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ABSTRACT. A module M over a ring is called simple-separable if every simple
submodule of M is contained in a finitely generated direct summand of M.
While a direct sum of any family of simple-separable modules is shown to be
always simple-separable, we prove that a direct summand of a simple-separable
module does not inherit the property, in general. It is also shown that an
injective module M over a right noetherian ring is simple-separable if and
only if M = My & M2 such that M; is separable and Ms has zero socle. The

structure of simple-separable abelian groups is completely described.
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1. Introduction

Throughout this article, R is an associative ring with an identity element and all
modules considered are unital right R-modules unless stated otherwise. Let M be
an R-module. By E(M) we denote the injective hull of M. The notations N C M
and N < M mean that N is a subset and IV is a submodule of M, respectively. By
Q, Z and N we denote the ring of rational numbers, the ring of integer numbers and
the set of natural numbers, respectively. In 1937 [2], Baer introduced the notion
of separable abelian groups to mean torsion-free abelian groups G for which every
finite subset of G can be embedded in a completely decomposable direct summand
of G. The first example given by Baer of groups satisfying this property was the
direct product of countably many copies of Z. In 1973 [9, p. 1], Fuchs called an
abelian group G for which every finite subset of G can be embedded in a direct
summand A of G such that A is a direct sum of groups of rank 1 a separable group.
On the other hand, another version of separability was introduced in 1968 [10] by
Griffith who called an abelian group G separable if every finitely generated subgroup
of G is contained in a finitely generated direct summand of G. This variation of
separable groups was extended by Zoschinger in 1979 [24] to the general module

theoretic setting. Following Zoschinger, a module M over an arbitrary ring R is
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called separable if every finitely generated submodule of M is contained in a finitely
generated direct summand of M.

In this paper, we study the “simple”version of separable modules. A module M
is called simple-separable if every simple submodule of M is contained in a finitely
generated direct summand of M. Note that this notion can also be considered as
the dual of the notion of m-coseparable modules studied in [5]. In Section 2, we
present some basic properties of these modules. It is shown that the property of
being simple-separable is closed under direct sums, while a direct summand of a
simple-separable module may not inherit the property. We investigate the class of
rings R for which every injective R-module is simple-separable. We also prove that
the class of commutative rings R for which every finitely cogenerated R-module
is simple-separable is precisely that of the m-V-rings. Moreover, we determine the
structure of simple-separable abelian groups. In Section 3, we shed some light on
the modules M for which every direct summand of M is simple-separable. We
conclude the paper by a short section on modules M for which every proper simple

submodule of M is contained in a proper finitely generated direct summand.

2. Simple-separable modules

Definition 2.1. A module M is called simple-separable if every simple submodule

of M is contained in a finitely generated direct summand of M.

Clearly, every separable module is simple-separable. However, the converse is
not true, in general. To see this, we can consider the Z-module Q which is simple-
separable since Q has no simple submodules. On the other hand, Q is not separable
since Q has no nonzero finitely generated direct summands.

Recall that a submodule N of a module M is called small in M (denoted by
N <« M) if M # N + X for any proper submodule X of M.

Remark 2.2. Let M be an R-module. It is well known that a simple submodule
of M is either small in M or a direct summand of M. It follows that M is simple-
separable if and only if every simple small submodule of M is contained in a finitely
generated direct summand of M. For example, if M is a module with Rad(M) = 0,

then M is a simple-separable module.

Example 2.3. (i) It is obvious that any module M with Soc(M) = 0 is
simple-separable.
(ii) It is clear that finitely generated modules are simple-separable. Also, any

module which is a direct sum of finitely generated submodules (e.g., a free
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module) is simple-separable. On the other hand, note that a module with
small radical need not be simple-separable (see Example 2.23).
(iii) Let a module M = >"._; L; such that {L; | ¢ € I} is a chain of finitely

generated direct summands of the module M. It is clear that M is separable

el

and hence M is simple-separable.
(iv) It is easily seen that for any separable module M; and any module M; with
Soc(Msz) = 0, the module M = M; @& M, is simple-separable.

The proof of the next result is straightforward and hence is omitted.

Proposition 2.4. Let M be an indecomposable module. Then the following state-
ments are equivalent:

(i) M is simple-separable;

(ii) Soc(M) =0 or M is finitely generated.

The following corollary is an immediate consequence of Proposition 2.4.

Corollary 2.5. Let S be a simple module. Then F(S) is simple-separable if and
only if E(S) is a finitely generated module.

In the following example, we present some indecomposable simple-separable
modules. Moreover, we provide an example of a simple-separable module which

has a factor module which is not simple-separable.

Example 2.6. (i) Let p be a prime number. From Proposition 2.4, it follows
that the indecomposable Z-module Z(p) is not simple-separable but the
indecomposable Z-modules Q, Z and Z/p*Z (k € N) are simple-separable.

(ii) Let p be a prime number. Then the Z-module Z(p*>) is not simple-
separable. On the other hand, there exists a free Z-module F' such that
Z(p>™) = F/L for some submodule L of F. It is clear that F' is simple-

separable since F' is a direct sum of cyclic submodules.

Next, we will be concerned with direct summands of simple-separable modules.
We begin by providing an example which shows that being simple-separable is not

preserved by taking direct summands.

Example 2.7. It was shown in [16, Proposition 3.3] that there is a cyclic artinian
module M over a ring R and a direct summand N of M®™ such that N has
no nonzero finitely generated direct summands. Since M is artinian, its socle is
essential. Therefore MM has an essential socle by [1, Propositions 6.17 and 9.19).
This implies that Soc(IN) # 0. It follows that N is not simple-separable.
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A module M is called a D3-module if for every pair (M;, My) of direct summands
of M with My + My = M, M; N Ms is also a direct summand of M. It is well
known that quasi-projective modules are D3-modules (see [17, Proposition 4.38]).

In contrast to Example 2.7, we next exhibit some sufficient conditions under
which some special direct summands of a simple-separable module inherit the prop-

erty.

Proposition 2.8. Let M be a simple-separable R-module such that M = My ®
My is a direct sum of submodules My and My where My is finitely generated and

semisimple. Assume that one of the following conditions is satisfied:

(i) M is a D3-module, or
(ii) My is projective.

Then My is simple-separable.

Proof. Note that M is a finite direct sum of simple submodules. Then by in-
duction, we can assume that Ms is a simple module. Now to prove that M; is
simple-separable, assume that Soc(M;) # 0 and let S; be a simple submodule of
M. Since M is simple-sparable, there exists a finitely generated direct summand
K of M such that S; C K. If K C My, we are done. Suppose now that K is not
contained in M7. Then K + M; = M as M is a maximal submodule of M.

(i) Since M is a D3-module, K N M; is a direct summand of M. Therefore
K N M is a direct summand of K.

(ii) Note that My =2 M/M, = (K + M;)/M; = K/(K N M) is projective. Then
K N M, is a direct summand of K (see [1, Proposition 17.2]).

Hence K N M; is a finitely generated direct summand of M; such that S; C

O

K N M;. It follows that M; is a simple-separable module.

Recall that a submodule N of a module M is called fully invariant if f(N) C N
for every endomorphism f of M. A module M is said to have the SIP (Summand
Intersection Property) if the intersection of any two direct summands of M is again

a direct summand of M.

Proposition 2.9. Let N be a submodule of a simple-separable R-module M. As-
sume that one of the following conditions is satisfied:
(i) N is a direct summand of M and M has the SIP, or
(ii) N is a direct summand of M and K NN is a direct summand of M for
every finitely generated direct summand K of M, or

(iii) N s a fully invariant direct summand of M, or
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(iv) R is a right noetherian ring and N is a fully invariant submodule of M.

Then N is a simple-separable module.

Proof. Let N be a submodule of M and let S be a simple submodule of N. Since
M is simple-separable, there exists a finitely generated direct summand K of M
such that S C K and M = K @ K’ for some submodule K’ of M. Moreover,
S C KN N. The proof is completed by showing that K N N is a direct summand
of N which is finitely generated.

(i)-(ii) Suppose that N is a direct summand of M. By hypothesis, K N N is a
direct summand of M and hence of K. Therefore K N N is a finitely generated
direct summand of N.

To prove (iii)-(iv), note that N = (K N N) @ (K’ N N) since N is fully invariant
in M.

(iii) As N is a direct summand of M, K N N is a direct summand of K and so
K N N is finitely generated.

(iv) Since R is right noetherian, K is a noetherian module and so K N N is

finitely generated. This proves the proposition. ([
Next, we will show that being simple-separable is preserved under direct sums.
Theorem 2.10. FEwvery direct sum of simple-separable modules is simple-separable.

Proof. First note that without loss of generality, we can only prove the result for
a finite direct sum of simple-separable modules. Let a module M = M; & M,
be a direct sum of simple-separable submodules M; and Ms. Let S be a simple
submodule of M. If S C M; for some ¢ € {1,2}, then clearly S is contained in a
finitely generated direct summand of M. Now suppose that SN M; = SN My = 0.
Then SO M; = M1 ®[(S®M;)NMs]. Hence (S@®M;)NMs is a simple submodule of
M. Since Mj is simple-separable, there exists a finitely generated direct summand
Ky of M such that (S @ M;) N My C Ky. Thus S @ M; C M; & Ki. On the
other hand, S @ My = [(S ® Mz2) N M;] & Ms. Hence (S @ My) N M; is a simple
submodule of M;. Since M; is simple-separable, there exists a finitely generated
direct summand K7 of M7 such that (S®&Mso)NM; C K;. Thus S® My C K7 ® Mo.

Therefore
SC(SeM)N(Se M) C (M & Kz)N (K@ M) =K; @ Ko.

Note that K; @ K> is a finitely generated direct summand of M. The result follows.
O
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Corollary 2.11. Let N be a fully invariant direct summand of a module M. Then
the following conditions are equivalent:
(i) M is simple-separable;

(ii) N and M/N are both simple-separable modules.

Proof. (i) = (ii) First note that N is simple-separable by Proposition 2.9(iii). To
prove that M /N is simple-separable, let U be a submodule of M such that N C U
and U/N is simple. By hypothesis, there exists a submodule K of M such that
M=N@K. Then U = N® (UNK)and S =UnNK is simple. Since M is
simple-separable, there exist submodules A and B of M such that M = A& B, A
is finitely generated and S C A. As N is fully invariant in M, we have

M/N =[(A+ N)/N]& [(B+ N)/N].

Moreover, U/N C (A+ N)/N and (A+ N)/N =2 A/(AN N) is finitely generated.
(ii) = (i) This follows from Theorem 2.10. d

Recall that a module M is called separable if every finitely generated submodule
of M is contained in a finitely generated direct summand of M. Next, we investigate

simple-separable injective modules.

Proposition 2.12. The following are equivalent for an injective R-module M :

(i) M is a simple-separable module;

(ii) Fither Soc(M) =0 or E(S) is finitely generated for any simple submodule
S of M.
If, moreover, R is right noetherian, then (i)-(ii) are equivalent to:

(iii) M = (®ierM;) ® N such that each M; is an indecomposable finitely gener-
ated submodule of M and Soc(N) = 0;

(iv) M = (PierM;) ® N such that each M; is a finitely generated submodule of
M and Soc(N) = 0;

(v) M =L&N such that L is a separable submodule of M and Soc(N) = 0.

Proof. (i) = (ii) Assume that Soc(M) # 0 and let S be a simple submodule of
M. By (i), there exist submodules K and K’ of M such that M = K@ K', SC K
and K is finitely generated. Since K is injective, F(S) is a direct summand of K.
Hence E(S) is finitely generated.

(ii) = (i) This is immediate.

(ii) = (iii) Since M is injective, there exists a submodule N < M such that
M = E(Soc(M)) ® N. Set Soc(M) = ®;c1S; where S; (i € I) are simple sub-
modules of M. Then M = (®,c1E(S;)) ® N since R is right noetherian (see [1,
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Proposition 18.13]). Moreover, note that each E(S;) (i € I) is a finitely generated
indecomposable submodule of M and Soc(N) = 0.

(iii) = (iv) This is obvious.

(iv) = (v) This follows from the fact that any module which is a direct sum of
finitely generated submodules is separable.

(v) = (i) This follows from Theorem 2.10. O

Following Caldwell’s terminology in [3], a ring R is called hypercyclic if each cyclic
right R-module has a cyclic injective hull. It was shown in [7, Theorems 4.1 and
4.2] that any artinian principal ideal ring is hypercyclic (see also [3, Theorem 1.5]).
Commutative hypercyclic rings are characterized in [3]. From Proposition 2.12, we
infer that every injective module over a hypercyclic ring is simple-separable.

In the next two corollaries, we describe simple-separable injective modules over

commutative domains and over right artinian rings.

Corollary 2.13. Let R be a commutative domain which is not a field. Then the
following are equivalent for an injective R-module M :
(i) M is a simple-separable R-module;

(ii) Soc(M) = 0.

Proof. Let E be an injective R-module. It is clear that F is divisible and hence
Rad(F) =E.

(i) = (ii) Suppose that Soc(M) # 0. Then M contains a simple submodule S.
By Proposition 2.12, E(S) is finitely generated. This contradicts the fact that E(S)
has no maximal submodules (see also [11, Corollary 2]).

(ii) = (i) This is clear. O

Corollary 2.14. Let M be an injective module over a right artinian ring R. Then

the following are equivalent:
(i) M is a simple-separable R-module;

(il) M is a direct sum of finitely generated submodules.

Proof. This follows from Proposition 2.12 and [22, Theorem 4.5]. O

As exhibited in Example 2.6, for any prime number p, Z(p>) = E(Z/pZ) is not
simple-separable. Next, we will be concerned with the class of rings R for which

every injective R-module is simple-separable.

Proposition 2.15. The following are equivalent for a ring R:

(i) Every injective R-module is simple-separable;
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(ii) E(S) is simple-separable for any simple R-module S;
(iii) E(S) is finitely generated for any simple R-module S.

Proof. (i) = (ii) This is immediate.

(ii) = (iii) By Corollary 2.5.

(iii) = (i) Let M be an injective R-module and let S be a simple submodule of
M. By (iii), E(S) is a finitely generated direct summand of M which contains S.
Therefore M is simple-separable. This completes the proof. (]

Recall that a module M is said to be finitely cogenerated (or finitely embedded)
if for any family of submodules {N; : i € I'} in M, if N;erN; = 0, then N;eyN; =0
for some finite subset J C I. This is equivalent to the fact that E(M) = E(S1) @
E(S2)®---® E(Sy) for some finitely many simple modules S, So, ..., Sk (see [14,
Proposition 19.1] and [22, p. 70]).

Corollary 2.16. Let R be a commutative noetherian local ring with maximal ideal
m. Then the following are equivalent:

(i) Ewvery injective R-module is simple-separable;

(ii) E(R/m) is finitely generated;

(iii) R is an artinian ring.

Proof. (i) < (ii) This follows from Proposition 2.15.

(ii) = (ili) Using Proposition 2.15, we see that E(R/m) is finitely generated.
Since R is noetherian, it follows that every finitely cogenerated R-module is finitely
generated. Thus R is an artinian ring by [23, Theorem 3].

(iii) = (ii) This follows by using again [23, Theorem 3]. O

Remark 2.17. Not every two-sided artinian ring satisfies the conditions in Propo-
sition 2.15. In fact, even a two-sided artinian ring R may have a simple right
R-module S such that E(S) is not finitely generated as illustrated in an example
constructed in [15, Ex. 3.34] (see also [21, Theorem 2]).

A ring R is called a left (right) m-V-ring if, for every simple left (right) R-
module S, the injective hull E(S) is of finite length (see [12]). Note that left and
right artinian Pl-rings and quasi-Frobenius rings are left and right m-V-rings by
[21, p. 372] (see also [20, Lemma 6 and Proposition 10]).

Example 2.18. Using Proposition 2.15, it follows that over any right 7-V-ring R
(e.g., we can take R to be any commutative artinian ring), every injective R-module

is simple-separable.
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Next, we characterize the class of rings R for which every finitely cogenerated

R-module is simple-separable. First we need the following lemma.

Lemma 2.19. Let S be a simple module. Then the following are equivalent for
M = E(S):

(i) Every submodule of M is simple-separable;

(ii) M is a noetherian module.

If, moreover, R is commutative, then (i)-(ii) are equivalent to:

(ili) M has finite length.

Proof. (i) = (ii) Let U be a nonzero submodule of M. Note that M is a uniform
module with essential socle. Then U is indecomposable and Soc(U) # 0. Since U
is simple-separable, U is finitely generated by Proposition 2.4. Therefore M is a
noetherian module.

(ii) = (i) This is clear.

(ii) < (iii) Clearly, M is finitely cogenerated. The equivalence follows from [23,
Proposition 4]. O

Proposition 2.20. The following statements are equivalent for a commutative ring
R:

(i) Ewvery finitely cogenerated R-module is simple-separable;

(ii) R is a w-V-ring;

(iii) Ry is an artinian ring for every mazimal ideal m of R.

Proof. (i) = (ii) This follows by using Lemma 2.19.

(ii) = (iii) This follows from [21, Theorem 5].

(iii) = (i) Let M be a finitely cogenerated R-module. From [23, Theorem 3], we
infer that M is finitely generated. Hence M is simple-separable. This completes
the proof. a

The next result is presumably well known but is included for completeness.

Lemma 2.21. Let R be a commutative semilocal ring such that Ry is an artinian

ring for every maximal ideal m of R. Then R is an artinian ring.

Proof. Let m be a maximal ideal of R and put Sy = R\m. Let [; D 1o D ... bea
descending chain of ideals of R. Since Ry, is an artinian ring, there exists an integer
Nm > 1 such that S, = Sotl,, 4 for each i > 1. But R has only finitely many
maximal ideals. So let n be the maximum of all the integers ny’s (where m ranges

over all of the maximal ideals of R). It follows that Snlen = Snjllnﬂ- for every
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maximal ideal m of R and all i > 1. This implies that Sy*(I,,/I,+;) = 0 for every
maximal ideal m of R and all ¢ > 1. Consequently, I, = I,,4; for all ¢ > 1. This

shows that R is artinian. O

Corollary 2.22. The following are equivalent for a commutative semilocal ring R:

(i) Ewvery finitely cogenerated R-module is simple-separable;

(ii) R is an artinian ring.

Proof. (i) = (ii) This is obvious by Proposition 2.20 and Lemma 2.21.
(ii) = (i) This is clear by Proposition 2.20. O

In the next example we provide a module with small radical which is not simple-
separable. This example also shows that both Corollaries 2.16 and 2.22 are not

true, in general, if R is not a commutative ring.

Example 2.23. Let K = F(x1, 22, ...) with F a field. Consider the field monomor-
phism o : K — K defined by o(z;) = x;41 for all ¢ and o is equal to the iden-
tity on F. Then R = K x K with coordinate-wise addition and multiplication
(x,y)(@,y) = (xa', 2y’ + o(a')y) is a ring with identity. It is shown in [21, p. 375]
that R is a local left artinian ring with maximal left ideal L = {0} x K such that
the left R-module F(R/L) is not of finite length. This implies that E(R/L) is not
finitely generated since R is left artinian. Now Proposition 2.12 shows that E(R/L)
is not simple-separable. On the other hand, note that Rad(E(R/L)) < E(R/L)
by [1, Corollary 15.21].

Remark 2.24. There exist some commutative rings which satisfy the conditions in
Proposition 2.15 but do not satisfy the statements in Proposition 2.20. For example,
consider the ring R constructed in [3, Example p. 42]. In fact, R is a commutative
local nonartinian hypercyclic ring. So every injective R-module is simple-separable
by Proposition 2.12. On the other hand, it follows from Corollary 2.22 that not

every finitely cogenerated R-module is simple-separable.

The following result shows that a simple-separable module M with Rad(M) = M

contains no simple submodules.

Proposition 2.25. Let M be a nonzero module with Rad(M) = M. Then M is
simple-separable if and only if Soc(M) = 0.

Proof. (=) Assume that Soc(M) # 0 and let S be a simple submodule of M.
Since M is simple-separable, there exists a finitely generated direct summand K of
M such that S C K and M = K @ K’ for some submodule K’ of M. Hence K
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contains a maximal submodule U with S C U. It is easily seen that U & K’ is a
maximal submodule of M, a contradiction.

(«<=) This implication is immediate. O

Let G be an abelian group. We denote the torsion subgroup of G by T'(G). For
any prime number p, let T,(G) = {x € G | p"x = 0 for some non-negative integer
n} which is a subgroup of G called the p-primary component of G. Note that if G
is a torsion abelian group, then G is a direct sum of its p-primary components. An
abelian group G is said to be a primary group (or p-group) if G = T,,(G) for some
prime p.

Let G be an abelian p-group (for some prime p), € G, and n be a non-negative
integer. Then x is said to have height n if z is divisible by p™ but not by p"*! (i.e.
r € p"G but x € p"T1G). In this case, we write h(z) = n. If x is divisible by p*
for every non-negative integer k (i.e. # € Ng>1p*G), then z is called an element of
infinite height and we write h(x) = co. If x is an element of a subgroup U of G,
then we can define two heights for . When it is necessary, we will write hy (2) and
ha(x) for the height of 2 in U and G, respectively. We always have hy(x) < hg(x).

Recall that a subgroup U of an abelian group G is called pure if nU = U N nG
for every non-negative integer n. An abelian group G is said to be of bounded if
nG = 0 for some positive integer n.

In the next theorem, we determine the structure of simple-separable abelian
groups. First, we give the following four lemmas. The proof of the second one is
adapted from that of [13, Theorem 9] (see also [8, Corollary 27.2]).

Lemma 2.26. Let K be a finitely generated subgroup of an abelian group G with
K C T(G). Then K is a direct summand of T(G) if and only if K is a direct

summand of G.

Proof. The sufficiency follows by modularity. Conversely, suppose that K is a
direct summand of T(G). Then K is a pure subgroup of T'(G) which is itself a
pure subgroup of G. Thus K is pure in G. Moreover, note that K is a direct sum
of a finite number of finite cyclic abelian groups since K is finitely generated and
K CT(G) (see [8, Theorem 15.5]). Hence K is bounded. Now using [13, Theorem

7], we conclude that K is a direct summand of G. (]

Lemma 2.27. Let G be an abelian group such that Np>1p™T,(G) = 0 for every
prime number p. Then every simple subgroup of G is contained in a finite cyclic

primary direct summand of G.
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Proof. Suppose that Soc(G) # 0 and let S be a simple subgroup of G. Then
there exist a prime number p and 0 # x € G such that S = Zz = Z/pZ. Since
Mn>1p™Tp(G) = 0, it follows that the subgroup U = T,(G) has no elements of
infinite height. Therefore x has finite height in U. Let hy(z) = m for some non-
negative integer m. Then there exists y € U such that x = p™y. Put H = Zy.
Clearly, S € H and H = Z/p™*'Z is primary. It is easily seen that the only
elements of order p in H are the multiples of by integers prime to p. So these
elements have the same height in H as in U. Thus H is a pure subgroup of U by
[13, Lemma 7]. Note that p™™ H = 0. It follows from [13, Theorem 7] that H
is a direct summand of U. But U is a direct summand of T(G), so H is a direct
summand of T'(G). From Lemma 2.26, it follows that H is a direct summand of G.

This completes the proof. [

Lemma 2.28. Let G be a simple-separable abelian group. Then Ny,>1p"T,(G) =0

for every prime number p.

Proof. Assume that N,>1p"(T,(G)) # 0 for some prime number p. Then there
exists in Np>1p™(Tp(G)) a nonzero element x of order p. Clearly, Zz is a simple
subgroup of G. Since G is simple-separable, there exists a decomposition G = K@ L
such that K is finitely generated and Zz C K. Note that Zz C T,(K). Moreover,
since T'(K) is finitely generated, there exists an integer n > 1 such that nT'(K) = 0.
But T(K) is a pure subgroup of K, so T(K) is a direct summand of K by [13,
Theorem 7]. Note that T,(K) is a direct summand of T(K). Then T,(K) is a
direct summand of K which is finitely generated. Therefore there exists an integer
s > 1 such that p*T,(K) = 0. Since z € Ny>1p"(T,(G)), we have z = p°y for some
y € T,(G). Now, since G =K &L, y =a+b for some a € K and b € L. Clearly,
a € T,(K). Therefore p°a € p°T,(K) = 0 and hence z = p°b € L. But z € K, so
xr € KN L =0, a contradiction. ([l

Lemma 2.29. Let G be a torsion abelian group. Then G is separable if and only

if G is simple-separable.

Proof. The necessity is obvious. Conversely, suppose that G is simple-separable
and let A be a finitely generated subgroup of G. Clearly A = &7_,T,,(A) for
some positive integer n and distinct prime numbers p; (1 < i < n). Note that for
every 1 < i < n, T,,(A) is a finitely generated subgroup of T, (G). Since each
T,,(G) is a fully invariant direct summand of G, it follows from Proposition 2.9
that each T),(G) is a simple-separable abelian group. Moreover, &7, T, (G) is
a direct summand of G. The proof is completed by showing that each T}, (A) is
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contained in a finitely generated direct summand of T}, (G). So there is no loss of
generality in assuming that G is a p-group for some prime number p. Since A is
finitely generated, A is a finite direct sum of finite cyclic subgroups. This implies
that A itself is a finite group. Since G has no nonzero elements of infinite height by
Lemma 2.28 it follows that the heights of the nonzero elements of A (relative to G)
are bounded. Applying [8, Corollary 27.8], we see that A C B for some bounded
direct summand B of G. Note that B is a direct sum of finite cyclic subgroups by
[8, Theorem 17.2]. Since A is finitely generated, there exist subgroups By and By
of B such that B = By @& B, Bj is finitely generated and A C By. It is clear that
B is a direct summand of GG. This finishes the proof. O

The next result should be compared with [9, Proposition 65.1] which character-

ized reduced abelian p-groups satisfying another variation of separability.

Theorem 2.30. The following are equivalent for an abelian group G:

(i) G is simple-separable;

(ii) For every prime number p, Ny>1"(T,(G)) =0 (i.e. T,(G) has no nonzero
elements of infinite height);

(iii) Every simple subgroup of G is contained in a finite cyclic primary direct
summand of G;

(iv) T(G) is simple-separable;

(v) T(G) is separable.

Proof. (i) = (ii) This implication is proved in Lemma 2.28.

(ii) = (iii) This is clear by Lemma 2.27.

(iii) = (iv) This follows immediately from Lemma 2.26 and the fact that a cyclic
abelian group is either torsion or torsion-free.

(iv) = (v) This follows from Lemma 2.29.

(v) = (i) This is an immediate consequence of Lemma 2.26. O

3. Completely simple-separable modules

Motivated by Example 2.7, we introduce the following notion.

Definition 3.1. A module M is called completely simple-separable if every direct

summand of M is simple-separable.

Recall that a module M is called a duo module (resp., weak duo module) if every
submodule (resp., every direct summand) of M is fully invariant (see for example
[19]).
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Example 3.2. (i) Tt is clear that every module M with Soc(M)NRad(M) =0
is completely simple-separable.

(ii) Every finitely generated module is completely simple-separable.

(ili) Using Proposition 2.9(iii), we see that every simple-separable weak duo
module is completely simple-separable.

(iv) Let R be a semiperfect ring or a simple right noetherian ring or a one-
sided semihereditary ring or a one-sided principal ideal ring. Then every
projective R-module is a direct sum of finitely generated submodules by
[18, Theorem 3] and [16, Fact 3.4, Corollary 5.5 and Proposition 6.3]. It

follows that every projective R-module is completely simple-separable.

Proposition 3.3. Let R be a ring and let M be a completely simple-separable
R-module. Assume that M has the ascending chain condition (ACC) on finitely
generated direct summands (e.g., M is noetherian). Then M = My ® Ms is a direct
sum of submodules My and Ms such that Soc(M;) = 0 and My is finitely generated.

Proof. Suppose, to the contrary, that the module M does not have such a decom-
position. Then Soc(M) # 0. Let S; be a simple submodule of M. Since M is
simple-separable, there exists a finitely generated direct summand K; of M such
that S; C K;. Let Ni be a submodule of M such that M = K; @ N;. Note that
N; is simple-separable and Soc(N7) # 0. By similar arguments as before, it follows
that Ny = K5 @ N> such that K5 is finitely generated and N5 is a simple-separable
submodule with Soc(N2) # 0. By continuing this process, we get a strictly ascend-
ing chain of finitely generated direct summands Ky & K1 @ Ko & --- of M. This

contradicts our assumption. [

Recall that a module M is said to have finite uniform dimension if M does not
contain an infinite independent set of submodules. Dually, a module M is said to
have finite hollow dimension if M does not contain an infinite coindependent family
of submodules; that is, for some n € N, there exists an epimorphism from M to a
direct sum of n nonzero modules but no epimorphism from M to a direct sum of
more than n nonzero modules (see, for example [4, p. 47]).

It is well known that a module M has ACC on direct summands if and only if
S = Endg(M) has ACC on right direct summands if and only if S contains no
infinite set of nonzero orthogonal idempotents (see e.g., [5, Lemma 3.12]). Next, we

present some sufficient conditions for a module to satisfy ACC on direct summands.

Remark 3.4. Let R be a ring and let M be an R-module. Then M has the ACC

on direct summands when one of the following conditions holds.
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(i) M is artinian or noetherian (see [1, Proposition 10.14]);
(ii) M has either finite uniform dimension or finite hollow dimension (see [4,
5.3] and [14, Proposition (6.30)']);
(i) Endg(M) is a semilocal ring (see [4, 5.3 and Corollary 18.7]).

In the following two results, we provide more examples of completely simple-

separable modules.

Proposition 3.5. Fvery injective simple-separable R-module is completely simple-

separable.
Proof. This follows directly from Proposition 2.12. O

Proposition 3.6. If G is a simple-separable abelian group, then so is every sub-

group of G. In particular, G is completely simple-separable.

Proof. Let G be a simple-separable abelian group. From Theorem 2.30, we see
that N,>1p™(T,(G)) = 0 for all primes p. This implies that N,>1p™(T,(N)) = 0 for
any subgroup N of G and for all primes p. Now the result follows by using again
Theorem 2.30. (]

Proposition 3.7. Let M be an artinian module. Then M is completely simple-

separable if and only if M is finitely generated.

Proof. The sufficiency is clear. Conversely, assume that M is completely simple-
separable. From Proposition 3.3, we conclude that M = M; & My such that
Soc(My) = 0 and Ms is finitely generated. As M is artinian, Soc(M) = Soc(Ms)
is an essential submodule of M. This yields M; = 0. The result follows. a

Proposition 3.8. Let M be a completely simple-separable module. Then any
finitely generated semisimple submodule of M is contained in a finitely generated

direct summand of M.

Proof. Let n be a positive integer. We will prove that every semisimple submod-
ule of M having uniform dimension n is contained in a finitely generated direct
summand of M. This is clearly true for n = 1. Now assume that n > 2 and
every semisimple submodule of M having uniform dimension n — 1 is contained
in a finitely generated direct summand of M. Let U = S ® So @ --- @ S, be a
submodule of M which is a direct sum of n simple submodules S; (1 <i <n). By
hypothesis, S; & S3 @ --- & 5,1 is contained in a finitely generated direct sum-
mand K of M. Hence M = K @& N for some submodule N of M. If S,, C K, then



16 RACHID ECH-CHAOUY AND RACHID TRIBAK

U C K. Suppose now that S, ¢ K. In this case we have S, N K = 0 and hence
Sp® K =K ®|[(S, @ K)N NJ]. Therefore (S, @ K) N N is a simple submodule of
N. Since N is simple-separable, there exists a finitely generated direct summand
L of N such that (S, @ K)NN C L. Hence U C K@ [(S, ® K)NN] C K@ L and
K @ L is a finitely generated direct summand of M. This completes the proof. [

The following corollary is an immediate consequence of Proposition 3.8.

Corollary 3.9. If M is a completely simple-separable module such that Soc(M) is
finitely generated, then M = N @& K is a direct sum of submodules N and K such
that Soc(N) =0 and K is finitely generated.

Remark 3.10. The module M of Example 2.7 shows also that an infinite di-
rect sum of completely simple-separable modules need not be completely simple-

separable.

The next result deals with a special case of direct sums of two completely simple-

separable modules.

Proposition 3.11. Let M = My & M; be a direct sum of submodules My and My
such that My is completely simple-separable and My is semisimple. Assume that

one of the following conditions is satisfied:

(i) Ms is projective, or
(ii) My is finitely generated and M is a D3-module.
Then M is completely simple-separable.

Proof. Note first that every direct summand of a D3-module is also a D3-module
by [17, Lemma 4.7]. Thus by induction it is sufficient to prove (ii) when M, is a
simple module. To prove the result, let N be a direct summand of M and let S be
a simple submodule of N. We need only consider two cases:

Case 1: Assume that S is not contained in My. Then S&M; = M1 &[(S®M;)NM;]
is a direct summand of M since M is semisimple. Hence S is a direct summand
of N.

Case 2: Assume that S C M;. Then S C N N M. If we prove that N N M,
is a direct summand of M, the assertion follows. Indeed, in this case N N M is
a direct summand of M. This implies that N N M; is simple-separable since My
is completely simple-separable. Therefore there exists a finitely generated direct
summand K of N N M such that S C K. Clearly, K is a direct summand of N.
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(i) Note that N + My = M; @ [(N + My) N Ms] and hence N/(N N M;) =
(N + My)/M; = (N + My)N M. Since (N + M;) N M is a direct summand of Mo,
(N + M;) N Ms is projective. Therefore N N Mj is a direct summand of M.

(ii) Suppose that Ms is a simple module. If N C M7, then NNM; = N is a direct
summand of M. Now assume that IV is not contained in M;. Then N + M; = M
since M; is a maximal submodule of M. As M is a D3-module, it follows that

N N M is a direct summand of M. This completes the proof. O

4. Strongly simple-separable modules

In this section, we introduce the following stronger form of simple-separability.

Definition 4.1. A module M is called strongly simple-separable if every proper
simple submodule of M is contained in a proper finitely generated direct summand
of M.

Note that the above notion can be considered as the “simple” version of the

concept of A-separable modules (see [6]).

Example 4.2. (i) It is easily seen that for any finitely generated module M;
and any nonzero module My with Soc(Ms) = 0, the module M = M; & M,
is strongly simple-separable.

(ii) Every regular module M (i.e., every cyclic submodule of M is a direct
summand) is strongly simple-separable. In particular, every semisimple
module is strongly simple-separable.

(iii) If R is a right V-ring, then every R-module is strongly simple-separable

since every simple R-module is injective.

Remark 4.3. If a module M is not finitely generated, then M is strongly simple-

separable if and only if M is simple-separable.
The proof of the following proposition is straightforward.

Proposition 4.4. Let M be an indecomposable module. Then the following condi-
tions are equivalent:

(i) M is strongly simple-separable;

(ii) Soc(M) =0 or M is a simple module.

Remark 4.5. Let S be a simple module. From the preceding proposition, it follows

that E(S) is strongly simple-separable if and only if S is an injective module.
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Next, we provide an example to show that the class of simple-separable modules

and the class of strongly simple-separable modules are different.

Example 4.6. Let R be a commutative local artinian ring which is not a field. Let
m be the maximal ideal of R. Clearly, R is not a V-ring and hence the R-module
R/m is not injective. Note that E(R/m) is a finitely generated R-module by [23,
Theorem 3]. Then E(R/m) is simple-separable. On the other hand, E(R/m) is
not strongly simple-separable by Remark 4.5. For example, we can take the ring
R = 7/p™Z for some prime number p and some integer n > 2. Note that in this case
S = p"~1Z/p"Z is the unique simple R-module (up to isomorphism). Moreover,
E(S) = R (see [22, Theorem 6.7]).

Proposition 4.7. The following are equivalent for a ring R:
(i) Every R-module is strongly simple-separable;
(ii) Ewery injective R-module is strongly simple-separable;
(iii) Ewvery finitely cogenerated R-module is strongly simple-separable;
(iv) R is a right V-ring.

Proof. This follows from Example 4.2(iii) and Remark 4.5. O

In the next example, we show that the strongly simple-separable property does

not always transfer from a module to each of its direct summands.

Example 4.8. (i) Let M = &;>1M; be a direct sum of nonzero nonsimple inde-
composable finitely generated submodules M; (i > 1) such that Soc(M;,) # 0 for
some ig > 1 (for example, for each ¢ > 1, we can take M; to be the Z-module
Z/p;*Z where p; is a prime number and n; > 2 is an integer). It is clear that M
is strongly simple-separable. On the other hand, using Proposition 4.4, it follows
that M;, is not strongly simple-separable.

(ii) We can also consider the module M® given in Example 2.7. In fact, it is
easily seen that MM is strongly simple-separable. But M ™ has a direct summand

which is not simple-separable.

Proposition 4.9. Fvery direct sum of strongly simple-separable modules is strongly

simple-separable.

Proof. The proof can be adapted from that of Theorem 2.10 by taking into account

the fact that any semisimple module is strongly simple-separable. (|
The following corollary is a direct consequence of Proposition 4.9.

Corollary 4.10. The following conditions are equivalent for a ring R:
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(i) The R-module Rg is strongly simple-separable;

(ii) Every free R-module is strongly simple-separable.

In the next result, we characterize finitely generated duo strongly simple-separable

modules.

Proposition 4.11. Let M be a finitely generated duo R-module which is not sim-
ple. Then M is strongly simple-separable if and only if Soc(M) = 0 or M is not

indecomposable.

Proof. To prove the necessity, assume that Soc(M) # 0 and let S be a simple
submodule of M. Since M is strongly simple-separable and S # M, there exists
a finitely generated proper direct summand K of M such that S C K. Hence M
is not indecomposable as K # 0. Conversely, suppose that M = A @ B for some
proper nonzero submodules A and B of M. Let T be a simple submodule of M.
Since M is duo, T is fully invariant in M. This implies that T = (TN A) ® (T'N B).
Since T is simple, we have T C A or T C B. This proves that M is strongly

simple-separable. (I

Recall that a ring R is called right duo if the right R-module Rg is duo. The

next corollaries are direct consequences of Proposition 4.11.

Corollary 4.12. Let R be a right duo ring which is not a division ring. Then the
R-module Rp is strongly simple-separable if and only if Soc(Rg) = 0 or R has at

least one non-trivial tdempotent element.

A prime ideal p of a commutative ring R is said to be an associated prime ideal
of an R-module M provided p = Anng(x) for some nonzero element x of M. The

set of associated prime ideals of M is denoted by Ass(M).

Corollary 4.13. Let R be a commutative ring which is not a field and let Q) be the
set of all mazimal ideals of R. Then the R-module R is strongly simple-separable if

and only if Ass(R)NQ =10 or R has at least one non-trivial idempotent element.
We finally give the structure of strongly simple-separable abelian groups.

Proposition 4.14. Let G be a simple-separable abelian group. Then the following
conditions are equivalent:
(i) G is strongly simple-separable;
(ii) G is not isomorphic to Z/p™Z for every prime number p and any integer
n> 2.
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Proof. (i) = (ii) Given a prime number p and an integer n > 2, it is clear that the
indecomposable nonsimple Z-module Z/p"Z is not strongly simple-separable since
Soc(Z/p"Z) # 0 (see Proposition 4.4).

(ii) = (i) Let G be a simple-separable abelian group which is not isomorphic to
Z/p"Z for every prime number p and any integer n > 2. If G contains no simple
proper subgroups, then clearly G is strongly simple-separable. Now assume that
G contains a simple proper subgroup S. Then S is isomorphic to Z/poZ for some
prime number pg. By Theorem 2.30, S is contained in a direct summand H of G
with H = Z/pfZ for some positive integer k. If k = 1, then H = S and hence
H # G. Moreover, if k > 2, then H # G by (ii). This completes the proof. O
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