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1. Introduction  

The variable exponent Lebesgue space was first revealed by [1]. However, this space is based on 

the paper of [2] together with applications to modeling electrorheological fluids [3]. Many operators and 

inequalities have been studied in the variable exponent Lebesgue space. One of the most important of 

these is the Hardy operator, fractional Hardy operator, and inequality. As an example of a few studies, 

Different approaches have been introduced to the Hardy operator, fractional Hardy operator, and 

inequalities [4, 5]. In addition, a new dimension was added to the Hardy-type inequalities in the weighted 

and variable exponent Lebesgue space [6]. Mathematicians and scientists working in different scientific 

fields have expanded the workspace of operators in harmonic analysis. For example, they have proved 

the conditions for the boundedness and compactness, etc. of operators and fractional inequalities in 

variable exponent Lebesgue spaces and they used it in physics, mechanics, electrorheological fluids, 

optics, economics, etc. [7, 8, 9, 10, 11, 12, 13]. Besides, it has been known that the fractional Hardy 

operator in a variable exponent Lebesgue space does not satisfy arbitrary non-negative measurable 

functions; but provides for non-negative monotonic functions. Moreover, the sharp constant of the 

fractional Hardy-type operator was obtained for non-negative functions [13]. After a while, the 

monotony was replaced by a weaker condition [14]. However, a relationship has also been established 

between harmonic analysis in general, the variable exponential Lebesgue space in particular, and other 

spaces of different types. Time scales, Morrey spaces, and Sobolev spaces can be examples of spaces. 

Recently, the calculation of time scales has also attracted authors' attention. Generally, by 

integrating time scales with the subjects within the field of harmonic analysis, they have revealed the 

magnificent relationships between them. For example, the dynamic integral inequalities and fractional 

integral operators have been studied on time scales with variable exponent Lebesgue spaces by many 

authors [15-28]. 

https://dergipark.org.tr/mejs
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We aim of this paper is to obtain some inequalities for exponentially weighted fractional Hardy-

type operator and the weighted dual of the classical fractional Hardy operator acting exponentially 

weighted with ∆-integral in time scale calculus. 

2. Auxiallary Statements and Preliminaries 

The emergence of the theory of time scales was introduced to the literature in 1988 by Stefan 

Hilger [29]. Although it later experienced a period of stagnation, its popularity increased especially after 

the 2000s. Recently, many authors have studied certain dynamic inequalities on time scales, operators, 

and concepts that fall within the field of harmonic analysis. We see that it still maintains its popularity 

today. Let [𝑥, 𝑦] be a facultative closed interval on 𝕋 (time scale). We refer to the references [29-32] for 

more details. [𝑥, 𝑦]𝕋 is denoted by [𝑥, 𝑦] ∩ 𝕋. 

 

Definition 2.1. [31] The functions 𝜎, 𝜌: 𝕋 → 𝕋 are defined by 𝜎(𝑡) = 𝑖𝑛𝑓{𝑠 ∈ 𝕋: 𝑠 > 𝑡}, 𝜌(𝑡) =

𝑠𝑢𝑝{𝑠 ∈ 𝕋: 𝑠 < 𝑡} for 𝑡 ∈ 𝕋. 𝜎(𝑡) is defined as forward jump operator. The function 𝜌(𝑡) is defined as 

backward jump operator. If 𝜎(𝑡) > 𝑡, then 𝑡 is defined as right-scattered. If 𝜎(𝑡) = 𝑡, then 𝑡 is called as 

right-dense. If 𝜌(𝑡) < 𝑡, then 𝑡 is defined as left-scattered. If 𝜌(𝑡) = 𝑡, then 𝑡 is called as left-dense.  

 

Definition 2.2. [31] Let functions 𝜇, 𝜗: 𝕋 → ℝ+ such that 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, 𝜗(𝑡) = 𝑡 − 𝜌(𝑡). The 

functions μ(t) and 𝜗(𝑡) are called as graininess functions. Let 𝕋 be a left-scattered maximum m, then 

𝕋𝑘 = 𝕋 − {𝑚}.  

 

𝕋k is defined as follows 

 

𝕋𝑘 = {
𝕋 ∖ (𝜌 𝑠𝑢𝑝 𝕋, 𝑠𝑢𝑝 𝕋],       𝑖𝑓     𝑠𝑢𝑝 𝕋 < ∞
                                   𝕋,        𝑖𝑓     𝑠𝑢𝑝 𝕋 = ∞

 

and 

𝕋𝑘 = {
𝕋 ∖ [𝑖𝑛𝑓 𝕋 , 𝜎(𝑖𝑛𝑓 𝕋)],         |𝑖𝑛𝑓 𝕋| < ∞
                                      𝕋,           𝑖𝑛𝑓 𝕋 = −∞.

 

 

Let 𝑔: 𝕋 → ℝ be a mapping and let 𝑡 be defined as right-dense. We can write the following. 

 

i) Let 𝑔 be ∆ −differentiable at 𝑡 ∈ 𝕋𝑘(𝑡 ≠ 𝑚𝑖𝑛𝕋), then 𝑔 is continuous at point t.  
ii) Let 𝑔 be left continuous at 𝑡 and let 𝑡 be defined as right-scattered, then 𝑔 is 

∆ −differentiable at point 𝑡, 

𝑔∆(𝑡) =
𝑔𝜎(𝑡) − 𝑔(𝑡)

𝜇(𝑡)
 

    

iii) Let 𝑔 be ∆ −differentiable at  𝑡 and 𝑙𝑖𝑚
𝑠→𝑡

𝑔(𝑡)−𝑔(𝑠)

𝑡−𝑠
, then 

𝑔∆(𝑡) = 𝑙𝑖𝑚
𝑠→𝑡

𝑔(𝑡) − 𝑔(𝑠)

𝑡 − 𝑠
. 

 

iv) Let 𝑔 be ∆ −differentiable at 𝑡, then 𝑔𝜎(𝑡) = 𝑔(𝑡) + 𝜇(𝑡)𝑔∆(𝑡). 
 

Remark 2.3. [31] If  𝕋 = ℝ, then 𝑔∆(𝑡) = 𝑔′(𝑡), and if  𝕋 = ℤ, then ℎ∆(𝑡) = ∆ℎ(𝑡). 
 

Definition 2.4. [30] If 𝐺:𝕋 → ℝ is defined as a ∆ −antiderivative of 𝑔: 𝕋 → ℝ, then 𝐺∆ = 𝑔(𝑡) 

holds for all 𝑡, 𝑠 ∈ 𝕋 and ∆-integral of 𝑔 is called as the by 
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∫𝑔(𝜏)∆𝜏

𝑡

𝑠

= 𝐺(𝑡) − 𝐺(𝑠). 

 

The following statements were proved by [14] 

 

Theorem 2.5. [14] Let 𝑓 be a measurable function on (0,∞) and satisfies for some 𝐶 > 0. Let 

𝑥 > 0, 0 < 𝑞 < 1, and 𝛽 < 1 −
1

𝑞
. The inequality 

                                 𝑓(𝑥) ≤
𝐶

𝑥
(∫𝑓𝑞(𝑡)𝑡𝑞−1𝑑𝑡

𝑥

0

)

1
𝑞⁄

,                                                                        (1) 

then 

 

                              ‖𝑥𝛽(𝐻𝑓)(𝑥)‖
𝐿𝑞(0,∞)

≤ 𝐾‖𝑦𝛽𝑓(𝑦)‖
𝐿𝑞(0,∞)

                                                         (2) 

where 

                                𝐾 = 𝐶1−𝑞𝑞
1−
1
𝑞 (1 − 𝛽 −

1

𝑞
)
−
1
𝑞
                                                                            (3) 

 

Moreover, the constant 𝐾 is sharp. 

 

Let 𝜔 denote a weight non-negative function. The space of 𝐿𝑝,𝜔(0,∞) for 0 < 𝑝 < ∞  is defined 

as follows: 

‖𝑓‖𝐿𝑝,𝜔(0,∞) = (∫|𝑓(𝑥)|
𝑝𝜔(𝑥)𝑑𝑥

∞

0

)

1 𝑝⁄

. 

The fractional Hardy operator is defined as follows: 

(𝐻𝜔𝑓)(𝑥) =
1

𝐾(𝑥)

1

𝑥1−∝
∫𝑓(𝑦)𝜔(𝑦)𝑑𝑦

𝑥

0

,     𝑥 > 0, 

where 0 ≤∝< 1, 0 < 𝐾(𝑥) = ∫ 𝜔(𝑦)𝑑𝑦
𝑥

0
< ∞  for all 𝑦 > 0. 

 

Lemma 2.6. [14] Let 0 < 𝑞 < 1, 𝑘1 > 0, 𝐵 > 0, and let 𝜔 be a non-negative weight function, 

then the following inequality can be written. 

 

𝜔(𝑠) ≤ 𝑘1𝜔(𝑡)   for   0 < 𝑡 < 𝑠 < ∞                                                                                     (4) 

 

Let 𝑓 be a measurable function for almost all 0 < 𝑠 < ∞, then 

                     𝑓(𝑠) ≤ 𝐵(∫𝜔(𝑡)𝑡𝑞−1𝑑𝑡

𝑠

0

)

−1 𝑞⁄

(∫𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

𝑠

0

)

1 𝑞⁄

                                             (5) 

for all 𝑥 > 0 

                          (𝐻𝜔𝑓)(𝑥) ≤
𝑘2

𝑥𝜔(𝑥)1 𝑞⁄
(∫𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

𝑥

0

)

1 𝑞⁄

                                                      (6) 

where 𝑘2 = 𝑞
1
𝑞⁄ 𝐵1−𝑞𝑐1

𝑧

𝑞
−1
.  
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Remark 2.7. [14] If 𝜔 = 1, then inequality (5) turns into inequality (1) with 𝐶 = 𝐵𝑝
1
𝑝⁄  and 𝑘1 =

1, consequently 𝑘2 = 𝑝
1
𝑝⁄ 𝐵1−𝑝. 

 

Remark 2.8. [14] If 𝑓 is non-increasing mapping, then (5) holds for 𝐵 = 1. 

 

Theorem 2.9. [14] Let  𝑘1 > 0, 0 < 𝑞 < 1, 𝐵 > 0, 𝜔 be a positive weight function, and 𝛽 <

1 −
1

𝑞
.  Let 𝑓 be a Lebesgue non-negative measurable function, then 

 

                  ‖𝑥𝛽(𝐻𝜔𝑓)(𝑥)‖𝐿𝑞,𝜔(0,∞)
≤ 𝑁‖𝑦𝛽𝑓(𝑦)‖

𝐿𝑞,𝜔(0,∞)
                                                             (7) 

 where 

                             𝑁 = 𝐵1−𝑞𝑐1

2

𝑞
−1
(1 − 𝛽 −

1

𝑞
)
−
1

𝑞
                                                                        (8) 

 

Let 𝐻𝜔
∗  be the dual of the operator 𝐻𝜔 in 𝐿2(0,∞). Then for any 𝑓, 𝑔 ∈ 𝐿2(0,∞) 

∫ (
1

𝐷(𝑥)
∫𝑓(𝑠)𝜔(𝑠)𝑑𝑠

𝑥

0

)𝑔(𝑥)𝑑𝑥

∞

0

= ∫ (∫
𝑔(𝑥)

𝐷(𝑥)
𝑑𝑥

∞

𝑦

)𝑓(𝑠)𝜔(𝑠)𝑑𝑠

∞

0

 

 

= ∫ 𝜔(𝑠)(𝐻∗𝑔)(𝑥)𝑓(𝑠)𝑑𝑠

∞

0

= ∫ 𝜔(𝑦)(∫
𝑔(𝑥)

𝐷(𝑥)
𝑑𝑥

∞

𝑦

)𝑓(𝑠)𝑑𝑠.

∞

0

 

 

Hence the equality (𝐻𝜔𝑓, 𝑔)𝐿2(0,∞) = (𝑓,𝐻𝜔
∗ 𝑔)𝐿2(0,∞) is satisfied for the operator 𝐻𝜔

∗  defined by 

(𝐻𝜔
∗ 𝑓)(𝑥) = 𝜔(𝑥) ∫

𝑔(𝑦)

𝐷(𝑠)
𝑑𝑠

∞

𝑥

,     𝑥 > 0. 

Lemma 2.10. Let 𝜔 be a non-negative weight function for 𝑥 > 0, and let ∫ 𝜔(𝑡)𝑑𝑡
𝑥

0
< ∞ be 

satisfied. Let 𝑓 be a non-negative  measurable function for 0 < 𝑥 < ∞. Let 0 < 𝑞 < 1, 𝐵 > 0,  

∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

< ∞, 

and  

          𝑓(𝑥) ≤
𝐵

𝑥
(∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡
∞

𝑥
)
1 𝑞⁄
𝜔(𝑥)

1

1−𝑞(∫ 𝜔(𝑡)𝑑𝑡
𝑥

0
)
1

1−𝑞,                                      (9) 

 

then for 𝑛 > 0 

           (𝐻𝜔
∗ 𝑓)(𝑥) ≤ 𝑘3𝜔(𝑥)(∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥
)
1 𝑞⁄
                                                           (10) 

where 𝑘3 = 𝑞𝐵
1−𝑞. 

 

Proof. By (9) it follows that 

𝑥1−𝑞𝑓(𝑥)1−𝑞 ≤ 𝐵1−𝑞 (∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

1
𝑞−1

ω(x)∫𝜔(𝑡)𝑑𝑡

𝑥

0

. 

Hence 

𝑓(𝑥)

𝐾(𝑥)
≤ 𝐵1−𝑞ω(x)𝑓(𝑥)𝑞𝑥𝑞−1 (∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

1
𝑞−1
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= 𝑞𝐵1−𝑞(−1) [(∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

1 𝑞⁄

]. 

Integrating over (𝑛,∞), then we get 

∫
𝑓(𝑥)

𝐷(𝑥)
𝑑𝑥

∞

𝑛

 

≤ 𝑞𝐵1−𝑞 lim
𝑥→∞

((∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

𝑞

− (∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

1 𝑞⁄

) 

≤ 𝑞𝐵1−𝑞 (∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

1 𝑞⁄

 

Hence 

(𝐻𝜔
∗ 𝑓)(𝑥) = 𝜔(𝑥) ∫

𝑓(𝑥)

𝐷(𝑥)
𝑑𝑥

∞

𝑥

≤ 𝑞𝐵1−𝑞𝜔(𝑥) (∫ 𝑓𝑞(𝑡)𝜔(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥

)

1 𝑞⁄

. 

If 𝜔(𝑥) = 1 in (9) and (10), then we have the following corollary. 

 

Corollary 2.11. [14] Let 𝑓 be a non-negative Lebesgue measurable function for 0 < 𝑥 < ∞, and 

∫ 𝑓𝑞(𝑡)𝑡𝑞−1𝑑𝑡
∞

𝑥
< ∞. Let 𝐵 > 0 and 0 < 𝑞 < 1, then the inequality 

                      𝑓(𝑥) ≤
𝐵

𝑥𝑞
′ (∫ 𝑓𝑞(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝑥
)
1 𝑞⁄
                                                                            (11) 

is satisfied, then for 𝑥 > 0 

                 (𝐻∗𝑓)(𝑥) ≤ 𝑘3(∫ 𝑓𝑞(𝑡)𝑡𝑞−1𝑑𝑡
∞

𝑥
)
1 𝑞⁄
                                                                           (12) 

where  𝑘3 = 𝑞𝐵
1−𝑞  and 𝑞′ is the conjugate exponent of 𝑞. 

 

Remark 2.12. Inequalites (11), (12) respectively are analogues of inequality (1) and inequality 

(2) in [8], for the dual of the classical Hardy operator.  

 

Theorem 2.13. [14] Let 𝑓 be a non-negative Lebesgue measurable function. Let −
1

𝑞
< 𝛽 < 1 −

1

𝑞
 , 0 < 𝑞 < 1, 𝐵 > 0, 𝑥 > 0, then 

 

               ‖𝛾𝛽(𝐻∗𝑓)(𝛾)‖
𝐿𝑞(0,∞)

≤ 𝑘4‖𝑡
𝛽+1𝑓(𝑡)‖

𝐿𝑞(0,∞)
                                                               (13) 

 

where 𝑘4 = 𝑞𝐵
1−𝑞  (𝛽𝑞 + 1)

−
1

𝑞 . 

 

Proof. 

 𝐿1 = ‖𝛾
𝛽(𝐻∗𝑓)(𝛾)‖

𝐿𝑞(0,∞)
= [∫ 𝛾𝛽𝑞(𝐻∗𝑓)𝑞(𝛾)𝑑𝛾

∞

0
]
1
𝑞⁄
= [∫ 𝛾𝛽𝑞 (∫

𝑓(𝑡)

𝑡
𝑑𝑡

∞

𝛾
)
𝑞
𝑑𝛾

∞

0
]
1
𝑞⁄

. 

 

Then it follows that 

 

𝐿1 ≤ [∫ 𝛾
𝛽𝑞𝑘3

𝑞 (∫ 𝑓𝑞(𝑡)𝑡𝑞−1𝑑𝑡

∞

𝛾

)

𝑞

𝑑𝛾

∞

0

]

1
𝑞⁄

= 𝑘3 [∫ 𝑓
𝑞(𝑡)𝑡𝑞−1(∫𝛾𝛽𝑞𝑑𝛾

𝑡

0

)𝑑𝑡

∞

𝛾

]

1
𝑞⁄
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= 𝑞𝐵1−𝑞  (𝛽𝑞 + 1)
−
1

𝑞‖𝑡𝛽+1𝑓(𝑡)‖
𝐿𝑞(0,∞)

. 

 

Let 𝜑 be a measurable positive function in 𝑅𝑚. Suppose that 𝑝 is a measurable positive function 

on 𝜑. Assume that 0 < 𝑝− ≤ 𝑝(𝑥) ≤ 𝑝+ < ∞, 𝑝− = 𝑒𝑠𝑠 inf
𝑥∈𝜑

𝑝(𝑥), 𝑝+ = 𝑒𝑠𝑠 sup
𝑥∈𝜑

𝑝(𝑥) and 𝜔 is a 

weight function on 𝜑. 

 

Definition 2.14. Let 𝐿𝑝(𝑠),𝜔(𝜑) we define as all measurable functions on 𝜑 such that 

                𝐼𝑝,𝜔(𝑓) = ∫ (|𝑓(𝑠)𝜔(𝑠)|)𝑝(𝑠)𝑑𝑠
⬚

𝜑
< ∞                                                                           (14) 

Note that the expression 

       ‖𝑓‖𝐿𝑝(.),𝜔(𝜑) = inf {𝜆 > 0; ∫ (
|𝑓(𝑠)|𝜔(𝑠)

𝜆
)
𝑝(𝑠)

𝑑𝑠
⬚

𝜑
≤ 1}                                                (15) 

denotes on  𝐿𝑝(𝑠),𝜔(𝜑).  

 

Corollary 2.15. [10] Let 𝑛(𝑠) =
𝑢(𝑠)𝑣(𝑠)

𝑣(𝑠)−𝑢(𝑠)
, and let 0 < 𝑢− ≤ 𝑢(𝑠) ≤ 𝑣(𝑠) ≤ 𝑣+ < ∞. Assume 

that 𝜔1, 𝜔2 are weight functions in 𝜑 satisfying the condition: 

‖
𝜔1
𝜔2
‖
𝐿𝑛(.)(𝜑) 

< ∞. 

Then the inequality 

               ‖𝑓‖𝐿𝑢(.),𝜔1(𝜑) ≤ (𝐴1 +𝐵1 +
‖𝜒𝜑2‖𝐿∞(𝜑))

1

𝑢− ‖
𝜔1

𝜔2
‖
𝐿𝑛(.)(𝜑)

‖𝑓‖𝐿𝑣(.),𝜔2(𝜑)                  (16) 

holds for every 𝑓 ∈ 𝐿𝑣(𝑠),𝜔2(𝜑), where 

 

𝜑1 = {𝑠 ∈ 𝜑: 𝑢(𝑠) < 𝑣(𝑠)},      𝜑2 = {𝑦 ∈ 𝜑: 𝑢(𝑠) = 𝑣(𝑠)}, 
 

𝐵1 = sup
𝑠∈𝜑1

𝑢(𝑠)

𝑣(𝑠)
,      𝐴1 = sup

𝑠∈𝜑1

𝑣(𝑠) − 𝑢(𝑠)

𝑣(𝑠)
. 

 

Lemma 2.16. [11] Let 𝑡 ∈ 𝜑2 ⊂ 𝑅
𝑚. If 0 < 𝑝− ≤ 𝑝(𝑥) ≤ 𝑞(𝑡) ≤ 𝑞+ < ∞, for all 𝑥 ∈ 𝜑1 ⊂ 𝑅

𝑚, 

and if 𝑝 ∈ 𝑀(𝜑1), then the inequality 

 

             ‖‖𝑓‖𝐿𝑝(.)(𝜑1)‖𝐿𝑞(.)(𝜑2)
≤ 𝑀𝑝,𝑞 ‖‖𝑓‖𝐿𝑞(.)(𝜑2)‖𝐿𝑝(.)(𝜑1)

                                                     (17) 

 

holds, where 

                𝑀𝑝,𝑞 = (‖𝜒Λ1‖∞ + ‖𝜒Λ2‖∞ +
𝑝+

𝑞−
+
𝑝−

𝑞+
) (‖𝜒Λ1‖∞ + ‖𝜒Λ2‖∞)                            (18) 

 

𝑞− = 𝑒𝑠𝑠 inf
𝜑2
𝑞(𝑥),  𝑞− = 𝑒𝑠𝑠 sup

𝜑2

𝑞(𝑥)   

 

Λ1 = {(𝑥, 𝑡) ∈ 𝜑1 × 𝜑2; 𝑝(𝑥) = 𝑞(𝑥)}, Λ2 = 𝜑1 × 𝜑2\Λ1. 
 

If 𝑀(𝜑1) is define as continuous functions on 𝜑1 and if 𝑓: 𝜑1 × 𝜑2 → 𝑅 is define as measurable 

function, then 

  

‖‖𝑓‖𝐿𝑞(.)(𝜑2)‖𝐿𝑝(.)(𝜑1)
< ∞. 
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Theorem 2.17. [10] Let 𝑓 be a non-negative and non-increasing function, and let 0 < 𝑝− ≤

𝑝(𝑥) ≤ 𝑞(𝑡) ≤ 𝑞+ < 1, for 𝑥 ∈ (0,∞), and equality 𝑛(𝑥) =
𝑝−𝑝(𝑥)

𝑝(𝑥)−𝑝−
 be satisfied. Suppose that 𝜑1 and 

𝜑2 are weight non-negative functions.  The inequality 

            ‖𝐻𝑓‖𝐿𝑞(𝑥),𝜔2(0,∞) ≤ 𝑝
−
1

𝑝−𝑀𝑝,𝑞𝑏𝑝 ‖
𝑦

1

𝑝+‖
𝜔2
𝑥
‖
𝐿𝑞(.)(𝑦,∞)

𝜔1
‖

𝐿𝑛(.)(0,∞)

‖𝑓‖𝐿𝑝(.),𝜔1(0,∞)       (19) 

holds for 𝑓 ∈ 𝐿𝑝(𝑥),𝜔1(0, ∞), where 

𝑀𝑝,𝑞 

= (‖𝜒Λ1‖𝐿∞(0,∞) + ‖𝜒Λ2‖𝐿∞(0,∞) + 𝑝
− (

1

𝑞−
−
1

𝑞+
)) (‖𝜒T1‖𝐿∞(0,∞) + ‖𝜒T2‖𝐿∞(0,∞)), 

 

T1 = {𝑥 ∈ (0,∞): 𝑝(𝑥) = 𝑝
−},    T2 = (0,∞)\T1, and  𝑏𝑝 = (1 −

𝑝+−𝑝−

𝑝+
+ ‖𝜒T1‖𝐿∞(0,∞))

1

𝑝−

. 

3. Results and Discussion 

The variable exponentially fractional Hardy-type operator with ∆ −integral in time scale calculus 

is defined by as follows 

 

(𝐻∝𝜔𝑝𝑓)(𝑥) =
1

𝐾(𝑥)

1

𝑥1−∝
∫𝑓(𝑠)𝜔𝑝(𝑠)(𝑠)∆𝑠

𝑥

0

,     𝑥 > 0, 

where 0 ≤∝< 1, 0 < 𝑝(𝑠) < 1, 0 < 𝐾(𝑥) = ∫ 𝜔𝑝(𝑠)(𝑠)∆𝑠
𝑥

0
< ∞  for all 𝑠 > 0. 

 

Theorem 3.1. Let 𝑓 is ∆ −integrable non-negative Lebesgue measurable function satisfying 

inequality (5) with 𝑝 replaced by 𝑝−.  𝜔 is a positive weight function. Let 0 ≤∝< 1, 0 < 𝑝− ≤ 𝑝(𝑥) ≤

𝑞(𝑥) ≤ 𝑞+ < 1, 𝛽 < 1 −
1

𝑝−
 , 𝑛(𝑥) =

𝑝−𝑝(𝑥)

𝑝(𝑥)−𝑝−
. Assume that 𝜔1 and 𝜔2 are weight positive functions. 

The inequality 

 

‖𝐻∝𝜔𝑝(𝑡)𝑓‖𝐿𝑞(𝑥),𝜔2(0,∞)
 

 

      ≤ 𝑘2𝑀𝑝,𝑞𝑏𝑝
‖

‖
𝜔
𝑝(𝑡)
𝑝− 𝑡

1
𝑝−‖

𝜔2
𝑝(𝑡)

(𝑥)

𝑥𝜔

𝑝(𝑡)
𝑝− (𝑥)

‖

𝐿𝑞(.)(𝑡,∞)

𝜔1
𝑝(𝑦)

‖

‖

𝐿𝑛(.)(0,∞)

. ‖𝑓‖𝐿
𝑝(.),𝜔1

𝑝(𝑡)(0,∞)                                  (20) 

is valid for  𝑓 ∈ 𝐿𝑝(𝑥),𝜔1(0, ∞), where 𝑘2 = 𝑝
−
1

𝑝−𝑘1

2

𝑝−
−1
𝐵1−𝑝

−
.   

 

Proof. Applying Lemma 2.6, we obtain 

 

‖𝐻∝𝜔𝑝(𝑦)𝑓‖𝐿
𝑞(𝑥),𝜔2

𝑝(𝑦)(0,∞)
= ‖𝜔2

𝑝(𝑦)
𝐻∝𝜔𝑝(𝑦)𝑓‖𝐿𝑞(𝑥)(0,∞)
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≤ ‖
𝑘2𝜔2

𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

(
1

𝑥1−∝
∫𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1∆𝑡

𝑥

0

)

1 𝑝−⁄

‖

𝐿𝑞(𝑥)(0,∞)

 

= 𝑘2 ‖
𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

(
1

𝑥1−∝
∫𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1∆𝑡

𝑥

0

)

1 𝑝−⁄

‖

𝐿𝑞(𝑥)(0,∞)

. 

 

Let 𝐽1 = ‖
𝜔2
𝑝(𝑡)

(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

(
1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1∆𝑡
𝑥

0
)
1 𝑝−⁄

‖

𝐿𝑞(𝑥)(0,∞)

 

 

𝐽1 = ‖‖(
1

𝑥1−∝
∫[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(0.𝑥)(𝑡) [

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

]

𝑝−

𝑡𝑝
−−1∆𝑡

∞

0

)

1 𝑝−⁄

‖‖

𝐿𝑞(𝑥)(0,∞)

 

 

= ‖‖(
1

𝑥1−∝
∫[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(0.𝑥)(𝑡) [

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

]

𝑝−

𝑡𝑝
−−1∆𝑡

∞

0

)

1 𝑝−⁄

‖‖

𝐿𝑞(.)
𝑝−
(0,∞)

 

 

= ‖‖‖
1

𝑥1−∝
[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(0.𝑥)(𝑡) [

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

]

𝑝−

𝑡𝑝
−−1‖

𝐿1(0,∞)

‖‖

𝐿𝑞(.)
𝑝−
(0,∞)

1
𝑝−

. 

Next applying Lemma 2.16, we obtain 

 

𝐽1 ≤ 𝑀𝑝,𝑞

(

  
 1

𝑥1−∝
∫ ‖[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(0.𝑥)(𝑡) [

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

]

𝑝−

𝑡𝑝
−−1‖

𝐿𝑞(.)
𝑝−
(0,∞)

∆𝑡

∞

0

)

  
 

1 𝑝−⁄

 

 

= 𝑀𝑝,𝑞

(

  
 1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1‖𝜒(0.𝑥)(𝑡) [
𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

]

𝑝−

‖

𝐿𝑞(.)
𝑝−
(0,∞)

∆𝑡

∞

0

)

  
 

1 𝑝−⁄

 

 

= 𝑀𝑝,𝑞

(

  
 1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1‖[
𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

]

𝑝−

‖

𝐿𝑞(.)
𝑝−
(0,∞)

∆𝑡

∞

0

)

  
 

1 𝑝−⁄
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= 𝑀𝑝,𝑞 ‖
1

𝑥1−∝
𝑓(𝑡)𝜔

𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

‖

𝐿𝑞(𝑡,∞)

‖

𝐿𝑝−(0,∞)

. 

 

Let 𝐽2 = ‖𝑓(𝑡)𝜔
𝑝(𝑡)

𝑝− (𝑡)𝑡
𝑝−−1

𝑝− ‖
𝜔2
𝑝(𝑡)

(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

‖

𝐿𝑞(𝑡,∞)

‖

𝐿𝑝−(0,∞)

, 

 

then applying Corollary 2.15, we obtain 

 

𝐽2 ≤ 𝑏𝑝

‖

‖
𝜔
𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

‖

𝐿𝑞(𝑡,∞)

𝜔1
𝑝(𝑡)

‖

‖

𝐿𝑛(.)(0,∞)

1

𝑥1−∝
‖𝑓‖𝐿

𝑝(.)𝜔1
𝑝(𝑡)(0,∞), 

Hence 

 

  
‖𝐻𝜔𝑝𝑓‖𝐿𝑞(𝑥),𝜔2(0,∞)

 

 

≤ 𝑘2𝑀𝑝,𝑞𝑏𝑝

‖

‖
𝜔
𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖

𝜔2
𝑝(𝑡)(𝑥)

𝑥𝜔
𝑝(𝑡)
𝑝− (𝑥)

‖

𝐿𝑞(𝑡,∞)

𝜔1
𝑝(𝑡)

‖

‖

𝐿𝑛(.)(0,∞)

1

𝑥1−∝
‖𝑓‖𝐿

𝑝(.)𝜔1
𝑝(𝑡)(0,∞). 

 

Theorem 3.2. Let 𝑓 be ∆ −integrable a non-negative Lebesgue measurable function satisfying 

inequality (9) with 𝑝  replaced by 𝑝−. 𝜔 is a positive weight function. Let 0 ≤∝< 1, 0 < 𝑝− ≤ 𝑝(𝑥) ≤

𝑞(𝑥) ≤ 𝑞+ < 1, 𝛽 < 1 −
1

𝑝−
, 𝑛(𝑥) =

𝑝−𝑝(𝑥)

𝑝(𝑥)−𝑝−
,   𝑥 ∈ (0,∞). Assume that 𝜔1 and 𝜔2 are positive 

weight functions. The inequality 

 

‖𝐻
∝𝜔𝑝(𝑡)
∗ 𝑓‖

𝐿
𝑞(𝑥),𝜔2

𝑝(0,∞)
 

 

≤ 𝑘3𝑀𝑝,𝑞𝑏𝑝 ‖
𝜔
𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖𝜔2

𝑝(𝑡)
(𝑥)𝜔𝑝(𝑡)(𝑥)‖

𝐿𝑞(0,𝑡)

𝜔1
𝑝(𝑡) ‖

𝐿𝑛(.)(0,∞)

‖𝑓‖𝐿
𝑝(.)𝜔1

𝑝(𝑡)(0,∞)                         (21) 

 

is valid for  𝑓 ∈ 𝐿𝑝(𝑥),𝜔1(0, ∞), where 𝑘3 = 𝑝
−𝐴1−𝑝

−
. 

 

Proof. Applying Lemma 2.6, we obtain 

 

‖𝐻
∝𝜔𝑝(𝑡)
∗ 𝑓‖

𝐿
𝑞(𝑥),𝜔2

𝑝(𝑡)(0,∞)
= ‖𝜔2

𝑝(𝑡)
𝐻
𝜔𝑝(𝑡)
∗ 𝑓‖

𝐿𝑞(𝑥)(0,∞)
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≤ 𝑘3 ‖𝜔2
𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥) (

1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1∆𝑡

∞

𝑥

)

1 𝑝−⁄

‖

𝐿𝑞(𝑥)(0,∞)

 

 

Let 𝑉1 = ‖𝜔2
𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥) (

1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1∆𝑡
∞

𝑥
)
1 𝑝−⁄

‖
𝐿𝑞(𝑥)(0,∞)

, 

 

𝑉1 = ‖(
1

𝑥1−∝
∫[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(𝑥,∞)(𝑡) [𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)]
𝑝−

𝑡𝑝
−−1∆𝑡

∞

0

)

1 𝑝−⁄

‖

𝐿𝑞(𝑥)(0,∞)

 

 

= ‖
1

𝑥1−∝
∫[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(𝑥,∞)(𝑡) [𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)]
𝑝−

𝑡𝑝
−−1∆𝑡

∞

0

‖

𝐿𝑞(.)
𝑝−
(0,∞)

1 𝑝−⁄

 

 

= ‖‖
1

𝑥1−∝
[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(𝑥,∞)(𝑡) [𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)]
𝑝−

𝑡𝑝
−−1‖

𝐿1(0,∞)
‖
𝐿𝑞(.)
𝑝−
(0,∞)

1 𝑝−⁄

 

 

Applying Lemma 2.16, we obtain 

 

𝑉1 ≤ 𝑀𝑝,𝑞 (
1

𝑥1−∝
∫ ‖[𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)]𝜒(𝑥,∞)(𝑡) [𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)]
𝑝−

𝑡𝑝
−−1‖

𝐿𝑞(.)
𝑝−
(0,∞)

∆𝑡

∞

0

)

1 𝑝−⁄

 

 

= 𝑀𝑝,𝑞 (
1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1 ‖𝜒(𝑥,∞)(𝑡) [𝜔2
𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)]

𝑝−

‖
𝐿𝑞(.)
𝑝−
(0,∞)

∆𝑡

∞

0

)

1 𝑝−⁄

 

 

= 𝑀𝑝,𝑞 (
1

𝑥1−∝
∫ 𝑓𝑝

−
(𝑡)𝜔𝑝(𝑡)(𝑡)𝑡𝑝

−−1 ‖𝜔2
𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)‖

𝐿𝑞(0,𝑡)

𝑝−

∆𝑡

∞

0

)

1 𝑝−⁄

 

 

= 𝑀𝑝,𝑞 ‖
1

𝑥1−∝
𝑓(𝑡)𝜔

𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)‖
𝐿𝑞(0,𝑡)

‖
𝐿𝑝−(0,∞)

. 

 

By applying Corollary 2.15, we obtain 

 

‖
1

𝑥1−∝
𝑓(𝑡)𝜔

𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)‖
𝐿𝑞(0,𝑡)

‖
𝐿𝑝−(0,∞)
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≤ 𝑏𝑝 ‖
‖
𝜔
𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)‖
𝐿𝑞(0,𝑡)

𝜔1
𝑝(𝑡) ‖

‖

𝐿𝑛(.)(0,∞)

1

𝑥1−∝
‖𝑓‖𝐿

𝑝(.)𝜔1
𝑝(𝑡)(0,∞). 

 

Hence 

 

‖𝐻
𝜔𝑝(𝑡)
∗ 𝑓‖

𝐿
𝑞(𝑥),𝜔2

𝑝(0,∞)
 

 

≤ 𝑘3𝑀𝑝,𝑞𝑏𝑝 ‖
‖
𝜔
𝑝(𝑡)
𝑝− (𝑡)𝑡

𝑝−−1
𝑝− ‖𝜔2

𝑝(𝑡)(𝑥)𝜔𝑝(𝑡)(𝑥)‖
𝐿𝑞(0,𝑡)

𝜔1
𝑝(𝑡) ‖

‖

𝐿𝑛(.)(0,∞)

1

𝑥1−∝
‖𝑓‖𝐿

𝑝(.)𝜔1
𝑝(𝑡)(0,∞). 

 

 

Remark 3.3. In Theorem 3.1 and Theorem 3.2, if we get 𝕋 = ℝ, ∝= 1 and 𝑝(𝑡) = 0, then we 

obtain continuous weighted inequalities as mentioned in [15]. 

4. Conclusion 

In general, operators and variable exponent types of inequalities have become one of the important 

cornerstones of harmonic analysis. Their boundedness, compactness, etc. have caused them to become 

the focus of attention of mathematicians. Numerous studies have been conducted in this field, especially 

since the beginning of this century. Likewise, the issue of time scales has become popular, especially in 

the last years, although not so much in the past. Holistic studies covering time scales and harmonic 

analysis have become more popular recently. Inspired by these studies, we took a new present to variable 

exponentially fractional Hardy operator by reconciling time scales and harmonic analysis. 
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