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An Approach Based on Golden Eagle Optimization Algorithm for 

Maximum Power Point Tracking of PV Panel Under Partial 

Shading Conditions 

Highlights 

 The GEO algorithm is inspired by the hunting behavior of golden eagles to overcome challenges in 

traditional MPPT techniques.  

 The GEO MPPT technique has been tested through simulations in three partial shading scenarios. 

 The performance of the GEO algorithm has been compared with GA and PSO. 

Graphical Abstract 

This graphical illustrates a solar energy system enhanced with Maximum Power Point Tracking (MPPT), utilizing a 

bio-inspired optimization approach (Golden Eagle Optimization) for efficient energy management and conversion. 

MPPT

 

Figure. Graphical Abstract 

Aim 

The study aims to develop and validate an innovative Maximum Power Point Tracking (MPPT) technique using the 

Golden Eagle Optimization (GEO) algorithm. This method is designed to accurately determine the global maximum 

power point (GMPP) to improve the efficiency of photovoltaic (PV) systems under partial shading conditions  

Design & Methodology 

Inspired by the hunting behavior of golden eagles, the GEO algorithm is used to address the limitations of traditional 

MPPT techniques. The effectiveness of the algorithm is verified through simulations in three different partial shading 

scenarios. The comparative analysis highlights the superior performance of the algorithm in terms of convergence 

speed, accuracy and robustness compared to other meta-heuristics such as Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO).  

Originality 

This paper presents the GEO algorithm as an innovative approach for MPPT and highlights its simplicity, adaptability 

and superior performance compared to conventional and existing meta-heuristic algorithms. 

Findings 

The GEO algorithm showed a 10% improvement in tracking efficiency and a 20% speedup in convergence time 

compared to GA and PSO under partial shadowing conditions. Its simplicity and the need for minimal computational 

resources make it highly suitable for real-time MPPT applications.  

Conclusion  

The study highlights the potential of the GEO algorithm to improve PV system performance under partial shading 

conditions. By improving energy extraction efficiency and reducing convergence time, the GEO-based MPPT 

technique contributes to the wider adoption of solar energy as a reliable and sustainable power source.  
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ABSTRACT

This study introduces an innovative Maximum Power Point Tracking (MPPT) technique utilizing the Golden Eagle Optimization

(GEO) method, specifically designed to enhance the efficiency of photovoltaic (PV) systems under partial shading conditions.

Unlike traditional MPPT approaches that struggle with local peaks in power-voltage curves caused by shading, the GEO method

leverages the hunting behavior-inspired algorithm to accurately locate the global maximum power point (GMPP). The effectiveness

of the GEO MPPT technique is demonstrated through extensive simulations across three diverse case scenarios, each representing

different partial shading patterns. In all scenarios, the GEO method outperforms conventional MPPT techniques, showcasing its

adaptability and superior performance in challenging conditions. The successful implementation of GEO MPPT leads to substantial

improvements in PV panel energy extraction efficiency, even when faced with the complexities of partial shading. This research

contributes significantly to the advancement of solar PV systems, enhancing their reliability and performance in real-world

environments. By mitigating the impact of partial shading, this work promotes the wider adoption of solar energy as a viable and

sustainable power solution.

Keywords: Golden Eagle Optimization Algorithm, Maximum Power Point Tracking, PV Panel, Partial Shading Conditions

1. INTRODUCTION

The increasing global population demands more

electricity, but traditional energy sources are dwindling.

This necessitates a shift to renewable energy, which is

now accessible and competitively priced [1]–[4]. PV

generation is key due to its benefits, but its lower

efficiency and reliance on temperature and radiation

present challenges [5]–[7]. MPPT algorithms, like

Perturb and Observe (P&O), have been developed to

optimize PV power [8], However, P&O has limitations,

and artificial intelligence-based algorithms like ANFIS

have been proposed to improve tracking [9]–[13]. This

paper suggests using the GEO algorithm for MPPT under

partial shading [14]. Inspired by the foraging behavior of

golden eagles, the GEO algorithm offers a unique

solution to accurately pinpoint the global maximum

power point (GMPP) even under partial shading

conditions [15]. Simulations show GEO outperforms

conventional MPPT methods, enhancing PV energy

extraction and supporting the adoption of solar energy.

Table 1 provides indispensable citations to assist readers

in grasping crucial terms utilized throughout the paper.

Fossil fuels contribute to climate change, making

renewable energy crucial. However, the intermittent

nature of renewable energy sources (RESs) poses

challenges for electricity network operators in terms of

reliability and economic viability for electricity-

generating companies[16]–[19] Utilizing prevailing and

well-established technology in energy generation context

PV systems exhibit excellent performance in both serial

and parallel configurations [20]–[22]. The basic solar

panel constitutes a vital element of the solar energy

provision setup, meticulously engineered to operate

without environmental emissions or additional

components [23]. Metaheuristic algorithms are

optimization techniques designed to quickly search large

search spaces and find near-optimal solutions [24],

[25][26][27][28]. Population-based metaheuristic

algorithms often utilize swarm intelligence or bio-

inspired algorithms. Deterministic methods such as P&O

are commonly paired with metaheuristic algorithms [25],

[29]–[31]. Although metaheuristic algorithms select the

best available option at any given moment, they may

yield poor results under partial shading conditions

(PSCs) because they do not consider alternative options

or future consequences. While improved metaheuristic

algorithms have been proposed for PSCs, such as those

mentioned in [32]–[34], they still face challenges

including computational burden, steady-state

oscillations, and difficulty in escaping poor solutions.

Typically, these methods require prior knowledge of P-V

or power-current (P-I) characteristics to function

effectively under PSCs. Artificial neural networks

(ANNs) are commonly used in AI approaches for MPPT

construction [9], [35]–[38]. ANNs consist of layers of

neurons that adjust their parameters using optimization

algorithms like gradient descent to understand the

relationship between inputs and outputs. However, these

algorithms may demand significant computational

resources and extensive data for training [39], [40]. The

Simulated Annealing (SA) algorithm, developed by

Lyden for MPPT tracking [37], is an example of a single-
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solution metaheuristic algorithm. However, SA may take 

time to produce the final result if the cooling process is 

delayed. Particle Swarm Optimization (PSO) was one of 

the first population-based metaheuristic algorithms 

implemented for MPPT [38]. Despite its widespread use 

in addressing PSC issues, PSO suffers from long settling 

times and persistent fluctuations in PV output power 

during tracking. Consequently, additional population-

based metaheuristic algorithms have been proposed for 

MPPT. One approach involves integrating a 

metaheuristic algorithm with a deterministic approach 

(DA), such as the P&O method, to combine their 

strengths and pinpoint the GMPP during tracking. For 

example, Lian et al.[41] suggested a hybrid technique 

that merges P&O and PSO. To assign the nearest local 

peak, the P&O technique is initially used. Afterwards, the 

PSO approach is used to look for GMPP moving forward. 

Proposed a hybrid technique that combines P&O and 

PSO. Initially, the P&O technique is used to identify the 

nearest local peak, followed by the use of PSO to search 

for GMPP. Ishaque et al.[42] suggested an enhanced 

MPPT technique incorporating a modified PSO 

algorithm, while Makhloufi et al. [43] used a logarithmic 

PSO approach to speed up convergence without reducing 

the search window. Millah [44] enhanced the 

performance of the grey wolf optimization (GWO) 

algorithm by adding pouncing behaviors and additional 

weighting criteria.  

Teshome et al. [45] modified the firefly algorithm (FA) 

to reduce tracking time and the number of operations per 

cycle. Research on MPPT using metaheuristic algorithms 

underscores the need for a comprehensive understanding 

of optimization issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study proposes a modified GEO for MPPT. Unlike 

the original GEO approach, which does not consider the 

stooping behavior exhibited by golden eagles, the 

proposed approach incorporates this behavior, 

mimicking the genuine hunting behavior of golden 

eagles. Experiments conducted in various static and 

dynamic scenarios validate the proposed technique. 

Table 1 provides a comprehensive review and 

comparison of previous studies investigating MPPT 

using various algorithms.The table presents a 

comparative analysis of diverse optimization algorithms 

utilized for MPPT in PV systems. Each algorithm is 

assessed for its benefits, compared with other methods, 

drawbacks, and outcomes. Algorithms such as DOA, 

BOA, FA, FPA, GWO-PSO, and GEO are examined, 

outlining their advantages and limitations in enhancing 

MPPT efficiency across different scenarios. Despite 

showing potential, further validation in actual PV 

systems and investigation in unexplored situations is 

crucial for thorough evaluation and practical application. 

The GEO approach, inspired by the hunting behaviors of 

golden eagles, is a robust optimization strategy widely 

applicable across various domains, demonstrating 

superiority over other metaheuristic methods like Genetic 

Algorithm (GA) and PSO in terms of convergence 

speed[51], [52]. Its effectiveness, simplicity, 

adaptability, and robustness make it a valuable tool for 

addressing complex optimization challenges, offering a 

thorough exploration of optimal solutions while avoiding 

local optima[51], [53].  Particularly, in optimizing 

photovoltaic systems under partial shade conditions, 

GEO proves pivotal, as showcased through detailed 

analyses of optimization outcomes for both series- and 

parallel-connected PV panel configurations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ref Algorithm Advantages 
Comparison 

of Methods 
Disadvantages Result 

[46] DOA 

The implementation of the 

DOA markedly reduces 

convergence time and failure 

rates compared to other 

modern MOAs, enhancing 

MPPT efficiency in critical 

scenarios with partial shade 

PV systems. 

MCA, PSO, 

GWO 

The research predominantly 

relies on simulated results, 

requiring validation in real-

world PV systems to confirm 

DOA's practical efficacy. 

While DOA shows promise 

in decreasing convergence 

time and failure rates, further 

exploration and testing are 

needed to evaluate its 

performance 

comprehensively, especially 

in unexplored scenarios. 

The study presents the 

DOA as a superior method 

for optimizing MPPT in 

PV systems under partial 

shade, offering faster 

convergence time (0.4 

seconds) and zero failure 

rate compared to other 

MOAs, indicating its 

effectiveness for 

challenging conditions. 

[47] 

 
BOA 

The utilization of the 

Butterfly Optimization 

Algorithm (BOA) presents a 

notable enhancement in 

tracking precision and speed 

within partially shaded PV 

arrays, presenting a viable 

solution for real-time 

applications. 

GWO, PSO, 

GSA 

BOA's efficacy could be 

subject to variation based on 

system configurations and 

environmental factors, 

necessitating thorough 

validation and testing in real-

world PV setups to evaluate 

its performance 

comprehensively and address 

any practical implementation 

challenges or limitations. 

The BOA outperformed 

GWO, PSO-GSA, and 

GSA, exhibiting higher 

accuracy, faster tracking 

speed (34.36% faster than 

GWO, 43.84% faster than 

PSO-GSA), and enhanced 

efficiency with reduced 

statistical metrics (STD, 

RMSE, MAE, RE) in three 

insolation scenarios 

studied. 

      

      

 

Table 1. Comparison of previous research 



 

 

  

Ref Algorithm Advantages 
Comparison 

of Methods 
Disadvantages Result 

[48] FA 

The FA demonstrates 

accurate MPP tracking, 

improved performance 

parameters (convergence 

and tracking speed), and 

enhanced tracking 

efficiency, leading to the 

maximization of energy 

recovery from solar systems. 

P&O, PID, 

PSO 

Further validation in real-

world PV systems is 

required to 

comprehensively assess the 

effectiveness of the FA 

method, which shows 

promise in addressing 

transient scenarios and 

outperforming PSO, but 

requires further exploration 

in unexplored conditions, 

particularly under partial 

shading, suggesting the 

necessity for additional 

research and development 

to integrate parameters like 

humidity and wind. 

The FA outperforms other 

methods, exhibiting 

superior efficiency, quicker 

resolution of transient 

situations, and simpler 

parameter tuning, leading 

to successful MPPT in 

both normal and partial 

shading conditions, 

significantly improving 

overall efficiency and 

energy recovery from solar 

PV arrays. 

[49] FPA 

The FPA effectively 

identifies the global peak 

under strong shading, 

offering swift convergence 

and adaptability for MPPT 

in solar PV systems. Its 

dual-mode search introduces 

crucial randomness, 

enhancing performance in 

critical shade scenarios, 

while its simplicity makes it 

a practical solution. 

PSO, P&O 

The effectiveness of the 

FPA method is mainly 

evaluated using 

simulations and 

experiments, emphasizing 

the need for real-world 

validation across diverse 

environmental conditions. 

Further research is required 

to assess its performance in 

unexplored scenarios, 

while an exclusive focus 

on income generation 

analysis in real-time 

conditions may limit its 

generalizability, requiring 

cautious interpretation. 

The FPA demonstrates 

superiority in all tested 

cases, confirming its 

effectiveness as an MPPT 

method for solar systems 

under various irradiated 

conditions, leading to 

increased energy harvest 

and income generation. 

[50] GWO–PSO 

The hybrid MPPT method, 

integrating GWO and PSO, 

outperforms conventional 

techniques like P&O and 

incremental conductance, 

offering improved tracking 

precision, faster 

convergence to the GMPP, 

and greater efficiency. With 

simplicity and robustness, it 

requires only two control 

parameters, ensures GMPP 

attainment regardless of 

initial conditions, and 

doesn't mandate prior 

knowledge of PV array 

characteristics, simplifying 

implementation across 

various PV systems, 

irrespective of grid 

connection status. 

GWO, PSO, 

P&O 

The hybrid GWO–PSO-

based MPPT method, 

while potentially resource-

intensive due to co-

simulation, shows promise 

based on simulation 

results, but real-world 

validation is needed for 

varied environmental 

conditions. However, its 

performance in unexplored 

scenarios remains 

uncertain and warrants 

further investigation. 

The hybrid GWO–PSO-

based MPPT technique 

demonstrates superior 

tracking accuracy, faster 

convergence to the GMPP, 

and higher performance 

compared to alternative 

strategies (GWO, PSO, and 

P&O), highlighting its 

simplicity, flexibility, and 

reduced control parameters 

without requiring prior 

knowledge of solar system 

characteristics. 

[15] 

GEO with 

stooping 

behavior 

Incorporating stooping 

behavior into the GEO 

algorithm improves tracking 

accuracy and reduces 

duration, requiring just one 

extra parameter for 

implementation. Compared 

to other MHAs like PSO, 

GWO, and BA, the proposed 

method demonstrates 

superior dynamic tracking 

precision. 

GEO, PSO, 

GWO, BA 

While the proposed 

method shows 

advancements over 

existing MHAs, it may still 

have limitations in 

unexplored scenarios. 

Moreover, integrating 

stooping behavior could 

complicate the algorithm, 

impacting its real-world 

usability. Further 

validation in actual PV 

systems is necessary due to 

the study's reliance on 

simulated data. 

The proposed method 

surpasses GEO, reducing 

tracking time by 42.41% 

on average. In comparison 

to PSO, it saves an average 

of 18.52% of the tracking 

time. Across various 

dynamic scenarios, the 

proposed algorithm 

improves dynamic tracking 

accuracy by 1.95%, 2.66%, 

3.56%, and 4.24% when 

compared to GEO, PSO, 

GWO, and BA, 

respectively. 
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2. PROBLEM DEFINITION 

The paper proposes a novel approach using the Golden 

Eagle Optimization (GEO) Algorithm for Maximum 

Power Point Tracking (MPPT) in solar PV systems 

affected by partial shading. The GEO refines the search 

process to precisely identify the global maximum power 

point (GMPP) even under challenging shading 

conditions. 

The duty cycle represents the ratio of the pulse duration 

to the period duration [54], [55]. It's expressed as a ratio 

from 0 to 1 or 0 to 100%, signifying the proportion of on-

time to the total cycle time. This concept is clarified 

within the context of ideal pulses, resulting in the creation 

of a square wave. 

                        𝐷 =
𝑃𝑊

𝑇
× 100%                                    (1) 

Similarly, a duty cycle can be expressed as: 

                       𝐷 =
𝑃𝑊

𝑇
                                                 (2) 

A symmetrical pulse is generated with a 50% duty factor, 

while an asymmetrical pulse results when the pulse width 

equals half the period. The term "duty factor" can 

encompass both the duty cycle and its reciprocal, 

indicating the ratio of the pulse duration to the pulse 

interval [56]. Adjusting the duty cycle provides a digital 

method to regulate electrical voltage and power. PWM 

generates a continuously adjustable DC voltage. 

Following PWM circuitry, demodulation results in 

voltage averaging. Despite the on-off switching, an 

analog signal is produced due to the variable duty cycle. 

Phase-cut control utilizes a variable duty cycle of 

sinusoidal voltage to regulate motor speeds. For the 

buck-boost converter, each duty cycle is received, and the 

corresponding MPP is calculated and stored. This process 

continues until the GEO algorithm reaches an optimal 

duty cycle, considering factors like temperature and 

irradiance variations. Figure 1 illustrates the DC-DC 

buck-boost converter. 

Figure 1. DC-DC buck-boost converter 

The electrical model of a solar panel with a single diode 

is depicted in Figure 2. By ignoring the shunt resistance, 

the output current can be represented as shown in 

Equation (3). The photocurrent of a solar module is 

determined by Equation (4). When the photocurrent is 

higher than the output current, the output voltage can be 

described as shown in Equation (5). If the photocurrent is 

less than the output current, the output voltage is 

represented as shown in Equation (6).  

 
Figure 2. solar panel with single diode 

 

𝛪𝜌𝜈_𝑚 = 𝛪𝜌ℎ_𝑚 − 𝛪𝜊 [𝑒𝑥𝑝 (
𝑉𝜌𝜈_𝑚+𝑅𝑠𝛪𝜌𝜈_𝑚

𝑉𝑡
) − 1]         (3) 

The following equation is applied to determine the 

photocurrent, 𝐼𝑝ℎ_𝑚, of a solar module: 

𝛪𝜌ℎ_𝑚 = (𝛪𝑠𝑐_𝑁 + 𝑘𝑖𝛥𝛵)𝜆                         (4) 

when Iph-m is higher than Ipv-m, the output voltage of 

solar panel Vpv-m can be described as:  

𝑉𝜌𝜈_𝑚 = 𝑉𝑡 [𝛪𝑛 (
𝛪𝜌ℎ_𝑚−𝛪𝜌𝜈_𝑚

𝛪𝜊
) + 1] − 𝑅𝑠𝛪𝜌𝜈_𝑚    (5) 

If 𝐼𝑝ℎ_𝑚 is less than 𝐼𝑝𝑣_𝑚, the 𝑉𝑝𝑣_𝑚 can be represented 

as. 

𝑉𝜌𝜈_𝑚 = 0                                                                   (6) 

Which 

𝛥𝛵 = 𝛵 − 𝛵𝛮                                            (7) 

𝑉𝑡 =
𝜂𝑘𝛵𝛮𝑠

𝑞
                                            (8) 

𝑅𝑠 = −
𝜕𝑉𝜌𝜈_𝑚

𝜕𝛪𝜌𝜈_𝑚
|
𝑉𝜊𝑐_𝑁

−
1

𝛸𝑉
               (9)                   

𝛸𝑉 =
𝛪𝜊 𝑒𝑥𝑝(

𝑉𝜊𝑐_𝑚
𝑉𝑡

)

𝑉𝑡
                                 (10)               

𝑉𝜊𝑐−𝑚 = 𝑉𝜊𝑐−𝑁 + 𝑉𝑡𝛪𝑛(𝜆) + 𝑘𝜈𝛥𝛵           (11)       

 

The objective function guides the optimization process 

by defining it as the inverse of the average power output 

of the PV system. Minimizing this cost function 

corresponds to maximizing the power output, aiming to 

achieve maximum energy extraction efficiency under 

partial shading conditions. The cost function for modules 

is expressed as Z = 1/P, where obtaining the inverse of 

the average power is crucial for determining the 

maximum power value. This cost function is inversely 

proportional to the average power, serving as a measure 

of solution quality in the optimization algorithm. The 

GEO algorithm continually seeks the smallest value for 

the boost converter before reaching maximum power 

output, with the duty cycle symbolizing the GEO 

algorithm's core. According to this equation, high power 

yields low Z, resulting in minimal cost. The specified 

parameters include the upper bound (0, 1), and lower 

bound (0.9) for both the GEO and the population of the 

GEO. The initial population of golden eagles is 

established, denoted as (n). The fitness value reaches its 

maximum when the power reaches its peak. The cost 

function outlined in this paper is defined by the equation 

in (14): 

                                     𝛧 =
1

𝑃
              (12) 

The fitness function is represented as the Cost Function 

as shown in Equation (13). During the evaluation of 



 

 

brightness, all golden eagles are directed towards the 

brighter ones. During the position update, all GEOs are 

relocated to a more advantageous position. 

function =𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 a 1

𝑃𝑜𝑤𝑒𝑟_𝐴𝑣𝑒𝑟𝑎𝑔𝑒
             (13) 

 

 

3. GOLDEN EAGLE OPTİMİZATİON 

ALGORİTHM-BASED MPPT 

The GEO algorithm was chosen for this study due to the 

unique characteristics that make it well-suited for MPPT 

in PV, especially under partial shading conditions. 

Inspired by the hunting behavior of golden eagles, the 

GEO algorithm embodies an effective balance between 

exploration and exploitation, reflecting the eagle's 

strategic approach to locating and capturing prey while 

conserving energy, critical in MPPT, as shown in Figure 

3 depicts the observation of attack and cruise vectors in 

2D space, with a distinct golden eagle depicted in each 

variation. This balance ensures thorough exploration of 

the power-voltage curve to avoid local maxima while 

efficiently converging on the GMPP. 

 

 

 

(a) (b) 

Figure 3. a) Golden Eagles' Spiralling Flight Pattern[53], b) 

Outcomes for the Three Principal Stages of Hunting [57]. 

 

GEO's strengths lie in its robustness and adaptability, 

demonstrated across various optimization challenges, 

showcasing its ability to adapt to different scenarios. It 

offers faster convergence compared to other 

metaheuristic algorithms like GA and PSO, making it 

efficient. Despite its powerful optimization capabilities, 

GEO is relatively simple to implement, requiring 

minimal parameters and computational resources, 

making it practical for real-time MPPT in PV systems. Its 

effectiveness in avoiding local optima and accurately 

locating the GMPP, even under partial shading 

conditions, makes it particularly valuable for optimizing 

PV systems in real-world environments where shading is 

common. The pseudocode below provides a detailed 

outline of the GEO algorithm and demonstrates its 

application in MPPT (Maximum Power Point Tracking) 

systems. 

While many state-of-the-art optimization algorithms 

exist, the unique blend of exploration, exploitation, 

robustness, efficiency, and simplicity makes GEO an 

attractive choice for MPPT in PV systems. A visual 

representation of the complete solar system is depicted in 

Figure 4, showcasing the system's block diagram. Its 

effectiveness in navigating the complexities of partial 

shading, as demonstrated through simulations and 

Algorithm 1: Algorithm: Golden Eagle Optimization (GEO) 

Start 

Initialization: Set the algorithm parameters: 

 Upper bound (UB), Lower bound (LB) for the duty cycle: 

UB=1, LB=0.9  

 Number of iterations (MaxIter). 

 Number of golden eagles in the population (n). 

 Randomly initialize the positions of golden eagles (X) 

within the defined [LB, UB]. 

 Calculate the fitness value for each golden eagle based on 

the cost function Z=1/P, where P is the power output. 

2. Main Loop: (Repeat until MaxIter is reached or convergence 

occurs) 

 Update Positions of Golden Eagles: 

o Evaluate the brightness (fitness value) of each 

golden eagle 

o Identify the brightest golden eagle (global best). 

o For each golden eagle: 

Update its position by simulating the hunting behavior, including: 

 Observation Vector: Calculate the relative 

position of prey (optimum duty cycle). 

 Attack and Cruise Behavior: Adjust the 

eagle's movement using exploration and 

exploitation strategies (balancing search space 

exploration and convergence). 

 Ensure the new position lies within the bounds 

LB and UB. 

 Evaluate Fitness: 

o Compute the new fitness value Z for each 

golden eagle. 

o If the new fitness is better, update the current 

position and record the new global best. 

3. Stopping Criteria: 

 If the global best position corresponds to the desired 

accuracy (maximum power), or if MaxIter is reached, 

terminate the algorithm. 

4. Output: 

 Return the optimal duty cycle corresponding to the global 

best fitness value (X_best). 

 Calculate the maximum power output (GMPP) based on 

this duty cycle 

Stop 



 

   

 
 

comparisons with conventional MPPT techniques, 

further solidifies its potential as a powerful tool for 

enhancing the performance and reliability of solar PV 

systems. 

DC/DC buck-boost 
convertor

Metaheuristic based 
MPPT algoritm

Load

Pulse for 
Converter

Power from 
Panel

Photovoltaic panel under 
partial

 
Figure 4. A graphical depiction of the complete solar system. 

 

3.1. The PSO-GA Hybrid Algorithm 

The hybrid PSO-GA algorithm begins by initializing 

parameters for both the PSO and GA components. 

Firstly, the PSO component generates an initial 

population of duty cycles for the Buck-Boost converter, 

evaluating the resulting power output from the PV system 

and adjusting the duty cycles according to PSO 

principles. Subsequently, the fittest duty cycles are 

transferred to the GA component, where crossover and 

mutation operations further refine them. The updated 

duty cycles from both PSO and GA are then merged, and 

the process iterates until either the optimal duty cycle for 

maximum power point tracking is identified or a 

maximum number of iterations is reached. The 

amalgamation of PSO and GA enables the algorithm to 

harness the strengths of both optimization techniques. 

PSO excels in exploring the solution space and avoiding 

local optima, whereas GA is proficient in exploiting and 

refining solutions through crossover and mutation. By 

integrating these methods, the PSO-GA hybrid algorithm 

can effectively seek the optimal duty cycle for MPPT in 

PV systems across varying irradiance and temperature 

conditions. To ensure optimal performance in diverse 

scenarios, specific implementation details such as 

population size, iteration count, crossover and mutation 

rates, and selection mechanisms must be meticulously 

tuned. Figure 5 illustrates the operation of the hybrid 

PSO-GA for MPPT in PV. 

 

Maximum Power Point (MPP) from PV 
System

Generate Initial Population of Duty 
Cycles 

PSO 
Algorithm

 Process and 
Record

Perform Crossover and Mutation on 
Duty Cycles  

Analyze Power Output

Update Duty Cycles based on PSO 
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Combine PSO and GA Duty Cycles

Initialize
 PSO Parameters GA Parameters     

Duty Cycle is Found  or Maximum 
Iterations Reached   
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Optimal

Optimal Duty Cycle for MPPT in PV 
System

Figure 5. Flowchart Combined PSO-GA for MPPT in PV 

 

4.  SIMULATION RESULTS 

The simulation studies aimed to explore two distinct 

scenarios involving partial shading in PV. The objectives 

were to analyse the performance of series-connected PV 

panels and parallel-connected PV panels under partial 

shading conditions.  

4.1. Input Parameters  

The simulation utilized various parameters, including 

those specific to the PV panels and the Simulink model. 

Table 2 provides a comprehensive list of these 

parameters, encompassing maximum power, cell count, 

voltage, current, temperature coefficients, and 

resistances. 

 

Table 2. Parameter definition 

Module Data Value 

Maximum Power (W) 220.5 

Cells per module (Ncell) 60 

Open circuit voltage Voc (V) 36.8 

Short-circuit current Isc (A) 8.08 

Voltage at maximum power point Vmp (V) 30 

Current at maximum power point Imp (A) 7.35 

Temperature coefficient of Voc (%/deg.C) -0.3364 

Temperature coefficient of Isc (%/deg.C) 0.038465 

Light-generated current IL (A) 8.1108 

Diode saturation current I0 (A) 1.1169e-10 

Diode ideality factor 0.9567 

Shunt resistance Rsh (ohms) 83.699 

Series resistance Rs (ohms) 0.3192 



 

 

Table 3 gives a summary of the operational parameters 

for each algorithm in this study. These parameters 

include population size, mutation rate, crossover rate, and 

other algorithm-specific configurations. 

 Each of these settings has a great impact on the 

performance and efficiency of the algorithms, ensuring 

optimal results that are appropriate for the objectives of 

the study. 
 

Table 3. Parameters of the Compared Algorithms 

Algorithm Population Size (n) 
Number of Iterations 

(MaxIter) 
Specific Parameters 

GEO 20 100 
Observation vector adjustment, 

Attack/cruise behavior, LB = 0.9, UB = 1 

PSO 30 100 
Inertia weight = 0.7, Cognitive coefficient 

(c1) = 1.5, Social coefficient (c2) = 1.5 

GA 50 100 Crossover rate = 0.8, Mutation rate = 0.01 

GWO 25 100 

Alpha, beta, and delta wolves to guide 

search, Adaptive exploration-exploitation 

balance 

4.2. Scenarios Identification 

4.2.1. Series-connected pv panels under partial 

shading 

This scenario involved analysing the behaviour of series-

connected PV panels under partial shading conditions. 

Figure 6 illustrates the simulation model used for this 

scenario. The simulation process yielded insightful 

results regarding optimal duty cycles, maximum power 

outputs, and processing times. 

 
Figure 6. Depicting a simulation of a series-connected 

photovoltaic array. 

 
4.2.2.Parallel-connected pv panels under partial 

shading 

In this scenario, the focus was on parallel-connected PV 

panels under partial shading conditions. Figure 7 depicts 

the simulation model utilized for this scenario. The 

simulation outcomes provided valuable information on 

optimal duty cycles, maximum power outputs, and 

processing times. 

 
Figure 7. Depicting a simulation of a parallel connected 

photovoltaic array. 

 

4.3. Results Presentation 

The simulation results demonstrate that the cost function 

attained a minimal value of 0.0000613735 after 30 

iterations, with variability dependent on simulation 

outcomes. In the case of a series connection involving 6 

PV panels, the fourth iteration revealed an optimal 

solution (Duty Cycle) of 0.3852, yielding a maximum 

power output of 16293.6671 watts. This simulation, 

executed on a personal computer equipped with 

MATLAB 2022a and a 6GHz Core i7 processor, required 

21.87 seconds to complete. 

In contrast, as shown in Figure 8 a), for a parallel 

connection with 4 PV panels, different values were 

obtained. After 4 iterations, the simulation reached a 

minimal cost function value of 0.0000295833. The 

optimal solution (Duty Cycle) in the fourth iteration was 

0.21088, resulting in a maximum power output of 

33802.89 watts. The processing time for this simulation 

was 25.46 seconds, conducted on the same personal 

computer setup. Figure 8 b) visually represents these 

results, including the MPP of the Simulink model. 



 

   

 
 

 
Figure 8 a). Simulation results for series 6PV and parallel 

4PV panels 

 
Figure 8 b). Finding the MPP with Simulink 

 

4.3.1. Series-connected pv panels scenario 

The simulation outcomes for the series-connected PV 

panels scenario provide insights into optimal duty cycles, 

maximum power achieved, number of iterations, and 

processing time.  Figure 9 illustrates the objective 

function curve. A detailed summary is presented in Table 

5, accompanied by an analysis of I-V and P-V 

characteristics in Figure 10. 

 
Figure 9. Objective function results for series connected PV 

panel. 

 

Table 4. The outcomes of simulation for a series connected PV 

panel 

Total number 

of function 

evaluations 

N = 10 N = 15 N = 20 N=25 

Best solution 0.8765 0.3852 0.7721 0.7251 

Best objective 

function 

0.0001

6945 
0.00006

13735 

0.000193

32 

0.0001

0132 

Process time 21.041

8 
21.8705 22.743 22.988 

Figure 10 demonstrates the I-V and P-V characteristics 

of a series-connected solar panel, illustrating non-linear 

curves were current increases alongside voltage. The P-

V graph exhibits a distinct peak, indicating the maximum 

power production point, with voltage representing the 

maximum power point voltage and current denoting the 

maximum power point current. Further insights include 

the I-V graph's x-axis labelled as "Current (A)" and y-

axis as "Voltage (V)", and the P-V graph's x-axis denoted 

as "Voltage (V)" and y-axis as "Power (W)". 

Additionally, the I-V diagram reveals a minimum current 

of nearly zero at approximately 0.5 volts, indicating a 

small current presence even when the solar panel is not 

illuminated. Moreover, the P-V graph suggests that the 

peak power point occurs around 1500 volts and 3.5 watts. 

 
Figure 10. I-V and P-V characteristics of series-connected 

solar system 

 

4.3.2. Parallel-connected PV panels scenario 

Similarly, the simulation outcomes for the parallel-

connected PV panels scenario highlight optimal duty 

cycles, maximum power achieved, iterations, and 

processing time. Visual representation is provided in 

Figure 11, with a detailed summary in Table 5. Analysis 

of I-V and P-V characteristics is presented in Figure 12. 

 
Figure 11. The result of simulation for parallel connected 

solar panels. 
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Table 5. The outcomes of simulation for parallel connected 

solar panel 

Total 

number of 

function 

evaluations 

N = 10 N = 15 N = 20 N=25 

Best 

solution 

0.2816 0.21088 0.2400 0.3001 

Best 

objective 

function 

0.000039

43 
0.00002958

33 

0.000032

55 

0.000044

12 

Process 

time 

25.1250 25.4600 28.2241 28.9901 

 

Figure 12 provides valuable insights into the behaviours 

of a photovoltaic array connected in parallel through its 

current-voltage (I-V) and power-voltage (P-V) 

characteristics. The I-V characteristic curve reveals how 

the current flowing through the array changes in response 

to varying voltage across its terminals. Starting from a 

point of zero current and voltage, the curve rises as 

voltage increases, eventually leveling off where the 

current stabilizes. 

The P-V characteristic curve is equally informative, 

showcasing the relationship between the power generated 

by the array and the voltage across its terminals. Power, 

calculated by multiplying current and voltage at each 

point, begins at zero and peaks at a specific voltage 

known as the maximum power point (MPP). Beyond the 

MPP, power output decreases as voltage continues to 

rise. 

 X-axis: Voltage (V), ranging from 0 to 1500 

volts. 

 Y-axis: Current (A), scaled between 0 and 6 A 

with a multiplication factor of 104. 

 Y-axis: Power (W), ranging from 0 to 76422.1 

watts. 

 
Figure 12. I-V and P-V characteristics of parallel connected 

solar panels.  

4.4. Comparison Between Series And Parallel 

Connections 

Figure 13, This figure illustrates the comparison between 

series and parallel connections of solar panels. The blue 

curve represents the 6 PV serial panels, while the red 

curve depicts the 4 PV serial panels with parallel 

connections. Additionally, Figure 14 showcases the I-V 

and P-V characteristics for various radiation and 

temperature levels (a) T = 25, (b) T = 35, and (c) T = 45. 

 
Figure 13. I-V and P-V characteristics of series and parallel 

connected photovoltaic arrays. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. I–V and P–V characteristics for a) T = 25, b) T = 

35, and c) T = 45 



 

   

 
 

Figure 15, Another comparison is made between 

different temperatures for the same radiation level. In this 

figure, the X-axis represents voltage (V), while the Y-

axis represents current (I) and power (P). 

 
Figure 15. different temperature with the same radiation value 

 

4.5. Different Case Studies 

The article introduces three distinct case studies that 

explore the effects of varying irradiance and temperature 

conditions on PV systems. Each case study provides 

valuable insights into the performance of these systems 

under different environmental factors. Furthermore, 

Table 6 offers a comprehensive examination and analysis 

of the specifications of each case study, providing 

detailed insights into the parameters considered in the 

research. 

Case Study 1: High Irradiance and Moderate 

Temperature 

Temperature: Moderate temperatures ranging between 

25°C to 35°C. 

In this case, the PV system benefits from the high 

irradiance, resulting in increased energy production. 

Moderate temperatures contribute to efficient electrical 

conductivity within the solar panels. This optimal 

combination of high irradiance and moderate 

temperatures leads to peak performance and maximum 

power output from the PV system. 

Case Study 2: Low Irradiance and High Temperature 

Temperature: High temperatures exceeding 40°C. 

In this scenario, the PV system faces challenges due to 

low irradiance caused by frequent cloud cover in the 

coastal area. The high temperatures, however, impact the 

efficiency of the solar panels negatively. Higher 

temperatures can lead to an increase in the semiconductor 

material's resistance, reducing overall system efficiency. 

Despite the low irradiance, the elevated temperatures 

may cause a decrease in performance and power output. 

Case Study 3: Variable Irradiance and Fluctuating 

Temperature 

Temperature: Fluctuating temperatures between 10°C to 

30°C. 

In this case, the PV system experiences varying 

irradiance due to unpredictable weather patterns. The 

fluctuating temperatures pose a challenge as they can 

impact the overall performance of the solar panels. 

During colder periods, the system may experience 

increased efficiency, while hotter periods may lead to 

decreased efficiency. This scenario highlights the 

importance of implementing advanced temperature 

management and tracking systems to optimize the PV 

system's performance under changing conditions

Table 6. Different case studies and specifications of the PV panels 

Case No. Irr. Mod_1 Irr. Mod_2 Irr. Mod_3 Irr. Mod_4 Temperature 

Case 1 1000 900 800 600 25°C ~ 35°C 

Case 2 600 400 200 100 40°C 

Case 3 1000 ~ 100 1000 ~ 100 1000 ~ 100 1000 ~ 100 10°C to 30°C 

These case studies demonstrate the importance of 

considering both irradiance and temperature factors in 

the design, operation, and optimization of PV systems. 

They also emphasize the need for appropriate 

technologies and strategies to mitigate the impact of 

adverse conditions on the efficiency and overall 

performance of the solar power generation system. 

4.6. Simulation Results For Different Cases And 

Metaheuristic Methods 

Table 7 presents simulation results for different cases and 

metaheuristic methods, including ACO PSO, GA, and 

GEO. The results highlight converging time, settling 

time, maximum power, and efficiency for each case and 

algorithm.

Table 7. Simulation results for different cases and metaheuristic methods 

Case No. Algorithm 
Converging time 

(s) 

Settling time 

(s) 

Maximum Power 

(KW) 
Efficiency (%) 

Case 1 

ACO 0.2878 0.3530 84.693 98.51 

PSO 0.1265 0.2459 83.368 95.53 

GA 0.2747 0.1385 89.389 97.04 

GWO 0.2377 0.1231 91.281 98.19 

GEO 0.0426 0.0486 92.641 99.35 



 

 

      

Case 2 

ACO 0.1967 0.4117 78.281 98.76 

PSO 0.2036 0.3474 90.391 97.28 

GA 0.2547 0.1585 89.653 94.83 

GWO 0.2802 0.4751 74.878 94.90 

GEO 0.0107 0.0172 93.570 99.55 

Case 3 

ACO 0.2273 0.2194 84.951 98.04 

PSO 0.2229 0.1908 88.792 95.53 

GA 0.1177 0.3828 80.212 98.89 

GWO 0.1966 0.3976 87.558 95.46 

GEO 0.0514 0.0934 96.714 99.58 

GEO efficiently explores the solution space, identifying 

optimal configurations for solar panels. The algorithm 

excels in high irradiance and low-temperature conditions, 

resulting in optimal solutions for energy production. 

 Moderate Irradiance, Fluctuating Temperature: 

GEO's social behavior aids in adapting to variable 

conditions. The algorithm optimizes panel 

orientations, considering both irradiance and 

temperature dynamics for enhanced performance. 

 Low Irradiance, High Temperature: GEO faces 

challenges in low sunlight conditions. The 

algorithm may struggle to find optimal solutions 

due to reduced opportunities for social 

interactions, especially in high-temperature 

environments. 

It's important to note that the applicability and 

performance of these algorithms can depend on the 

specific characteristics of the optimization problem, the 

formulation of objectives and constraints, and the tuning 

of algorithm parameters.  

In each case, the simulation results would be analyzed 

based on the specific objectives and constraints of the 

optimization problem, providing insights into how well 

each algorithm performs under different irradiance and 

temperature scenarios. Adjusting algorithm parameters 

and fine-tuning the problem formulation may be 

necessary for optimal performance in various 

environmental conditions. 

 

5.  CONCLUSION 

This study has not only introduced but also successfully 

validated an innovative MPPT technique employing the 

GEO method. Inspired by the hunting behaviour of 

golden eagles, the GEO algorithm has emerged as a 

highly effective solution for addressing the challenges of 

partial shading in PV. Through extensive simulations, the 

GEO MPPT technique has consistently demonstrated 

superior performance in accurately identifying the GMPP 

and enhancing energy extraction efficiency, even under 

the most challenging partial shading conditions. One of 

the key strengths of the GEO algorithm exists in its 

robustness, adaptability, and efficiency. These qualities 

allow it to outperform other metaheuristic algorithms, 

such as GA and PSO, in term of convergence speed and 

reliability. The simplicity of GEO algorithm, requiring 

minimal computational resources and few parameters, 

makes it an attractive choice for    real-time MPPT 

applications in PV systems. Additionally, the GEO 

method’s ability local avoid and precisely pinpoint the 

GMPP significantly elevates the reliability and 

performance of solar PV systems in practical, real-world 

scenarios.  

Quantitative improvements in energy efficiency, 

convergence time, and robustness have been observed 

throughout this study. Significantly, the GEO algorithm 

has shown up to 10 % to improvement in tracking 

efficiency compared to traditional methods, and a 20% 

faster convergence time compared to GA and PSO under 

partial shading conditions.   

Despite the promising results, the study acknowledges 

several limitations, including the reliance on simulations 

and the lack of real-word validation. While the 

simulations demonstrate the effectiveness of the GEO 

algorithm under controlled condition, testing in actual PV 

systems is necessary to assess its real- word performance, 

especially under dynamic environmental factors such as 

varying weather conditions.   

Future work will focus on addressing these limitations by 

testing the GEO-based MPPT technique in real-word PV 

systems. Furthermore, the scalability of the GEO 

algorithm to larger PV insulations and its comparison 

with newer, state-of the art metaheuristic techniques will 

be explored. Additionally, the potential for hybridizing 

the GEO method with other optimization algorithms to 

further enhance performance will be investigated.   

In conclusion, this research underscores the importance 

of advanced MPPT techniques, such as the GEO 

algorithm, in overcoming the challenges posed by partial 

shading in solar PV systems. By enhancing both 

efficiency and reliability, the GEO method makes a 

significant contribution to the broader adoption of solar 

energy as a sustainable and reliable power solution. This 

study highlights the immense potential of bio-inspired 

optimization algorithm like GEO in advancing the 

performance of PV systems and propelling us toward a 

more sustainable energy future.  

Table 7. (Cont.) Simulation results for different cases and metaheuristic methods 
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Table 8. Definitions of abbreviations used throughout the 

article 

Description Architecture 

Maximum Power Point Tracking  MPPT 

 Global maximum power point  GMPP 

 photovoltaic  PV 

Adaptive neuro-fuzzy inference 

systems  
ANFIS 

Golden Eagle optimization  GEO 

Perturb-and-observe   P&O 

Partial shading conditions  PSCs 

Artificial neural networks  ANNs 

Simulated annealing  SA 

Particle swarm optimization  PSO 

Deterministic approach  DA 

Crow search algorithm   CSA 

Bat algorithm  BA 

Local Maximum Power Points  LMPPs 

Grey wolf optimization   GWO 

Artificial intelligence   AI 

Dandelion Optimization Algorithm  DOA 

Metaheuristic optimization 

algorithms  
MOAs 

Butterfly Optimization Algorithm  BOA 

Flower Pollination Algorithm  FPA 

Firefly algorithm FA 

Renewable energy sources RESs 

Partial shading conditions PSCs 

  

  

Genetic algorithm GA 

Maximum power point MPP 

Pulse width modulation PWM 

Ant colony optimization ACO 
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