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ABSTRACT Coronavirus can be transmitted through the things that people carry or the things where it sticks
to after being spread by the sufferer. Instead, various preventive measures have been carried out. We create a
new mathematical model that represents Coronavirus that exists in non-living objects, susceptible, and infected
subpopulations interaction by considering the Coronavirus transmission through non-living objects caused by
susceptible and infected subpopulations along with its prevention to characterize the dynamics of Coronavirus
transmission in the population under those conditions. One disease-free and two infection equilibrium points
along with their local stability and coexistence are identified. Global stability of the disease-free equilibria
and basic reproduction number are also investigated. Changes in susceptible-Coronavirus interaction rate
generate Fold and Hopf bifurcations which represent the emergence of a cycle and the collision of two
infection equilibrium points respectively. Catastrophe generated by the collision between an attractor and a
repeller is found around a Generalized Hopf bifurcation point by changing susceptible-Coronavirus interaction
rate and increasing rate of Coronavirus originating from infected subpopulation. It represents a momentary
unpredictable dynamics as the effect of Coronavirus addition and infection. Non-chaotic strange attractors
that represent complex but still predictable dynamics are also triggered by Generalized Hopf bifurcation
when the susceptible-Coronavirus interaction rate and one of the following parameters, i.e. increasing rate of
Coronavirus originating from infected subpopulation or infected subpopulation recovery rate vary.
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INTRODUCTION

Covid-19 case was reported on the 31st of December 2019 in China
(He et al. 2020; Zu et al. 2020). Covid-19 is a dangerous disease
caused by Coronavirus (Pedersen and Ho 2020). Globally, as of
April 23, 2023, there have been 764 million Covid-19 incidences
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which consist of 6 million death cases (WHO 2020). The most
common form of Covid-19 transmission is direct contact trans-
mission. The transmission occurs when interactions between an
infected person and a susceptible person such as physical contact
and contagion through air droplets exist. Things or non-living
media exposed to the virus are also included as media of Covid-19
transmission (Ramesh et al. 2020).

There are several experiments have been carried out to analyze
the lifecycle of Coronavirus as follows (van Doremalen et al. 2020).
In aerosols, Coronavirus can survive for 3 hours. Coronavirus
can not survive on copper after 4 hours. No viable Coronavirus
was found on carton after 24 hours. On plastic and stainless steel,
Coronavirus can survive better until 72 hours. Coronavirus can
survive on different surfaces of various materials, such as paper,
glass, PVC, metal, ceramic, and teflon until 5 days (Carraturo et al.
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2020). It provides critical information about the stability of Covid-
19 and it is still possible for the virus to infect people after touching
contaminated non-living media.

Asymptomatic and presymptomatic conditions also become an
important factor in the Covid-19 spread. These silent carrier fac-
tors cause a dangerous impendence to Covid-19 treatment efforts
for the precaution and countermeasures of Covid-19 since it is not
detected (Obi and Odoh 2021). Even though the pandemic has
been overcome in several countries, specific therapeutics and vac-
cines have not yet been found, while continuous spread by silent
carrier factors could cause the incidence of these cases to increase
again. Transmission of the silent carriers could be minimized by
using face masks, maintaining social distancing, hand washing
and sanitizing regularly, and avoiding crowds of people (Vermund
and Pitzer 2021; for Disease Prevention and Control 2020; Gandhi
et al. 2020). These imply that the transmission of Covid-19 also
considers susceptible subpopulations and Coronavirus eradication
efforts.

Mathematical modeling is an important tool to characterize and
predict dynamics occurring in a system. Some researchers used it
in many applications as follows. In the field of Biology, analysis
of the predator-prey mathematical model reveals the extinction of
prey or predator in a population (Mondal et al. 2024), the potential
for environmental or human disturbance effects (Sk et al. 2023), the
effects of species memory on the system (Thirthar et al. 2023), and
the effects of additional food for the predator (Thirthar 2023). In
the other fields, i.e. Economics and Environment, mathematical
modeling is used to determine a strategy of inventory management
in order to reduce global warming and carbon emission (Pakhira
et al. 2024).

Until now, many researchers have constructed numerous mo-
dels for Covid-19 by using the concepts of differential equations
systems, such as the SIR mathematical model to characterize Covid-
19 transmission. A mathematical model of Coronavirus infection
in a population has been constructed (AlQadi and Bani-Yaghoub
2022). The research studies the interaction between susceptible,
infected, and recovery subpopulations, but it has not considered
the infection from Coronavirus that exists on non-living objects
and its prevention. Another research is also conducted (Din and
Algehyne 2021). They develop a mathematical model of Coron-
avirus transmission by considering the prevention of Coronavirus
transmission. However, it still has not considered the infection
from Coronavirus that exists on non-living objects. Other research
has also been conducted by (Yang and Wang 2020) that reveals
the effect of exposed and Coronavirus subpopulation addition
to the system. The research has considered the infection from
Coronavirus that exists on non-living objects. Meanwhile, it has
not considered susceptible subpopulation as one of the Coron-
avirus carriers. It also has not considered the prevention of the
infection from Coronavirus that exists on non-living objects.

Based on the previous studies that have not considered these
three following factors together, i.e. the infection from Coronavirus
that exists on non-living objects, susceptible subpopulation as one
of the Coronavirus carriers, and the prevention of the infection
from Coronavirus that exists on non-living objects, we create and
analyze a new mathematical model, i.e. nonlinear ordinary dif-
ferential equations system by considering those three factors to
characterize the dynamics under those conditions so that the con-
ditions of some important phenomena that should be reached or
avoided can be revealed and become a medical recommendation
to overcome Covid-19 in the population.

This research is conducted by explaining the motivation, state of
the art, and novelty of this article in the introduction, constructing
the mathematical model, analyzing the positivity, and bounded-
ness of the model solution, equilibrium points, basic reproduction
number, coexistence and local stability of the equilibrium points,
and the bifurcations which consist of some phenomena such as
strange attractors and catastrophe dynamics. Characterization of
Covid-19 transmission shown by the phenomena becomes the indi-
cator to predict the dynamics in the population as the parameters
vary.

MATHEMATICAL MODEL

Development of the mathematical model is started by identifying
the subpopulations that interact with each other in the popula-
tion along with the assumption to limit the scope of this research.
Based on the conditions which have been explained, there are three
subpopulations which interact with each other in the population,
i.e. Coronavirus that exists in non-living objects, susceptible, and
infected subpopulations. In this research, we assume that the eradi-
cation of Coronavirus that exists in non-living objects is ignored
and an increase in the number of Coronavirus that exists in non-
living objects due to infected subpopulation has the same value as
the number of infectious units of the Coronavirus enumerated by
a plaque assay (Sender et al. 2021).

After identifying the subpopulations that interact with each
other in the population along with the assumption, we define
the subpopulations as the variables in the mathematical model.
Definition of the variables are written in the Table 1. V, S, and I
denote subpopulations and t denotes time so that they are non-
negative.

■ Table 1 Variables in the Model

Variable Definition Initial Value Unit

V Coronavirus
subpopulation
attached to non-
living media

Estimation virion

S Susceptible sub-
population

Estimation person

I Infected subpopu-
lation

Estimation person

t Time Estimation day

Every subpopulation in the population which is defined as the
variable in the mathematical model interacts with each other. The
level of each interaction is defined as the parameters in the mathe-
matical model. Definition of the parameters are written in the Table
2. The initial value for several parameters were set in accordance
with the previous research, while the initial values for several other
parameters were assumed because the data had not been found
either from primary sources, or from the previous research. All of
the parameters have a positive value. We define d as the difference
between infection of Coronavirus that exists in non-living objects
and the prevention rate of the infection from Coronavirus that
exists on non-living objects, i.e. d = p − q. The parameter d is
possible to be negative if the infection of Coronavirus that exists in
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■ Table 2 Parameters in the Model

Parameter Definition Value Unit Reference

a Coronavirus increasing rate
from infected subpopulation

100 virion per day (Sender et al. 2021)

b Coronavirus death rate 1 virion per day (Yang and Wang 2020)

c Susceptible subpopulation
natural birth rate

10.7 person per day (Din and Algehyne 2021)

p Infection of Coronavirus that
exists in non-living objects
rate

1 virion per day Assumption

q Prevention rate of Corona-
virus that exists in non-living
infection

0.5 virion per day Assumption

m Coronavirus increasing rate
from suspected subpopula-
tion

0.5 virion per day Assumption

e Susceptible subpopulation
natural death rate

0.0062 per day Assumption

f Infected subpopulation re-
covery rate

1 per day (AlQadi and Bani-Yaghoub 2022)

g Susceptible-infected interac-
tion rate

0.0707 per day (Din and Algehyne 2021)

h Infected subpopulation
death rate due to Corona-
virus infection

0.02 person per day (Din and Algehyne 2021)

non-living objects rate (p) is less than its prevention rate (q).
According to the model variables and parameters that have

been written, we illustrate the interaction between the variables
with the parameters as the rate in Figure 1.
According to the transfer diagram in Figure 1, we create a system of
nonlinear ordinary differential equations as a mathematical model
that represents the interaction, i.e.

dV
dt

= aI − bV + mS (1)

dS
dt

= c − dSV − eS + f I − gSI (2)

dI
dt

= dSV + gSI − f I − hI (3)

Equation (1) represents the rate of change of the virus popula-
tion with respect to time which is denoted by aI as the coronavirus
addition from infected subpopulation, because they sneeze, or the
other reason, bV as coronavirus death, and mS as the coronavirus
addition from suspected subpopulation because they carried.

Equation (2) represents the rate of change in the susceptible
population with respect to time. The first term is the increase
of susceptible population caused by the susceptible population’s
natural birth by c. The second term is the reduction of the suscep-
tible population due to its interaction with the virus, in which d

Figure 1 Transfer diagram of the interaction between Coron-
avirus, susceptible, and infected subpopulations.

denotes the interaction rate. The third term is the reduction of sus-
ceptible population caused by the susceptible population’s natural
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death with e as its rate. The fourth term is the increase of suscepti-
ble population caused by the infected population recovery where
f represents the rate. The fifth term is reducing the susceptible
population due to its interaction with the infected population with
g as its rate.

Equation (3) represents the rate of change in the infected popu-
lation with respect to time. The first term is the increase in the
infected population due to the interaction between the susceptible
population and the virus where d denotes the interaction rate. The
second term is the increase in the infected population caused by
its interaction with the susceptible population by g. The third term
is the reduction of the infected population caused by the infected
population recovery, where f represents the rate. The fourth term
is the reduction of the infected population caused by the infected
population death due to Coronavirus with h as its rate.

POSITIVITY AND BOUNDEDNESS OF SOLUTION

Solution of the model must be positive in order to get the biologi-
cal interpretation (Wiraya et al. 2022). The following theorem
guarantees the positivity of the solution.
Theorem 1. The solution set {V, S, I} of the model with non-
negative initial condition V(0) = V0, S(0) = S0, and I(0) = I0
remain non-negative for all time t > 0.
Proof. For the non-negative initial condition V(0) = V0, S(0) = S0,
and I(0) = I0, it is clear from the Equation (1) that dV

dt + bV(t) ≥
0, so that d

dt

[
V(t)ebt

]
≥ 0. By integrating the last inequality,

we obtain V(t) ≥ V(0)e−bt > 0 for all t > 0. Further, from
Equation (2), we get dS

dt + [dV(t) + e + gI(t)]S(t) ≥ 0, so that

S(t) ≥ S(0)e−(et+d
∫ t

0 V(τ)dτ+g
∫ t

0 I(τ)dτ) > 0 for all t > 0. Similarly,
it can be shown that I(t) > 0 for all t > 0.

Besides the positivity, the solution of the model must also be
bounded, so that it has a biological meaning (Wiraya et al. 2022).
Boundedness of the solution is guaranteed by the following theo-
rem.
Theorem 2. Every solution of the model initiated in R3

+ is
bounded.
Proof. By subtracting Equation (2) and Equation (3), we have
d
dt [S(t) + I(t)] = c − eS − hI ≤ c − p[S(t) + I(t)], where p =

min{e, h}. Therefore S(t) + I(t) ≤ c
p +

[
S(0) + I(0)− c

p

]
e−pt.

Hence, S(t)+ I(t) → c
p as t → ∞. Thus, S(t) and I(t) are bounded.

Furthermore, from Equation (1), we get dV
dt = aI − bV + mS ≤

aI + mS ≤ q[S(t) + I(t)], where q = max{a, m}. Hence, V(t) is
bounded since S(t) and I(t) are bounded. Therefore, V(t), S(t),
and I(t) are bounded in R3

+.

EQUILIBRIUM POINTS

The equilibrium point represents a steady state condition of
each subpopulation number over time. Consider a2 = gb2eh,
a1 = (dbh − ( f + h))(ae − mh) − gcb(ae + mh), a0 = gac2m −
(( f + h)mc + dac)(ae − mh). The equilibrium point of the model
is explained in the following theorem.
Theorem 3. Equilibrium points of the system are

E1 =

(
V∗

1 ,
ac − bhV∗

1
ae − mh

,
ebV∗

1 − mc
ae − mh

)
and

E2 =

(
V∗

2 ,
ac − bhV∗

2
ae − mh

,
ebV∗

2 − mc
ae − mh

)
,

where

V∗
1 =

−a1 +
√

a2
1 − 4a2a0

2a2

and

V∗
2 =

−a1 −
√

a2
1 − 4a2a0

2a2

If V∗
1 = V∗

2 = mc
eb , then there is one disease-free equilibria, i.e.

E1 = E2 = E0 = (mc
eb , c

e , 0). On the other condition, the system has
two infection equilibrium points, i.e. E1 and E2.
Proof. The equilibrium points E∗ are solutions of the model when
Equation (1) = Equation (2) = Equation (3) = 0 (Wiggins 2003;
Wiraya and Adi-Kusumo 2023), i.e.

aI − bV + mS = 0 (4)

c − dSV − eS + f I − gSI = 0 (5)

dSV + gSI − f I − hI = 0 (6)

By adding Equation (5) and Equation (6), we found c− eS− hI = 0
which is equivalent to I∗ = c−eS

h . By substituting I∗∗ to Equation
(4), we obtain S∗ = ac−bhV∗

ae−mh . By substituting S∗ to I∗∗, we found
I∗ = ebV∗−mc

ae−mh . By substituting S∗ and I∗ to Equation (6), we obtain
a quadratic equation

a2V2 + a1V + a0 = 0. (7)

Thus, we found that V∗
i for i = 1, 2 are the solutions of

the quadratic equation, i.e. V∗
1 =

−a1+
√

a2
1−4a2a0

2a2
and V∗

2 =

−a1−
√

a2
1−4a2a0

2a2
. Hence, S∗

i =
ac−bhV∗

i
ae−mh and I∗i =

ebV∗
i −mc

ae−mh , for
i = 1, 2. Therefore, the equilibrium points are

E1 =

(
V∗

1 ,
ac − bhV∗

1
ae − mh

,
ebV∗

1 − mc
ae − mh

)
and

E2 =

(
V∗

2 ,
ac − bhV∗

2
ae − mh

,
ebV∗

2 − mc
ae − mh

)
.

Consider V∗
1 = V∗

2 = mc
eb , then we get ebV∗

1 −mc
ae−mh =

ebV∗
2 −mc

ae−mh = 0

and ac−bhV1∗
ae−mh = ac−bhV1∗

ae−mh = c
e . Hence, we obtain E1 = E2 =

E0 = (mc
eb , c

e , 0). It is a disease-free equilibria, because the infected
subpopulation does not exist. Other than that condition, there are
two infection equilibrium points, i.e. E1 and E2 since the infected
subpopulation exists.

COEXISTENCE OF EQUILIBRIUM POINTS

The solution of the model must be real and positive in order to
satisfy the existence of the equilibrium points. We see that a2 > 0.
We get different solutions depending on the signs of a1 and a0 that
summarized in the following theorem.
Theorem 4. Consider one of the following conditions is fullfiled: i.
ae > mh and mc

eb ≤ V∗ ≤ ac
bh ; ii. ae < mh and ac

bh ≤ V∗ ≤ mc
eb . The

System : a) has a unique equilibria if a0 < 0; b) has two equilibrium
if a0 > 0 and a1 < 0; c) has no equilibria if a0 > 0 and a1 > 0.
Proof. Consider the condition i or ii is fulfilled. Thus, S∗ and I∗

are non-negative. a) Consider a0 < 0. We found that Equation (7)
will have one positive and one negative value of V∗. Hence, the
model has a unique equilibria. ii. Consider a0 > 0 and a1 < 0.
Thus, Equation (7) will have two positive values of V∗. Hence,
the model has two equilibrium points. iii. Consider a0 > 0 and
a1 > 0. Hence, Equation (7) will have two negative values of V∗.
Therefore, the model has no equilibria.
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BASIC REPRODUCTION NUMBER

Transmission of a disease is determined by basic reproduction
number. In this case, it becomes a parameter used to measure the
potential of Coronavirus infection in a population.
Theorem 5. Basic reproduction number of the system is R0 =
1
2 (U +

√
U2 − 4W), where U =

c(bg−aq)
be( f+h) and W = − ap

b .
Proof. R0 is calculated by using the Next Generation Matrix
method (Castillo-Garsow and Castillo-Chavez 2020). R0 is in-
fluenced by Equation (1) and Equation (3) because the Coronavirus
infection originate from those equations. The positive and nega-
tive terms in those equations are grouped so that the following
matrices are obtained.

µ =

 aI + mS

pSV + gSI

 , ψ =

 bV

qSV + f I + hI

 .

Jacobian matrix of µ and ψ evaluated on E0 are written as fol-
lows.

F =

 0 a

pc
e

gc
e

 , G =

 b 0

qc
e f + h

 .

Hence, G−1 =

 1
b 0

− qc
be( f+h)

1
f+h

.

The Next Generation Matrix is

M = FG−1 =

 − aqc
be( f+h)

a
f+h

pce( f+h)−gqc2

be2( f+h)
gc

e( f+h)

 .

The characteristic equation of M is

λ2 + Uλ + W = 0, (8)

where λ is the eigen value of M, U =
c(bg−aq)
be( f+h) , and W = − ap

b .
Therefore, the eigenvalue of M are

λ1.2 =
1
2
(U ±

√
U2 − 4W).

Since the basic reproduction number is the largest eigenvalue (spec-
tral radius) of M, we found that R0 = 1

2 (U +
√

U2 − 4W).

LOCAL STABILITY ANALYSIS

Local stability of the equilibrium points represents the conver-
gence of the number of Coronavirus, susceptible, and infected
subpopulations when the initial conditions of them are around the
equilibrium points. We predict the dynamic of each subpopula-
tion starting around the equilibrium points by analyzing the local
stability using Routh-Hurwitz criteria (Perko 2001).

Consider A = gI∗i + dV∗
i + b + e + f + h, B = g2S∗

i + dgS∗
i V∗

i +
(bg + f g + gh)I∗i + dmS∗

i + (b + h)dV∗
i + be + b f + bh + e f + eh −

adS∗
i − f gS∗

i , and C = (adg + bg2 + dgm)S∗
i + bdgS∗

i V∗
i + bg( f +

h)I∗i + dhmS∗
i + bdhV∗

i + be( f + h)− adgS∗
i I∗i − adeS∗

i − bg f S∗
i for

i = 1, 2. Local stability of the equilibrium points E∗ is stated in the
following theorem.
Theorem 6. The equilibrium points E∗

i for i = 1, 2 are locally
asymptotically stable if A > 0, C > 0, and AB − C > 0.

Proof. To determine the local stability of equilibrium points E∗
i for

i = 1, 2, we compute the Jacobian matrix given by

JE∗
i
=


−b m a

−dS∗
i −dV∗

i − e − gI∗i f − gS∗
i

dS∗
i dV∗

i + gS∗
i −( f + h)

 .

Consider λ is the eigenvalue of JE∗
i
. The characteristic equation of

JE∗
i

is
λ3 + Aλ2 + Bλ + C = 0. (9)

Based on the characteristic equation, we found that the equilibrium
points E∗

i is locally asymptotically stable if A > 0, C > 0, and
AB − C > 0 by using Routh-Hurwitz criteria.

We especially investigate the conditions that make the popu-
lation free from Covid-19 which closely related to the disease-
free equilibria stability condition. Local stability conditions of
the disease-free equilibria are limited to the initial conditions of
the subpopulations which are around the disease-free equilibria.
Global stability conditions of the disease-free equilibria represent
the criteria that should be fulfilled in order to make the population
free from Covid-19 for any initial condition of the subpopulations.

GLOBAL STABILITY ANALYSIS

Global stability of the equilibrium points illustrates the conver-
gence situation of the number of Coronavirus, susceptible, and
infected subpopulations for any initial conditions of them. We
especially analyze the global stabilty of E0 =

(mc
eb , c

e , 0
)
, i.e. the

disease-free equilibria to obtain the conditions that make the popu-
lation free from Covid-19 for any initial condition of the subpopu-
lations. We analyze the dynamic of each subpopulation which
can be started around or far from E0 by using Lyapunov function
(LaSalle and Lefschetz 1961). Global stability of the equilibrium
points E0 is stated in the following theorem.
Theorem 7. The disease-free equilibria E0 is globally asymtotically
stable if p ≤ q, g ≤ e, and c ≤ f + h.
Proof. We choose a function as follows.

L = Ie(S+I).

Hence, L and its first derivative is a continuous function on R3
+.

For every E = (V, S, I) ∈ R3
+ and E ̸= E0, we obtain L(E) > 0. If

E = E0, then L(E0) = 0. By using Equation (1), (2), and (3), the
first derivative of L with respect to t is stated as follows.

dL
dt

=
dI
dt

e(S+I) + Ie(S+I)
(

dS
dt

+
dI
dt

)
= e(S+I)

[
dSV + (g − e)SI − ( f + h − c)I − hI2

]
,

where d = p − q by definition. Thus, dL
dt ≤ 0 if p ≤ q, g ≤ e, and

c ≤ f + h.

BIFURCATION ANALYSIS

We vary some parameters of the model, i.e. susceptible-
Coronavirus interaction rate (d), susceptible-infected interaction
rate (g), infected subpopulation recovery rate ( f ), and Coronavirus
increasing rate from infected subpopulation (a) and investigate its
effect on the change of the number of equilibria and its stability to
characterize the dynamics of Covid-19 transmission (Kuznetsov
1998).
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Codimension-one Bifurcation
Fold and Hopf bifurcations occur when we make a E2 as
susceptible-Coronavirus interaction rate (d) decreases. The exis-
tence of Fold and Hopf bifurcations is presented analytically.

The existence of the Fold Bifurcation is written in the following
theorem.
Theorem 8. Fold bifurcation occurs if d =

bg[( f−g)S∗
1−( f+h)I∗1 −( f+h)

[a(g−e)+m(g+h)]S∗
1+(bV∗

1 −aI∗1 )gS∗
1+bhV∗

1
.

Proof. According to the theory in (Bosi and Desmarchelier
2019) and the characteristic Equation (9), we found that a
Fold bifurcation occurs if −C = 0. It is equivalent with

d =
bg[( f−g)S∗

1−( f+h)I∗1 −( f+h)
[a(g−e)+m(g+h)]S∗

1+(bV∗
1 −aI∗1 )gS∗

1+bhV∗
1

.
The existence of the Non-neutral Hopf bifurcation is stated in

the following theorem.
Theorem 9. Non-neutral Hopf bifurcation occurs if the value
of d satisfies the quadratic equation Pd2 + Qd + R = 0 where
P = (a − m)S∗

1V∗
1 − (b + h)V∗2

1 − gS∗
1V∗2

1 , Q = (ag + gm − bm +

ab − em − f m + f a + ah)S∗
1 − (g2 + eg)S∗

1V∗
1 − (2b f + e f + b2 +

2bh + f h + h2)V∗
1 − mgS∗

1 I∗1 − g2S∗
1V∗

1 I∗1 − (2bg + f g + 2gh)V∗
1 I∗1 ,

and R = (eg2 − e f g + f g2 − f g + hg2 − f hg)S∗
1 + (bg2 + f g2 +

g2h + 2beg + 2ge f + 2geh + b2g + 2b f g + 2bgh + f 2g + 2 f gh +
gh2)I∗1 + (g3 − f g2)S∗

1 I∗1 + b2(e + f + h) + 2be f + 2beh + e2(b +

f + h) + (b + e)( f 2 + h2) + 2b f h + 2e f h.
Proof. According to the theory in (Bosi and Desmarchelier 2019)
and the characteristic Equation (9), we found that Hopf bifur-
cations occur if −C = B(−A). It is fulfilled if the value of d
satisfies the quadratic equation Pd2 + Qd + R = 0 where P =

(a − m)S∗
1V∗

1 − (b + h)V∗2

1 − gS∗
1V∗2

1 , Q = (ag + gm − bm + ab −
em − f m + f a + ah)S∗

1 − (g2 + eg)S∗
1V∗

1 − (2b f + e f + b2 + 2bh +

f h + h2)V∗
1 − mgS∗

1 I∗1 − g2S∗
1V∗

1 I∗1 − (2bg + f g + 2gh)V∗
1 I∗1 , and

R = (eg2 − e f g + f g2 − f g + hg2 − f hg)S∗
1 + (bg2 + f g2 + g2h +

2beg + 2ge f + 2geh + b2g + 2b f g + 2bgh + f 2g + 2 f gh + gh2)I∗1 +

(g3 − f g2)S∗
1 I∗1 + b2(e+ f + h)+ 2be f + 2beh+ e2(b+ f + h)+ (b+

e)( f 2 + h2) + 2b f h + 2e f h.

Codimension-two Bifurcation
Codimension-two bifurcation is obtained through continuation of
bifurcation point related to bifurcation value (Verhulst 1996) that
found in codimension-one bifurcation. Some Generalized Hopf,
Bogdanov-Takens, or Zero Hopf bifurcations are found when we
make a continuation of the non-neutral Hopf bifurcation point as
susceptible-Coronavirus interaction rate (d) and one of the follow-
ing parameter, i.e. susceptible-infected interaction rate (g), infected
subpopulation recovery rate ( f ), or Coronavirus increasing rate
from infected subpopulation (a) vary. The existence of Bogdanov-
Takens and Zero hopf bifurcations are explained analytically, but
the existence of Generalized Hopf bifurcations are shown numeri-
cally, because of its complexity.

The existence of Bogdanov-Takens bifurcations is shown in the
following theorem.
Theorem 10. Bogdanov-Takens bifurcations occur

if d =
bg[( f−g)S∗

1−( f+h)I∗1 −( f+h)
[a(g−e)+m(g+h)]S∗

1+(bV∗
1 −aI∗1 )gS∗

1+bhV∗
1

and d =

( f g−g2)S∗
1−g(b+ f+h)I∗1 −b(e+ f+h)−e( f+h)
gS∗

1 V∗
1 +(m−a)S∗

1+(b+h)V∗
1

.
Proof. According to the theory in (Bosi and Desmarchelier 2019)
and the characteristic Equation (9), we found that Bogdanov-
Takens bifurcations occur if −C = 0 and −B = 0. They are

equivalent with d =
bg[( f−g)S∗

1−( f+h)I∗1 −( f+h)
[a(g−e)+m(g+h)]S∗

1+(bV∗
1 −aI∗1 )gS∗

1+bhV∗
1

and

d =
( f g−g2)S∗

1−g(b+ f+h)I∗1 −b(e+ f+h)−e( f+h)
gS∗

1 V∗
1 +(m−a)S∗

1+(b+h)V∗
1

respectively.

The existence of Zero Hopf bifurcation is presented in the
following theorem.
Theorem 11. Zero-Hopf bifurcation occurs if d =

bg[( f−g)S∗
1−( f+h)I∗1 −( f+h)

[a(g−e)+m(g+h)]S∗
1+(bV∗

1 −aI∗1 )gS∗
1+bhV∗

1
, d = −(gI∗1 + b + e + f + h),

and d >
( f g−g2)S∗

1−g(b+ f+h)I∗1 −b(e+ f+h)−e( f+h)
gS∗

1 V∗
1 +(m−a)S∗

1+(b+h)V∗
1

where

gS∗
1V∗

1 + (m − a)S∗
1 + (b + h)V∗

1 > 0.
Proof. According to the theory in (Bosi and Desmarchelier 2019)
and the characteristic Equation (9), we found that Zero Hopf bifur-
cations occur if −C = 0, −A = 0, and B > 0. They are equivalent

with d =
bg[( f−g)S∗

1−( f+h)I∗1 −( f+h)
[a(g−e)+m(g+h)]S∗

1+(bV∗
1 −aI∗1 )gS∗

1+bhV∗
1

, d = −(gI∗1 + b +

e + f + h), and d >
( f g−g2)S∗

1−g(b+ f+h)I∗1 −b(e+ f+h)−e( f+h)
gS∗

1 V∗
1 +(m−a)S∗

1+(b+h)V∗
1

where

gS∗
1V∗

1 + (m − a)S∗
1 + (b + h)V∗

1 > 0 respectively.

NUMERICAL SIMULATION

Susceptible-Coronavirus interaction rate (d), susceptible-infected
interaction rate (g), infected subpopulation recovery rate ( f ), and
Coronavirus increasing rate from infected subpopulation (a) vary
numerically by using MATCONT (Wiraya and Adi-Kusumo 2023;
Adi et al. 2023), then the impact of the variations in the dynamics
of Covid-19 transmission in the population that become the charac-
teristics of the transmission is identified. We set initial parameter
values as written in Table 2.

Fold and Hopf Bifurcations
Continuation of E2 = (12.12660541, 1753.700767,−8.647237780) as
susceptible-Coronavirus interaction rate (d) decreases generates a
Fold bifurcation and three Hopf bifurcations which consist of two
neutral saddle and one non-neutral saddle Hopf bifurcations, see
Figure 2.

Figure 2 Bifurcation diagram generated by continuing E2 as
susceptible-Coronavirus interaction rate (d) decreases.

Two infection equilibrium points collide at the Fold bifurcation
point and vanish when the prevention of Coronavirus infection
through non-living objects has the same rate as the infection. A
cycle is found at the non-neutral saddle Hopf bifurcation point
which represents a fluctuation cycle of Coronavirus, susceptible,
and infected subpopulations when the rate of the infection by
Coronavirus that exists in non-living objects is less than its preven-
tion rate. We make a continuation of the non-neutral saddle Hopf
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bifurcation point to generate some codimension-two bifurcations
which are explained in the next section.

Generalized Hopf, Zero Hopf, and Bogdanov-Takens Bifurcations
Continuations of the non-neutral saddle Hopf bifurcation point as
susceptible-Coronavirus interaction rate (d), susceptible-infected
interaction rate (g), infected subpopulation recovery rate ( f ), and
Coronavirus increasing rate from infected subpopulation (a) vary
are conducted, see Figure 3, Figure 4, and Figure 5.

Continuation of the non-neutral saddle Hopf bifurcation point
as susceptible-Coronavirus interaction rate (d) and susceptible-
infected interaction rate (g) decrease generates two Generalized
Hopf and one Bogdanov-Takens bifurcations, see Figure 3.

Figure 3 Bifurcation diagram generated by continuing the
Fold point as susceptible-Coronavirus interaction rate (d) and
susceptible-infected interaction rate (g) decrease.

The other codimension-two bifurcations are found by making
continuation of the non-neutral saddle Hopf bifurcation point as
the susceptible-Coronavirus interaction rate (d) decreases and in-
fected subpopulation recovery rate ( f ) increases. It generates four
Generalized Hopf, one Bogdanov-Takens, and two Zero Hopf bi-
furcations which consist of one non-neutral saddle and one neutral
saddle Zero Hopf bifurcation, see Figure 4.

Figure 4 Bifurcation diagram generated by continuing the non-
neutral Hopf bifurcation point as the Coronavirus interaction
rate (d) decreases and the infected subpopulation recovery rate
( f ) increases.

We also make a continuation of the non-neutral saddle Hopf
bifurcation point as susceptible-Coronavirus interaction rate (d)
and Coronavirus increasing rate from infected subpopulation (a)
decrease. It generates a Generalized Hopf bifurcation, see Figure 5.

Figure 5 Bifurcation diagram generated by continuing the non-
neutral Hopf bifurcation point as susceptible-Coronavirus in-
teraction rate (d) and Coronavirus increasing rate from infected
subpopulation (a) decrease.

Some phenomena are found around the Generalized Hopf bi-
furcation points, such as strange attractors and catastrophe which
are discussed in the next section. The phenomena become some
characteristics of Covid-19 transmission based on the varied pa-
rameters that can become an indicator to predict the dynamics of
Covid-19 in the population.

Strange Attractors Generated by Generalized Hopf Bifurcations
We choose a value of (d, g) around the GH1 and GH2 points in
Figure 3, and also (d, f ) around the GH1 point in Figure 4. Then,
we choose an initial value around the equilibrium which was
found by choosing those parameters, then we found three strange
attractors as shown in Figure 6(a), Figure 6(b), and Figure 6(c).
We also calculate the Lyapunov exponent (Dieci et al. 1997) of the
strange attractors to investigate their characteristic.

In Figure 6(a), we choose (d, g) = (−7.806684065838216e −
06, 0.001686288287587) around GH1 in Figure 3 and an initial
value (V, S, I) = (1.815098324208333e + 04., 1.159155421086804e +
03, 1.757552288703374e + 02) generated by choosing those parame-
ters. In Figure 6(b), we choose (d, g) = (5.591353065874137e −
06, 0.001482672851565) around GH2 in Figure 3 and an initial
value (V, S, I) = (1.918856995532746e + 04, 1.125005746177521e +
03, 1.862583288670330e + 02) generated by choosing those para-
meters. In Figure 5, we choose (d, f ) = (−1.345940934024478e −
05, 1.028952768624729e+ 02) around GH1 in Figure 4 and an initial
value (V, S, I) = (8.152543256535453e + 03, 1.486804434008352e +
03, 74.09169434849883) generated by choosing those parameters.

Lyapunov exponent of each variable generating the strange
attractor shown in Figure 6(a), Figure 6(b), and Figure 6(c) are
presented in Figure 6(c), Figure 6(d), and Figure 6(e) respectively.
Based on the Lyapunov exponents, we found that all of the strange
attractors are non-chaotic as all of the variable’s Lyapunov expo-
nents have a negative value (Wiraya and Adi-Kusumo 2023).
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(a) (d)

(b) (e)

(c) (f)

Figure 6 Strange attractors around GH1, GH2 in Figure 3 and GH1 in Figure 4 and the Lyapunov exponent of the variables which ge-
nerate the strange attractors: (a) Strange attractor around GH1 in Figure 3, (b) Strange attractor around GH2 in Figure 3, (c) Strange
attractor around GH1 in Figure 4, (d) Lyapunov exponent of the strange attractor around GH1 in Figure 3, (e) Lyapunov exponent of the
strange attractor around GH2 in Figure 3, (f) Lyapunov exponent of the strange attractor around GH1 in Figure 4
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The non-chaotic strange attractors represent a complex but pre-
dictable fluctuation of Coronavirus, susceptible, and infected sub-
populations (Wiraya and Adi-Kusumo 2023) as one of the follow-
ing variations occurs: i) susceptible-Coronavirus and susceptible-
infected interaction rate decrease; ii) susceptible-Coronavirus in-
teraction rate decrease and infected subpopulation recovery rate
increases; iii) susceptible-Coronavirus interaction rate and Corona-
virus increasing rate from infected subpopulation decrease.

Catastrophe Phenomenon
We choose a value of (d, a) around the GH point in Figure 5 and
an initial value around the equilibrium found by choosing those
parameters. Then, we found a catastrophe phenomenon generated
by the attractor and repeller of the solution started by a smooth
solution and then colliding at a region having a transformation of
the solution pattern become chaotic confirmed by the Lyapunov
exponent of each variable generates the attractor and repeller. The
catastrophe phenomenon is presented in Figure 7 and Figure 8.

We choose (d, a) = (−0.077392610241892, 0.682644447742242)
around GH and an initial value (V, S, I) = (3.943299602340211e +
02, 1.020277404117016e + 02, 5.026599969563091e + 02) generated
by choosing those parameters. Then, we plot the solution for for-
ward time generating an attractor and backward time generating a
repeller after a smooth solution. The attractor and repeller collide
at a region constructing the chaotic part of the catastrophe phe-
nomenon as shown in Figure 7. Chaotic part of the catastrophe
phenomenon is presented in Figure 8.

Figure 7 Catastrophe phenomenon around GH

Lyapunov exponent of each variable which generates the at-
tractor and repeller is calculated to confirm the transition of the
solution pattern from smooth to chaotic and vice versa. Calcula-
tions of the Lyapunov exponent of each variable which generates
the attractor and repeller are presented in Figure 9 and Figure 10
respectively.

We investigate the catastrophe phenomenon further through
the Lyapunov exponents of the variables in the attractor and re-
peller, especially the existence of their transition from negative to
positive value which represents the transformation of the solution
pattern. We found that the attractor and repeller are chaotic as the
Lyapunov exponents of Coronavirus have a positive value (Wiraya
and Adi-Kusumo 2023; Cencini et al. 2009) as time goes by, but
they have a momentary negative value (dashed black circle) which

Figure 8 Chaotic part of the catastrophe phenomenon around
GH
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Figure 9 Lyapunov exponent of the variables in the attractor of
the catastrophe phenomenon around GH

represents the smooth solution before they tend to a positive value.
These phenomena illustrate the transformation of the solution pat-
tern, i.e. smooth-chaotic-smooth solution which represents the
catastrophe phenomenon.

Fluctuation of Coronavirus, susceptible, and infected subpopu-
lations that start from a smooth, then change to a chaotic, then
change back to a smooth pattern indicates the appearance of catas-
trophe phenomenon which represents a momentary complex and
unpredictable fluctuation of them as susceptible-Coronavirus in-
teraction rate Coronavirus increasing rate from infected subpopu-
lation decrease.
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Figure 10 Lyapunov of the variables in the repeller of the catas-
trophe phenomenon around GH.

CONCLUSION

A three-dimensional ordinary differential equation system has
been constructed as a new mathematical model of Covid-19 trans-
mission in the population by considering two factors, i.e. non-
living objects as one of the Coronavirus transmission media to-
gether with the susceptible subpopulation as one of the Corona-
virus carriers. The model represents interactions between Corona-
virus that exists on non-living objects, susceptible, and infected
subpopulations. Analysis of the model reveals some results, such
as equilibrium points along with their local stability and bifur-
cation analysis which consists of the finding of many interesting
phenomena.

One disease-free and two infection equilibrium points are found
in the model. The disease-free equilibria describes extinction of
Coronavirus infection, so that the population is free from Covid-19.
The infection equilibrium points describe the existence of Coro-
navirus infection in the population. Local stability conditions of
disease-free equilibria should be fulfilled in order to make the
population free from Covid-19 when initial subpopulations are
around the disease-free equilibria. The population can also be free
from Covid-19 for any initial condition of the subpopulations if the
global stability conditions of the disease-free equilibria are fulfilled.
Local stability conditions of infection equilibrium points should
not be fulfilled so that Coronavirus infection in the population can
be avoided when initial subpopulations are around the infection
equilibrium points.

Codimension-one and codimension-two bifurcation analysis
of the model gives some results that have a related biological
meaning so they become some characteristics of Coronavirus trans-
mission in the population relative to the parameter variations.
Codimension-one bifurcation analysis has some results, i.e. the
finding of Fold and non-neutral saddle Hopf bifurcation. Two in-
fection equilibrium points collide at the Fold bifurcation point and
then they vanish when the prevention of Coronavirus infection
through non-living objects has the same rate as the infection. A
cycle is found at the non-neutral saddle Hopf bifurcation point
which represents a fluctuation cycle of Coronavirus, susceptible,
and infected subpopulation when the eradication of Coronavirus

by susceptible subpopulation is more vigorous than the infection.
Codimension-two bifurcation analysis shows that the model un-

dergoes Generalized Hopf bifurcations. Those bifurcations trigger
rich dynamics, i.e. strange attractors and catastrophe phenomena.
Strange attractors which represent some complex and predictable
fluctuation of Coronavirus, susceptible, and infected subpopula-
tions are found as the susceptible-Coronavirus interaction rate
decreases and one of these two variations occurs, i.e. susceptible-
infected interaction rate decreases or the infected subpopulation
recovery rate increases. Catastrophe phenomenon which rep-
resents a momentary complex and unpredictable fluctuation of
Coronavirus, susceptible, and infected subpopulation is found as
susceptible-Coronavirus interaction rate Coronavirus increasing
rate from infected subpopulation decrease.

We also found some other codimension-two bifurcations, such
as Bogdanov-Takens and Zero Hopf bifurcations. Bogdanov-
Takens bifurcation has the potential to trigger the existence of
homoclinic orbit or homoclinic bifurcations (Wiraya et al. 2024).
Zero Hopf bifurcation can also become a trigger for strange at-
tractor or repeller occurrence. Those two phenomena can become
chaotic dynamics indicators. But recently, we still have not found
those phenomena in this research. Therefore, investigation of ho-
moclinic orbit and homoclinic bifurcations that can be triggered
by the Bogdanov-Takens bifurcation, and also strange attractor or
repeller that can be generated by the Zero Hopf bifurcation are our
future research directions.
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