here, 

the decision variables belong to 𝑋𝑆+ which is the set of variables of which at least one of the 

coefficients is a rough interval.  Moreover, the variables in this set are sign restricted as 

 𝑥𝑗 ≥ 0 (𝑗 = 1, … , 𝑛), for details check (Hamzehee et al., 2014).  

Step 3. Find possibly optimal range [𝑧𝑘
𝑙∗̅̅ ̅̅ , 𝑧𝑘

𝑢∗̅̅ ̅̅ ]  by solving the LPIC problem as in (6). If 

the LPIC problem (6) is infeasible, go to Step 5.  

Step 4. Find surely optimal range [𝑧𝑘
𝑙∗, 𝑧𝑘

𝑢∗] by solving the LPIC problem given in (5).  

Step 5. There are three possible cases for an LPRIC problem:  

• If (5) and (6) have optimal ranges, then the LPRIC problem has a rough optimal 

range as ([𝑧𝑙∗, 𝑧𝑢∗], [𝑧𝑙∗̅̅ ̅̅ , 𝑧𝑢∗̅̅ ̅̅ ]).  

• If the LPIC problem (5) has an unbounded range, then the LPRIC problem has an 

unbounded range. 

• If the LPIC problem (6) is infeasible, then the LPRIC problem is infeasible.   

 

In the first phase, the algorithm is iterated from Step 2 to Step 5 for each LPRIC problem, as 

explained at the beginning. 

 

3.2. Second Phase 

 

In this phase, a rough optimal range of the MOLPRIC problem (12) is found by applying the game 

theory approach proposed in (Temelcan, 2023) using the study (Temelcan et al., 2020). Distinct 

zero-sum games are constructed taking the satisfactory solutions as players and their objective 

function values as strategies. After solving each game, weights are found, and they are used to 
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form a single-objective LP problem to evaluate the bounds of the rough optimal range of the 

MOLPRIC problem.  

Step 6. Construct a payoff matrix such that rows are filled with elements taking each 

solution of 𝐿𝑃𝑆𝐵𝑒𝑠𝑡 problems, and columns are their corresponding objective function values.  

Step 7. Find the weights by solving the zero-sum game. Then, construct a single-objective 

LP problem multiplying the weights by the corresponding objective functions of 𝐿𝑃𝑆𝐵𝑒𝑠𝑡 problems, 

and solve.  

Step 8. Find the compromise rough range of the MOLPRIC problem as 

([𝑧1
𝑙∗, 𝑧1

𝑢∗] , [𝑧1
𝑙∗̅̅ ̅̅ ̅, 𝑧1

𝑢∗̅̅ ̅̅ ̅]).  

 

In this phase, these steps are applied for each LP problem, that is 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡, 𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡 , and 𝐿𝑃𝑃𝐵𝑒𝑠𝑡 

problems. Payoff matrices are constructed via the solutions of each LP problem, and the weights 

are found. These weights are utilized to form a single-objective LP problem. Then distinct optimal 

solutions are found by solving each weighted single-objective LP problem. Each optimal solution, 

that is exactly four points, is recorded to determine the compromise rough optimal range of the 

MOLPRIC problem (12).   

 

To represent the process of the algorithm, a flowchart is given in Figure 1.  

 

 
 

Figure 1. Flowchart of The Solution Algorithm for A MOLPRIC Problem 

 

To obtain several compromise solutions, we can apply different techniques in the second phase. 

One of these techniques is making all the entries of the payoff matrix positive. This means that if 

there is any negative term in any cell of the payoff matrix, find a value making that term positive 

and add it to all entries, and thus we can construct a positive payoff matrix. Then we can solve the 

zero-sum game. Another technique is taking the ratio of rows. Another technique is proposed in 

the study Sivri et al. (2019) taking the ratio of rows. After obtaining a positive payoff matrix, we 

can take the ratio of each term in the first row to its corresponding term in the second row. This 

technique decreases the number of rows by one. 

 

It is seen that the proposed algorithm has an ease of implementation for multi-objective problems. 

While it is quite applicable to use the weighted-sum method in two-objective MOLP problems, 

finding the appropriate combination of the weights between more than two objective functions 
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will be challenging. Accordingly, applying a zero-sum game among the distinct objective values 

would yield finding compromise rough solutions. 

 

 

4. NUMERICAL EXAMPLES 

 

Example 4.1. Consider a MOLPPRIC example modified from the study Sivri et al. (2019). Since 

the example in (Sivri et al., 2019) is a crisp LP problem, the coefficients of the objective functions 

and left-hand side parameters are prepared to provide symmetry. Accordingly, the lower 

approximation intervals are symmetric by one unit while the upper approximation intervals are 

symmetric by two units. Similarly, the crisp numbers on the right-hand side of the constraints are 

arranged to remain within the lower approximation interval. The upper approximation interval is 

designed by taking widths of five units from the left and right sides of the lower approximation 

interval.     

 

𝑀𝑎𝑥 𝑧1 = ([−2,0], [−3,1])𝑥1 + ([1,3], [0,4])𝑥2 

𝑀𝑎𝑥 𝑧2 = ([1,3], [0,4])𝑥1 + ([0,2], [−1,3])𝑥2 

 

s.t. 

 
([−2,0], [−3,1])𝑥1 + ([2,4], [1,5])𝑥2 ≤ ([20,25], [15,30]) 
([0,2], [−1,3])𝑥1 + ([2,4], [1,5])𝑥2 ≤ ([25,30], [20,35]) 
([3,5], [2,6])𝑥1 + ([2,4], [1,5])𝑥2 ≤ ([40,50], [35,55]) 

([2,4], [1,5])𝑥1 + ([0,2], [−1,3])𝑥2 ≤ ([25,35], [20,40]) 

𝑥1, 𝑥2 ≥ 0. 
 

The following phases are applied to find the rough optimal range of the MOLPRIC problem.  

 

First phase: The MOLPRIC problem is separated into two LPRIC problems according to the 

number of objective functions. Therefore, the first LPRIC problem is obtained by taking the 

objective function 𝑧1 and the constraints, which is labeled as LPRIC1. From the LPRIC1 problem, 

an LPIC1P problem is formed as 

 

𝑀𝑎𝑥 [−3,1]𝑥1 + [0,4]𝑥2 

 

s.t. 

 
[−3,1]𝑥1 + [1,5]𝑥2 ≤ [15,30] 
[−1,3]𝑥1 + [1,5]𝑥2 ≤ [20,35] 
[2,6]𝑥1 + [1,5]𝑥2 ≤ [35,55] 
[1,5]𝑥1 + [−1,3]𝑥2 ≤ [20,40] 
𝑥1, 𝑥2 ≥ 0 

 

and it has a possibly optimal range whereas another LPIC1S problem is  

 

𝑀𝑎𝑥[−2,0]𝑥1 + [1,3]𝑥2 

 

s.t. 

 
[−2,0]𝑥1 + [2,4]𝑥2 ≤ [20,25] 
[0,2]𝑥1 + [2,4]𝑥2 ≤ [25,30] 
[3,5]𝑥1 + [2,4]𝑥2 ≤ [40,50] 
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[2,4]𝑥1 + [0,2]𝑥2 ≤ [25,35] 
𝑥1, 𝑥2 ≥ 0 

 

and it has a surely optimal range. 

To find the possibly optimal range, the LPIC1P problem is divided into the following LP problems:   

 

𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡  

𝑀𝑎𝑥𝑧1
𝑙̅̅ ̅̅ = −3𝑥1 

 

s.t. 

 

𝑥1 + 5𝑥2 ≤ 15 

3𝑥1 + 5𝑥2 ≤ 20 

6𝑥1 + 5𝑥2 ≤ 35 

5𝑥1 + 3𝑥2 ≤ 20 

𝑥1, 𝑥2 ≥ 0 

 

and  

 

𝐿𝑃𝑃𝐵𝑒𝑠𝑡  

𝑀𝑎𝑥𝑧1
𝑢̅̅ ̅̅ = 𝑥1 + 4𝑥2 

 

s.t. 

 

−3𝑥1 + 𝑥2 ≤ 30 

−𝑥1 + 𝑥2 ≤ 35 

2𝑥1 + 𝑥2 ≤ 55 

𝑥1 − 𝑥2 ≤ 40 

𝑥1, 𝑥2 ≥ 0 

 

where 𝑧1
𝑙̅̅ ̅̅  and 𝑧1

𝑢̅̅ ̅̅  are the lower and upper bounds of the possibly optimal range of LPRIC1. By 

solving the 𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡 problem, the optimal solution is found as 𝑥1 = 0, 𝑥2 = 0 and optimal value 

is 𝑧1
𝑙̅̅ ̅̅ = 0. The optimal solution of 𝐿𝑃𝑃𝐵𝑒𝑠𝑡 problem is 𝑥1 = 6,667, 𝑥2 = 41,667 and optimal value 

is 𝑧1
𝑢̅̅ ̅̅ = 173,333.  

 

Similarly, for finding the surely optimal range, the LPIC1S problem is separated into two LP 

problems as follows:  

 

𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡  

𝑀𝑎𝑥𝑧1
𝑙 = −2𝑥1 + 𝑥2 

 

s.t. 

 

4𝑥2 ≤ 20 

2𝑥1 + 4𝑥2 ≤ 25 

5𝑥1 + 4𝑥2 ≤ 40 

4𝑥1 + 2𝑥2 ≤ 25 

𝑥1, 𝑥2 ≥ 0 

 

and  
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𝐿𝑃𝑆𝐵𝑒𝑠𝑡  

𝑀𝑎𝑥𝑧1
𝑢 = 3𝑥2 

s.t. 

 

−2𝑥1 + 2𝑥2 ≤ 25 

2𝑥2 ≤ 30 

3𝑥1 + 2𝑥2 ≤ 50 

2𝑥1 ≤ 35 

𝑥1, 𝑥2 ≥ 0 

 

where 𝑧1
𝑙 and 𝑧1

𝑢 are the lower and upper bounds of the surely optimal range of LPRIC1. By 

solving the 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡 problem, the optimal solution is found as 𝑥1 = 0, 𝑥2 = 5 and optimal value 

is 𝑧1
𝑙 = 5. The optimal solution of 𝐿𝑃𝑆𝐵𝑒𝑠𝑡 problem is 𝑥1 = 2,5 , 𝑥2 = 15 and optimal value is 

𝑧1
𝑢 = 45.  

 

The same process is iterated for the second LPRIC problem, labeled as LPRIC2, which is obtained 

taking the objective function 𝑧2 and the same constraints. Therefore, the optimal solution of  

• 𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡 problem is (0,0) and the optimal value is 0, 

• 𝐿𝑃𝑃𝐵𝑒𝑠𝑡 problem is (6,67 , 41,67) and the optimal value is 151,67, 

• 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡 problem is (6,25 , 0) and the optimal value is 6,25, 

• 𝐿𝑃𝑆𝐵𝑒𝑠𝑡 problem is (16,67 , 0) and the optimal value is 50.  

 

For both LPRIC problems, the completely and rather satisfactory solutions, and the rough optimal 

range are presented in Table 1. 

 

Second phase: Payoff matrices are constructed to determine weights for finding single-objective 

LP problems. One of these payoff matrices is shown in detail below.  

 

The first payoff matrix is constructed taking the optimal solutions of 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡 problems and their 

objective function values. The weights of 𝑧1
𝑙  and 𝑧2

𝑙  are found by solving the zero-sum game. The 

payoff matrix and the weights are shown in Table 2. 

 

Table 1. Results for LPRIC Problems of the MOLPRIC Problem 

 

Results for LPRIC1 

Possibly optimal range [𝑧1
𝑙̅̅ ̅̅ , 𝑧1

𝑢̅̅ ̅̅ ] = [0 , 173,33] 

Surely optimal range [𝑧1
𝑙, 𝑧1

𝑢] = [5,45] 

Rough optimal range ([𝑧1
𝑙, 𝑧1

𝑢] , [𝑧1
𝑙̅̅ ̅̅ , 𝑧1

𝑢̅̅ ̅̅ ]) = ([5,45], [0,173.33]) 

Rather satisfactory solutions (0,0) (6,67 , 41,67) 

Completely satisfactory solutions (0,5) (2,5 , 15) 

Results for LPRIC2 

Possibly optimal range [𝑧2
𝑙̅̅ ̅̅ , 𝑧2

𝑢̅̅ ̅̅ ] = [0 , 151,67] 

Surely optimal range [𝑧2
𝑙, 𝑧2

𝑢] = [6,25 , 50] 

Rough optimal range ([𝑧2
𝑙, 𝑧2

𝑢] , [𝑧2
𝑙̅̅ ̅̅ , 𝑧2

𝑢̅̅ ̅̅ ]) = ([6,25 , 50], [0 , 151,67]) 

Rather satisfactory solutions (0,0) (6,67 , 41,67) 

Completely satisfactory solutions (6,25 , 0) (16,67 , 0) 

 

  



G. Temelcan Ergenecosar   Solution of A Multi-Objective Linear Programming Problem Having 
Rough Interval Coefficients Using Zero-Sum Game 

108 

Table 2. The Payoff Matrix of Lower Bounds of Surely Optimal Range 

 

 𝑧1
𝑙  𝑧2

𝑙  

(0,5) 5 0 
(6,25 , 0) −12,5 6,25 
weights 0,26 0,74 

 

The weights are used to find the lower bound of the surely optimal solution of the MOLPRIC 

problem. Therefore, the objective function of the following LP problem is constructed by 

multiplying the weights by the corresponding objective functions, and the constraints are taken 

from the 𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡 problem: 

 

𝑚𝑎𝑥𝑧𝑙 = 0,26(−2𝑥1 + 𝑥2) + 0,74𝑥1 

 

s.t. 

 

4𝑥2 ≤ 20 
2𝑥1 + 4𝑥2 ≤ 25 
5𝑥1 + 4𝑥2 ≤ 40 
4𝑥1 + 2𝑥2 ≤ 25 
𝑥1, 𝑥2 ≥ 0 
 

is solved and the completely satisfactory solution is found as (𝑥1, 𝑥2) = (4,167 , 4,167) and lower 

bound of surely optimal range is 𝑧𝑙∗ = 2.  

 

Similarly, the other payoff matrix is constructed taking the optimal solutions of 𝐿𝑃𝑆𝐵𝑒𝑠𝑡 problems 

and their objective function values. The weights of 𝑧1
𝑢 and 𝑧2

𝑢 are found via zero-sum game. This 

payoff matrix and the weights are shown in Table 3. 

 

A single-objective LP problem is constructed using the weights in the objective function and taking 

the same constraints of 𝐿𝑃𝑆𝐵𝑒𝑠𝑡 problems. As a result, the completely satisfactory solution is 
(𝑥1, 𝑥2) = (6,67 , 15)and the upper bound of the surely optimal range is 48,9.  

 

Table 3. The Payoff Matrix of The Upper Bound of The Surely Optimal Range 

 

 𝑧1
𝑢 𝑧2

𝑢 

(2,5 , 15) 45 37,5 
(16,67 , 0) 0 50 

weights 0,22 0,78 
 

Since the rather satisfactory solution (0,0) is identical, the weights of 𝑧
𝑢
 and 𝑧

𝑢
 are found 0, and 

thus the lower bound of the possibly optimal range is 0. Moreover, the other rather satisfactory 

solution is (6,67 , 41,67), and it is identical, their values in the objective functions 𝑧1
𝑢

 and 𝑧2
𝑢

 are 

the same. Thus, whichever has the higher objective function value, that function takes the weight 

1, that is, the weight of 𝑧2
𝑢

 is 1. As a result, the rather satisfactory solution is (𝑥1, 𝑥2) =
(6,67 , 41,67) and the upper bound of the possibly optimal range is 151.67.  

 

Consequently, the compromise rough range of the MOLPRIC problem is found as 

([𝑧1
𝑙∗, 𝑧1

𝑢∗] , [𝑧1
𝑙∗̅̅ ̅̅ ̅, 𝑧1

𝑢∗̅̅ ̅̅ ̅]) = ([2 , 48,9], [0 , 151,67]). The completely satisfactory solutions are 

(4,167 , 4,167) and (6,67 , 15) whereas the rather satisfactory solutions are (0,0) and 
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(6,67 , 41,67). It is seen from the comparison with the study (Sivri et al., 2019) that all the crisp 

compromise solutions they found are contained in the lower approximation of the compromise 

rough range found above. It can also be expressed that the width of the ranges constructed at the 

modification determines the width of the possibly optimal range of the rough range.   

 

Example 4.2. Consider the MOLPPRIC example solved in the study (Garg & Rizk-Allah, 2021):   

 

𝑀𝑎𝑥 𝑧1 = ([1,3], [0,5])𝑥1 + ([1,2], [1,3])𝑥2 
𝑀𝑎𝑥 𝑧2 = ([3,5], [2,6])𝑥1 + ([2,6], [1,7])𝑥2 

 
s.t. 

 
([2,3], [1,3])𝑥1 + ([2,4], [1,5])𝑥2 ≤ ([7,9], [5,10]) 
([2,3], [1,5])𝑥1 + ([1,2], [0,6])𝑥2 ≤ ([5,8], [3,9]) 
𝑥1, 𝑥2 ≥ 0 
 

In the first phase, the MOLPRIC problem is divided into two LPRIC problems, and these LPRIC 

problems are solved to find the possibly and surely optimal solutions. Table 4 presents the possibly 

and surely optimal solutions for each LPRIC problem. 

 

According to Table 4, the completely satisfactory solutions of LPRIC problems 1 and 2 are 

(1,1), (3,5 , 1) and (1,667 , 0), (0 , 4,5), respectively. On the other hand, the rather satisfactory 

solutions of LPRIC problems 1 and 2 are found (0 , 0,5), (9,1) and (0,6 , 0), (0,10) and the first 

phase is finalized.  

 

Table 4. The Possibly and Surely Optimal Solutions of Distinct LPRIC Problems 

 

LPRIC problem 1 

Possibly optimal solution 

𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡: 𝑧 = 𝑥2 𝐿𝑃𝑃𝐵𝑒𝑠𝑡: 𝑧 = 5𝑥1 + 3𝑥2 

𝑥1 = 0  𝑥2 = 0,5 𝑥1 = 9  𝑥2 = 1 

Surely optimal solution 

𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡: 𝑧 = 𝑥1 + 𝑥2 𝐿𝑃𝑆𝐵𝑒𝑠𝑡: 𝑧 = 3𝑥1 + 2𝑥2 

𝑥1 = 1  𝑥2 = 1 𝑥1 = 3,5  𝑥2 = 1 

LPRIC problem 2 

Possibly optimal solution 

𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡: 𝑧 = 2𝑥1 + 𝑥2 𝐿𝑃𝑃𝐵𝑒𝑠𝑡: 𝑧 = 6𝑥1 + 7𝑥2 

𝑥1 = 0,6  𝑥2 = 0 𝑥1 = 0  𝑥2 = 10 

Surely optimal solution 

𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡: 𝑧 = 3𝑥1 + 2𝑥2 𝐿𝑃𝑆𝐵𝑒𝑠𝑡: 𝑧 = 5𝑥1 + 6𝑥2 

𝑥1 = 1,667 𝑥2 = 0 𝑥1 = 0  𝑥2 = 4,5 

 

For the second phase, the optimal solutions of each LP problem and their objective function values 

are taken in the cells of payoff matrices. These payoff matrices and their weights are given in  

Table 5. 
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Table 5. Payoff Matrices and The Weights 

 

𝐿𝑃𝑆𝑊𝑜𝑟𝑠𝑡 𝑥1 + 𝑥2 3𝑥1 + 2𝑥2    𝐿𝑃𝑆𝐵𝑒𝑠𝑡 3𝑥1 + 2𝑥2 5𝑥1 + 6𝑥2 

(1,1) 2 5    (3,5 , 1) 12,5 23,5 

(1,667 , 0) 1,667 4    (0 , 4,5) 9 27 

Weights  1 0    Weights 1 0 

         

𝐿𝑃𝑃𝑊𝑜𝑟𝑠𝑡 𝑥2 2𝑥1 + 𝑥2    𝐿𝑃𝑃𝐵𝑒𝑠𝑡 5𝑥1 + 3𝑥2 6𝑥1 + 7𝑥2 

(0 , 0,5) 0,5 0,5    (9,1) 48 61 

(0,6 , 0) 0 1,2     (0,10) 30 70 
Weights  1 0    Weights  1 0 

 

As a result, a compromise rough optimal range of the MOLPRIC problem can be found as 

([𝑧1
𝑙∗, 𝑧1

𝑢∗] , [𝑧1
𝑙∗̅̅ ̅̅ ̅, 𝑧1

𝑢∗̅̅ ̅̅ ̅]) = ([2,12.5], [0.5,48]) where the completely satisfactory solutions are 

(3,5 , 1) and (1,1) and the rather satisfactory solutions are (9,1) and (0 , 0,5). Since the study 

(Garg and Rizk-Allah, 2021) used the weighted sum method, they suggested a set of compromise 

solutions. However, the proposed algorithm produced a solution that matches one of their 

solutions.  For the comparison, it can be put forward that constructing different payoff matrix 

structures such as taking ratios of the rows or normalization of the values generates different 

compromise solutions. 

 

5. CONCLUSION 

 

The algorithm proposed in this paper helps to find a set of compromise solutions for the multi-

objective linear programming with rough interval coefficients (MOLPRIC) problem. To find a 

compromise solution, a two-phased algorithm is constructed. In the first phase, the MOLPRIC 

problem is separated into single-objective LPRIC problems under the number of objective 

functions. The rough optimal solution of each LPRIC problem, if exists, is found by applying the 

method proposed in (Hamzehee et al., 2014). The second phase works using the game theory 

approach. Here, the approach proposed in (Temelcan, 2023) is used to find the rough optimal 

solution by applying a zero-sum game. Since there is a MOLPRIC problem, it would be possible 

to determine the players (objective functions) and their strategies (objective function values). The 

solution of the game gives the weight of each objective function, and thus the weighted sum 

method is used for determining the trade-offs between the objective functions.  

 

The advantage of the proposed algorithm can be presented when the number of objective functions 

increases. It is quite applicable to use the weighted-sum method in two-objective MOLP problems, 

finding the appropriate combination of the weights between more than two objective functions 

will be difficult. In this case, the proposed algorithm provides an easy implementation for finding 

a compromise solution to the MOLPRIC problems having more than two objective functions. 

 

Limitations of the study can be given as the difficulty of finding the solution in the case of negative 

or mixed rough intervals. Thus, searching different algorithms to solve any MOLPRIC problems 

and comparing their results can be a subject for further research. Application of the proposed 

algorithm to real-world problems can also lead to further considerations. 
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