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A B S T R A C T  A R T I C L E  I N F O   

In this paper, we apply Laplace-Padé Series method to solve linear and non-linear differential-

algebraic equations (DAEs). Firstly, The basic properties of the Laplace-Padé Series method are 

given. Secondly, we calculate the arbitrary order power series of differential-algebraic equations 

(DAEs), then convert it to the series form Laplace-Padé. Then, the three differential-algebraic 

equations (DAEs) are solved by Laplace-Padé Series method. It was seen that the method gave 

effective and fast results. Therefore, the method can be easily applied to linear and non-linear 

differential-algebraic equations (DAEs) problems in different fields. 
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1. Introduction 

 

Today, there are many mathematical models that can be 

expressed with differential-algebraic equations (DAEs). It is 

very difficult to solve such models analytically. Recently, 

researchers have begun to work on numerical solutions of 

systems of differential-algebraic equations (DAEs). Circuit 

analysis, computer aided design and real-time simulation of 

mechanical systems, power systems, chemical process 

simulation and optimum control are some of these systems in 

many fields. Researchers have developed some numerical 

methods using Backward Differentiation Formula  (BDF) [1-

5]  and implicit Runge–Kutta methods [6] methods to solve 

these systems. This type of method is suitable for problems 

with small indexes and have a special structure. Many 

problems are solved by these methods. However, more 

general methods are needed. Many methods have been 

proposed by researchers[9-14], and so on[16-21]. In this 

article, we presented a new method for solving differential-

algebraic equations (DAEs). We have applied the method to 

three examples. the first of the examples is linear, the second 

is non-linear, and the third is a physically modeled differential 

algebraic equations(DAEs). The difference of our method 

from other methods presented in the references in solving 

problems modeled as differential-algebraic equations (DAEs) 

in science and engineering is that the method we present gives 

fast results. 

 

2. The Method 

 

A system of general non-linear differential algebraic 

equations with initial conditions is denoted  

𝐺(𝑡, 𝑦, 𝑦′) = 0, 𝑦(𝑡) = 𝑦0                                             (1) 

where 𝐺 ∈ 𝑅𝑛 , 𝑦 ∈ 𝑅𝑛 and 𝑡 ∈ 𝑅.  

Let us assume that the solutions of equation (1) are of the form 

0 ,y y at                                                       (2) 

where 𝑎 is a vector function. Equation (2) and its 

derivatives are substituted in equation (1), and if higher 

order terms are neglected, equation   

ℳ𝑎 = 𝒩,                                                          (3) 

is obtained. Where ℳ and 𝒩 are constant matrixes. The 

a  values are found by solving equation (3). Then, by 

applying the above process to higher order terms, 

arbitrary order power series of equation (1) are 

obtained[7,8]. 

 

3. General Power Series Solution for Differential-

Algebraic Equations(DAEs) 

 

Now let's define another kind of power series in the form 

following: 

𝑓(𝑡) = 𝑓0 + 𝑓1𝑡 + 𝑓2𝑡2+. . . +(𝑓𝑛 +
𝑞1𝑎1+. . . +𝑞𝑚𝑎𝑚)𝑡𝑛                                        (4) 
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Where 𝑞1, 𝑞2 , ⋯ , 𝑞𝑚 are constants. 𝑎1, 𝑎2, ⋯ , 𝑎𝑚 are bases of 

vector 𝑎. Let's represent each element with the Power series 

in (4). Then  

𝑦𝑖 = 𝑦𝑖,0 + 𝑦𝑖,1𝑡 + 𝑦𝑖,2𝑡2+. . . +𝑎𝑖𝑡𝑛                   (5) 

is also generally of the form. Substituting equation (5) into 

equation (1), we get the following: 

𝑓𝑖 = (𝑓𝑖,𝑛 + 𝑞𝑖,1𝑎1+. . . +𝑞𝑖,𝑚𝑎𝑚)𝑡𝑛−𝑗 +

𝑂(𝑡𝑛−𝑗+1),                                                          (6) 

If (1) have y , j  is 0 .  If (1) not have y , j  is 1 . From 

equation (6) and (3), we get the linear equation following: 

ℳ𝑖,𝑗 = 𝑃𝑖,𝑗 

                                                               (7) 

𝒩𝑖 = −𝑓𝑖,𝑛,                                                          (8) 

When the linear equation (7) and (8) is solved, 𝑎𝑖

 1,...,i m  is obtained. Substituting 𝑎𝑖 in equation (5), 

we get iy  1,...,i m  polynomials of degree n . If  these 

process are repeated from equation (5) to equation (8), 

arbitrary order power series are obtained for equation (1). 

 

4. Padé Series 

 

The Padé series, in the form of a rational function, 

is defined as following: 

𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ =
𝑎0+𝑎1𝑥+⋯+𝑎𝑀𝑥𝑀

1+𝑏1𝑥+⋯+𝑏𝐿𝑥𝐿               (9)                                  

In equation (9), if the cross-multiplication 

multiplication is done, we have 

(𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ )(1 + 𝑏1𝑥 + ⋯ + 𝑏𝐿𝑥𝐿) = 𝑎0 +
𝑎1𝑥 + ⋯ + 𝑎𝑀𝑥𝑀                                                 (10) 

From the coefficient equality of both sides in equation (10), 

We have  

𝑐𝑙 + ∑ 𝑐𝑙−𝑘𝑏𝑘 = 𝑎𝑙
𝑀
𝑘=1  (𝑙 = 0, ⋯ , 𝑀)                   (11)                                   

𝑐𝑙 + ∑ 𝑐𝑙−𝑘𝑏𝑘 = 0𝐿
𝑘=1  (𝑙 = 𝑀 + 1, ⋯ , 𝑀 + 𝐿)(12)                                                    

By solving the linear equation (12), we get 𝑏𝑘(𝑘 = 1, ⋯ , 𝐿). 

And if we substitute 𝑏𝑘 in equation (9), we get 𝑎𝑘(𝑙 =
1, ⋯ , 𝑀) [7,8]. 

 

5. Laplace-Padé Series Method (LPSM) 

 

The following steps are done for the Laplace-Padé series 

method [15]. 

1. The Laplace transform is applied to the obtained power 

series. 

2. In the resulting equation, 𝑠 is replaced by 1/𝑥. 

3. We convert it from order  /M L   to Padé series. M

and L are arbitrarily chosen, but they should be of smaller 

value than the order of the power series. 

4. 1 / s  is written instead of 𝑥. 

5. Finally, the inverse laplace transform is taken.  

Thus, the exact or numerical solution of the given equation is obtained. 

 

6. Applications 

 

In this section, we have solved the three differential-

algebraic equations (DAEs) with the the Laplace-Padé series 

method (LPSM). 

1. We consider the following linear differential-algebraic 

equation [15]: 

1 1 3 4

2

2 1 2 3 4

3 2

3 1 2 3

1 2 3 4

0,

0,

0,

0,

y y xy y

y y y x y xy

y x y x y y

xy y xy y

    

     

    

   

                 (13)                                                   

and initial values 

   

   

1 3

2 4

0 0 1,

0 0 0,

y y

y y

 

 
 

The exact solution is 

   

   

   

   

1

2

3

4

exp ,

exp ,

exp ,

exp .

y x x

y x x x

y x x

y x x x

 

 





 

From initial values, the solutions of (13) can be supposed as 

   

   

   

   

1 0,1 1 1 1

2 0,2 2 2 2

3 0,3 3 3 3

4 0,4 4 4 4

1

1

y x y a x y x a x

y x y a x y x a x

y x y a x y x a x

y x y a x y x a x

    

   

    

   

      (14) 

Substitute (14) into (13) and neglect higher order terms, we 

have 

 

 

 

   

1

2

3

2

2 4

1 0

1 0

1 0

2 0

a O x

a O x

a O x

a a x O x

  

  

  

   

                      (15)                                                                           

These formulas correspond to (6). The linear equation 

corresponding to (7) and (8) can be given as: 

ℳ𝑎 = 𝒩                                                          (16)                                                                                

Where 

ℳ = (

1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 −1

), 𝒩 

1

1

1

0

 
 
 
 
 
 
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1

2

3

4

a

a
a

a

a

 
 
 
 
  
 

                                            (17) 

From equation (16), we have linear equation 

 

1

2

3

4

1 0 0 0 1

0 1 0 0   1

0 0 1 0   1

0 1 0 1 2

a

a

a

a

    
    
     
    
           

            (18)                                                                                    

 

Solving equation (18), we have 

1

  1

  1

  1

a

 
 
 
 
 
 

                                                     (19)                                                                                                                   

and 

 

 

 

 

1

2

3

4

1 ,

,

1 ,

.

y x x

y x x

y x x

y x x

 



 



                                         (20)                                                                                                 

From (17) the solutions of (13) can be supposed as 

 

 

 

 

2

1 1

2

2 2

2

3 3

2

4 4

1

1

.

y x x a x

y x x a x

y x x a x

y x t a x

  

 

  

 

                             (21)                                                                                            

In like manner, substitute (18) into (13) and neglect higher 

order terms, then we have 

   

   

   

   

2

1

2

2

2

3

2 3

2 4

2 1 0

2 2 0

2 1 0

0.

a x O x

a x O x

a x O x

a a x O x

  

  

  

   

                 (22)                                                                                   

Where 

ℳ = (

2 0 0 0
0 1 0 0
0 0 2 0
0 −1 0 −1

),  𝒩 = (

1
−1
1
0

),  

1

2

3

4

a

a
a

a

a

 
 
 
 
  
 

                                                        

 

from (19) we have linear equation 

1

2

3

4

2 0 0 0   1

0 1 0 0 1

0 0 2 0   1

0 1 0 1   0

a

a

a

a

    
    

     
    
          

                (23)                                                                          

 

Solving equation (23), we have 

  0.5

1
.

  0.5

  1

a

 
 
 
 
 
 

                                                     (24)                                                                                                               

Therefore 

 

 

 

 

1

2

2

3

2

4

1

1 0.5

y x x

y x x

y x x x

y x x x

 



  

 

                                  (25)                                                                                       

 

Repeating above procedure we have 

 

 

 

 

2 3 4

1

3 4
2

2

2 3 4

3

3 4
2

4

1 ,
2 6 24

,
2 6

1 ,
2 6 24

.
2 6

x x x
y x x

x x
y x x x

x x x
y x x

x x
y x x x

    

   

    

   

                 (26)                                                                                 

Then, Laplace transformation is applied to (26) 
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 

 

 

 

1 2 3 4 5

2 2 3 4 5

3 2 3 4 5

4 2 3 4 5

1 1 1 1 1
,

1 2 3 4
,

1 1 1 1 1
,

1 2 3 4
.

L

L

L

L

y s
s s s s s

y s
s s s s

y s
s s s s s

y s
s s s s

    

   

    

   

 

 and then 
1

x
 is written in place of 𝑠.  

2 3 4 5

1

2 3 4 5

2

2 3 4 5

3

2 3 4 5

4

1
,

1
2 3 4 ,

1

1
2 3 4 .

L

L

L

L

y x x x x x
x

y x x x x
x

y x x x x x
x

y x x x x
x

 
     

 

 
    

 

 
     

 

 
    

 

 

Afterwards, Padé approximant of order  2 / 2  is applied  

𝑦1,[2,2](𝑥) =
𝑥

1 + 𝑥
,              

𝑦2,[2,2](𝑥) =
𝑥2

𝑥2 + 2𝑥 + 1
,

𝑦3,[2,2](𝑥) =
𝑥

1 − 𝑥
,              

𝑦4,[2,2](𝑥) =
𝑥2

𝑥2 − 2𝑥 + 1
,

 

 

and 
1

s
 is written in place of x  for each variable 

 

 

1,[2/2]

2,[2/2] 2

3,[2/2]

4,[2/2] 2

1 1
,

1

1 1
,

1

1 1
,

1

1 1
.

1

y
s s

y
s s

y
s s

y
s s

 
 

 

 
 

  

 
 

 

 
 

  

 

 

Finally, by using the inverse Laplace transformation,  

   

   

   

   

1

2

3

4

exp ,

exp ,

exp ,

exp .

y x x

y x x x

y x x

y x x x

 

  



 

 

We obtain the exact solution for (13). 

 

2. We consider the following linear differential-algebraic 

equation[15]: 

 

1 1 2 1 2

2

2 1 2 2

1 1 2 1 2

2 2

2 1 2 2

2

1 2

2 ,

,

,

,

1.

y y y z z

y y y z

z y y z z u

z y y z u

y y

 

  

  

  



            (27)                                                        

and initial values 

   

   

 

1 2

1 2

0 0 1,

0 0 1,

0 1.

y y

z z

u

 

 



 

where prime denotes derivative with respect to x. 

Applying the above method to Equation (27) 

 

 

 

 

 

2 3 4

1

2 3 4

2

2 3 4

1

2 3 4

2

2 3 4

4 2
1 2 2 ,

3 3

1 1 1
1 ,

2 6 24

4 101
1 2 2 ,

3 174

1 1 59
1 ,

2 6 696

1 1 25
1 .

2 174 58

y x x x x x

y x x x x x

z x x x x x

z x x x x x

u x x x x x

    

    

    

    

    

      (28)                                                                       

Then, Laplace transformation is applied to (28) and then 
1

x
 is 

written in place of s  . Afterwards, Padé approximant of order 

 2 / 2  is applied and 
1

s
 is written in place of x  for each 

variable. Finally, by using the inverse Laplace transformation, 

we obtain the exact solution for (27). 
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   

   

   

   

   

1

2

1

2

exp 2 ,

exp ,

exp 2 ,

exp ,

exp .

y x x

y x x

z x x

z x x

u x x



 



 



                                     (29)                                                                                              

 

3.  Physical Problem 

 

Consider the linear circuit given in Figure 1. The modified 

nodal analysis leads directly to the system  

 

 
 

 Fig. 1. Linear circuit with a time-dependent capacitance. 

 

1 1

2 1 2 2

1

2

( ) ( )1 1

0 1

0 0 ( ) ( ) ( ) ( )

0 0 ( ) 0

0 0 1 ( ) 0

0 1 0 ( ) ( )

B t k t

B t k t B t k t

H k t

k t

j t W t

   
  

  
    

    
    

     
    
    

       (30)           

Choosing 

1 2( ) 1 0.25(sin( ) cos( )),   B 1,   H 2B t t t    

                                                                               

(31) 

And input voltage 

( ) 4sin( ) 0.25sin(2 ).W t t t                    (32)                                                                                           

Substitute equation (31) and (32) into equation (30), we can 

get the following 

               

     

     

1 1 2

1 2

2

2 0.25 cos sin 2 0.25 cos sin 0,

0,

4sin 0.25sin 2

t t k t t t k t k t

k t k t j t

k t t t

             

    

 

                                                                               

(33) 

Exact solution of equation (33) is 

     

     

       

1

2

sin cos ,

4sin 0.25sin 2 ,

3cos 0.5cos 2 sin

k t t t

k t t t

j t t t t

 

 

  

 

For the consistent initial values 

     1 20 1, 0 0, 0 3.5.k k j    

Equation (33) is form of equation (1).  

Applying the above method to equation (33), we have 

 

 

 

2 3 4

1

3

2

2 3 4

1 0.5 0.1666666667 0.04166666667 ,

4.5 ,

3.5 2.5 0.1666666667 0.4583333333 .

k t t t t t

k t t t

j t t t t t

    

 

    

                                                                               

(34) 

Then, Laplace transformation is applied to (34) and then 
1

t
 is 

written in place of 𝑠. Afterwards, Padé approximant of order 

 2 / 2  is applied and 
1

s
 is written in place of t  for each 

variable. Finally, by using the inverse Laplace transformation,  

we obtain the exact solution for (30). 

     

     

       

1

2

sin cos ,

4sin 0.25sin 2 ,

3cos 0.5cos 2 sin .

k t t t

k t t t

j t t t t

 

 

  

  

 

Conclusion  

 

This work presented Laplace-Padé series method as a 

combination of the classic series method and method based on 

the Laplace and Padé series. By solving three problems, we 

presented the Laplace-Padé series method as a useful tool with 

high potential to solve linear/non-linear differential-algebraic 

equations. The Laplace-Padé Series Method(LPMS) is used for 

rapid convergence of solutions or to find exact solutions. The 

proposed method possesses a straightforward procedure, 

suitable for science and engineers. The method presented in 

our next work will be applied to different problems modeled 

as linear and non-linear differential-algebraic equations 

(DAEs). 
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