Berber, Uysal and Aydoğdu. JOTCSA. 2017; 4(sp. is. 1): 77-92.

RESEARCH ARTICLE

Theoretical Study on the Stability, Acidity Constants and Molecular Electronic Properties of Certain o-Hydroxy Schiff Bases and their Tautomers

Halil BERBER, Ülkü Dilek UYSAL*, Ayşe AYDOĞDU

Anadolu University, Science Faculty, Department of Chemistry, 26470 Eskişehir, Turkey

(This article was submitted to the 6th Physical Chemistry Congress, in 15-18 May 2017, Zonguldak, and then sent to the peer review to JOTCSA.)

Abstract: In the present work, certain novel o-hydroxy Schiff bases and possible tautomer forms, which were previously synthesized by our group and their structures elucidated, have been calculated by DFT/6-311g(2d,2p) in both vacuum and polar solvents and the most stable tautomeric forms have been determined. The acidity constants of the Schiff bases have been calculated with PM6 method by MOPAC2016. HOMO-LUMO values of the studied Schiff bases were calculated with DFT/6-311g(2d,2p) and their possible molecular electronic properties were searched. The results were compared with those experimental values.

Keywords: Tautomers, o-hydroxy Schiff bases, Molecular electronic properties, MOPAC2016, DFT.

Submitted: October 26, 2017. Accepted: December 08, 2017.

Cite this: Berber H, Uysal Ü, Aydoğdu A. Theoretical Study on the Stability, Acidity Constants and Molecular Electronic Properties of Certain o-Hydroxy Schiff Bases and their Tautomers. JOTCSA. 2017;4(sp. is. 1):77–92.

DOI: <u>http://dx.doi.org/10.18596/jotcsa.346700</u>

*Corresponding author. E-mail: <u>duysal@anadolu.edu.tr</u>.

INTRODUCTION

Schiff bases are compounds containing an azomethine (-C=N-) group having biological activity (1, 2). Their anticancer, antiamoebic, antibacterial, antifungal, antinociceptive, antiviral, antidepressant, anti inflammatory and anti-HIV activity have been reported (3-9). An activity study has also been reported against tuberculosis (10). Schiff bases are important in many areas such as non-linear optics (NLOs) (11), optical limiting switching (12), electrochemical sensor technology (13), polymer technology (14) and medicine (15). Schiff bases have been widely used as ligand thanks to the high stability of their coordination compounds with different oxidation states and exhibiting unusual structural properties of their complexes (1). The pi system of a Schiff base affects both the electronic structure of complexes and geometric construction. Transition metal Schiff base complexes have been studied as catalysts in organic redox and electrochemical reduction reactions (16). Especially, Schiff bases derived from aromatic o-hydroxyaldehydes have received special attention due to their interesting thermochromism and/or photochromism, biological properties and variety of potential applications (17). For these reasons, the theoretical study on the stability, acidity constants and molecular electronic properties of o-hydroxy Schiff bases and their tautomers have big importance for determining the behavior of compounds. There are certain studies about spectroscopic and theoretical investigation of these compounds (5, 18-20).

The aim of the present study was to perform theoretical calculations (HOMO-LUMO, possible molecular electronic properties, *etc*) of novel o-hydroxy Schiff bases which were synthesized by our group (21) and their possible tautomer forms (Figure 1) by DFT/6-311g(2d,2p) (22, 23) in both vacuum and polar solvent, and determine acidity constants of them with PM6 method by MOPAC2016 (24). To the best of our knowledge, no theoretical study on o-hydroxy Schiff bases synthesized earlier by our group and their tautomeric forms exists.

b tautomer formc tautomer form $R_1=CI, R_2=H$ (A1); $R_1=CH_3, R_2=H$ (A2); $R_1=H, R_2=CI$ (A3); $R_1=H, R_2=CH_3$ (A4)Figure 1. The studied Schiff bases and their possible tautomer forms.

MATERIAL AND METHODS

Theoretical Calculations

CS ChemBioDraw Ultra 12.0 for Microsoft Windows (25), Gaussian09 (26), GaussView 5.0.9 (27) programs and an Intel(R) Core(TM) i7 X 990, 3.33 GHz, L3 Cache 12 MB, LGA 1366 socket, X58 chipset workstation were used for the theoretical calculations. Stable geometries of all of the compounds were determined with "opt=modredundant rb3lyp/6-311g(d,p)" method. Thermodynamic calculations and electronic absorption spectra were calculated with "freq rb3lyp/6-311+g(d,p) and DFT (TD-DFT rb3lyp/6-311+g(2d,2p)) scrf=(iefpcm, solvent) methods, respectively. Firstly, stable conformations of -CH=N- bond and tautomer forms belong to this bond were determined during the geometric determination step. Hydroxyl and carbonyl oxygens in **A** and **B** rings of each were determined stable conformation. Theoretical calculations were done by considering the geometries of the determined most stable conformations. Five different solvents have been used in the solvent phase calculations (chloroform, methyl alcohol,

ethyl alcohol, dimethyl sulfoxide and water). The acidity constants of all of the compounds were calculated with PM6 method by MOPAC2016 (24).

RESULTS AND DISCUSSION

Sum of Electronic and Thermal Free Energies

The Sum of Electronic and Thermal Free Energies (SETFE) of the studied compounds and their tautomer forms in vacuum and different solvent phases (chloroform, methyl alcohol, ethyl alcohol, dimethyl sulfoxide and water) have been given in Table 1.

Tautomeric Equilibrium

The tautomeric equilibrium constants have been given for the compounds and their possible tautomeric forms in vacuum and different solvent phases (chloroform, methyl alcohol, ethyl alcohol, dimethyl sulfoxide and water) in Table 2.

It is determined that the tautomer form **a** has the most stable form among the whole tautomer forms of the all compounds. It is estimated that **c** form is not possible because of high value of tautomeric constant (K_{T2}) (from 27 to 33) between **a** form **c** form. It is also estimated that the direction of the equilibrium can be from **b** to **a** due to low value of tautomeric constant (K_{T1}) (from 0.2 to 2.9) between **a** form **b** form. The stabilities of the **a** tautomer forms for the studied compounds have been given in Table 3. The order of the stabilities for the compounds in all the solvents are the same except for in chloroform. Tautomer forms, **A2a** and **A4a**, did not comply with the order in chloroform. The stabilities of for the studied compounds and their tautomer forms have been given in Table 4. As seen from Table 4, the tautomer forms, **A3** and **A1**, have the highest stabilities, and **A4** and **A2** have lowest stabilities among the compounds. The stabilities are affected from the variation of the molecular geometry resulted from substituent and the bonding position of the molecule.

Compounds	Vacuum	Chloroform	Ethyl alcohol	Methyl alcohol	Dimethyl sulfoxide	Water
A1a	-732062.483	-732068.519	-732070.015	-732070.100	-732070.183	-732070.261
A1b	-732059.527	-732066.525	-732068.350	-732068.456	-732068.559	-732068.655
A1c	-732028.550	-732037.028	-732039.438	-732039.586	-732039.733	-732039.871
A2a	-468306.256	-468314.042	-468314.962	-468315.033	-468315.104	-468315.169
A2b	-468305.609	-468311.710	-468313.431	-468313.531	-468313.630	-468313.721
A2c	-468275.737	-468285.530	-468285.317	-468285.457	-468285.594	-468285.721
A3a	-732062.537	-732068.704	-732070.265	-732070.355	-732070.443	-732070.524
A3b	-732059.722	-732066.708	-732068.563	-732068.671	-732068.777	-732068.875
A3c	-732028.871	-732037.255	-732039.561	-732039.697	-732039.830	-732039.953
A4a	-468308.830	-468313.694	-468315.099	-468315.179	-468315.259	-468315.332
A4b	-468306.184	-468312.787	-468314.711	-468314.829	-468314.945	-468315.053
A4c	-468275.941	-468284.790	-468287.257	-468287.402	-468287.545	-468287.677

Table 1. The energies (SETFE*, in kcal/mol) of the studied Schiff bases and their possible tautomer forms (298 K).

*SETFE (Sum of Electronic and Thermal Free Energies).

The lower SETFE value, the more stable the compound is. In this condition, the activity of the compound decreases.

RESEARCH ARTICLE

Berber, Uysal and Aydoğdu. JOTCSA. 2017; 4(sp. is. 1): 77-92.

Table 2. The calculated tautomeric equilibrium constants (K_T) for the compounds and their tautomeric fo	orms
---	------

Reaction	K _T (kcal/mol)	Reaction	K _T (kcal/mol)	Reaction	K _T (kcal/mol)	Reaction	K⊤ (kcal/mol)
			Vacı	uum			
A1a $\stackrel{K_{T1}}{\checkmark}$ A1b	2.9562	A2a $\stackrel{K_{T1}}{\longleftarrow}$ A2b	0.6476	A3a 📥 A3b	2.8150	A4a 📥 A4b	2.6456
A1a $\stackrel{K_{T2}}{\Longrightarrow}$ A1c	33.9329	A2a $\stackrel{K_{T2}}{\Longrightarrow}$ A2c	30.5192	A3a 📥 A3c	33.6668	A4a 📥 A4c	32.8887
			Chlore	oform			
A1a $\stackrel{K_{T1}}{\checkmark}$ A1b	1.9936	A2a $\stackrel{K_{T1}}{\longleftarrow}$ A2b	2.3324	A3a 📥 A3b	1.9961	A4a 📥 A4b	0.9067
A1a $\stackrel{K_{T2}}{\Longrightarrow}$ A1c	31.4906	A2a 📥 A2c	28.5125	A3a 📥 A3c	31.4492	A4a 📥 A4c	28.9047
			Ethyl a	lcohol			
A1a $\stackrel{K_{T1}}{\clubsuit}$ A1b	1.6648	A2a $\stackrel{K_{T1}}{\clubsuit}$ A2b	1.5317	A3a 📥 A3b	1.7018	A4a 📥 A4b	0.3872
A1a $\stackrel{K_{T2}}{\Longrightarrow}$ A1c	30.5763	A2a 📥 A2c	29.6451	A3a 📥 A3c	30.7043	A4a 📥 A4c	27.8417
			Methyl	alcohol			
A1a $\stackrel{K_{T1}}{\checkmark}$ A1b	1.6441	A2a $\stackrel{K_{T1}}{\longleftarrow}$ A2b	1.5022	A3a 📥 A3b	1.6842	A4a 📥 A4b	0.3508
A1a $\stackrel{K_{T2}}{\Longrightarrow}$ A1c	30.5136	A2a 📥 A2c	29.5761	A3a 📥 A3c	30.6585	A4a 📥 A4c	27.7770
			Dimethyl	sulfoxide			
A1a $\stackrel{K_{T1}}{\checkmark}$ A1b	1.6240	A2a 📥 A2b	1.4740	A3a 📥 A3b	1.6660	A4a 📥 A4b	0.3138
A1a $\stackrel{K_{T2}}{\Longrightarrow}$ A1c	30.4502	A2a 📥 A2c	29.5096	A3a 📥 A3c	30.6134	A4a 📥 A4c	27.7137
Water							
A1a K _{T1} A1b	1.6052	A2a $\stackrel{K_{T1}}{\clubsuit}$ A2b	1.4489	A3a 📥 A3b	1.6491	A4a 📥 A4b	0.2792
A1a 📥 A1c	30.3893	A2a 📥 A2c	29.4487	A3a 📥 A3c	30.5707	A4a 📥 A4c	27.6547

 $K_T = G_{(a)} - G_{(b, c)}$. It is seen that **a** form is more stable than the other form for each equilibrium in Table 2. Negative sign means **a** forms are more stable than the other forms for all equilibria. Lower K_T means more stable for the compounds.

Compounds	Vacuum SETFE kcal/mol	Compounds	Methyl alcohol SETFE kcal/mol
A3a	-732062.537	A3a	-732070.355
A1a	-732062.483	A1a	-732070.100
A4a	-468308.830	A4a	-468315.179
A2a	-468306.256	A2a	-468315.033
Compounds	Chloroform SETFE	Compounds	Dimetyl sulfoxide SETFE
	kcal/mol		kcal/mol
A3a	-732068.704	A3a	-732070.443
A1a	-732068.519	A1a	-732070.183
A2a	-468314.042	A4a	-468315.259
A4a	-468313.694	A2a	-468315.104
Compounds	Ethyl alcohol SETFE	Compounds	Water SETFE
	kcal/mol		kcal/mol
A3a	-732070.265	A3a	-732070.524
A1a	-732070.015	A1a	-732070.261
A4a	-468315.099	A4a	-468315.332
A2a	-468314.962	A2a	-468315.169

Table 3. The stability order of the possible **a** tautomeric forms.

Table 4. Stabilities of the compounds and their all tautomeric forms (**a**, **b**, **c**).

Compounds	Vacuum SETFE kcal/mol	Compounds	Chloroform SETFE kcal/mol	Compounds	Ethyl alcohol SETFE kcal/mol
A3a	-732062.537	A3a	-732068.704	A3a	-732070.265
A1a	-732062.483	A1a	-732068.519	A1a	-732070.015
A3b	-732059.722	A3b	-732066.708	A3b	-732068.563
A1b	-732059.527	A1b	-732066.525	A1b	-732068.350
A3c	-732028.871	A3c	-732037.255	A3c	-732039.561
A1c	-732028.550	A1c	-732037.028	A1c	-732039.438
A4a	-468308.830	A2a	-468314.042	A4a	-468315.099
A2a	-468306.256	A4a	-468313.694	A2a	-468314.962
A4b	-468306.184	A4b	-468312.787	A4b	-468314.711
A2b	-468305.609	A2b	-468311.710	A2b	-468313.431
A4c	-468275.941	A2c	-468285.530	A4c	-468287.257
A2c	-468275.737	A4c	-468284.790	A2c	-468285.317

Compounds	Methyl alcohol SETFE kcal/mol	Compounds	Dimetyl sulfoxide SETFE kcal/mol	Compounds	Water SETFE kcal/mol
A3a	-732070.355	A3a	-732070.443	A3a	-732070.524
A1a	-732070.100	A1a	-732070.183	A1a	-732070.261
A3b	-732068.671	A3b	-732068.777	A3b	-732068.875
A1b	-732068.456	A1b	-732068.559	A1b	-732068.655
A3c	-732039.697	A3c	-732039.830	A3c	-732039.953
A1c	-732039.586	A1c	-732039.733	A1c	-732039.871
A4a	-468315.179	A4a	-468315.259	A4a	-468315.332
A2a	-468315.033	A2a	-468315.104	A2a	-468315.169
A4b	-468314.829	A4b	-468314.945	A4b	-468315.053
A2b	-468313.531	A2b	-468313.630	A2b	-468313.721
A4c	-468287.402	A4c	-468287.545	A4c	-468287.677
A2c	-468285.457	A2c	-468285.594	A2c	-468285.721

H-bond

Intra-molecular H-bond lengths were given for the studied compounds and their tautomeric forms in Table 5. The stability of the **a** tautomer form can be explained with intramolecular H-bond between **H1** and **N1** atoms.

		298 K.					
Compoundo	a form						
Compounds	H1N1	H102	H2N1	H201			
A1	1.748	3.116	2.254	3.044			
A2	1.737	3.107	2.257	3.035			
A3	1.748	3.115	2.250	3.043			
A4	1.740	3.092	2.254	3.020			
	b form						
	Н3О3	Н3О4	H403	H4N2			
A1	1.578	2.581	2.627	2.423			
A2	1.591	2.594	2.667	2.424			
A3	1.577	2.581	2.617	2.419			
A4	1.588	2.599	2.666	2.416			
		c fo	orm				
	H5N3	H506					
A1	1.876	2.901					
A2	1.844	2.855					
A3	1.878	2.897					
A4	1.854	2.870					

Table 5. H-bond for the studied compounds and tautomeric forms in vacuum phase at

Lower H-bond length means more stable double (interacted) compounds. As seen from Table 5, the strongest intramolecular H-bond was between **H1** and **N1** atoms for all the compounds and the tautomeric forms. This occasion supports that **a** tautomer form is most

stable among those other forms. H-bond between **H5** and **N3** atoms is the most stable among the others for **c** tautomer for all compounds. As seen from Table 2, despite the strong H-bond for **c** tautomer form, the geometry of the **a** form for each compound is instable (K_{T1} and K_{T2} values are 1.6-2.9, 30-33 for **a** and **c** forms, respectively).

Dipole moment

Dipole moments of the studied Schiff bases and their tautomeric forms were given in Table 6. As seen from Table 6, tautomer forms can affect the dipole moments for the compounds. Especially, the significant variation for **c** tautomer form is observed when it is compared with that original molecule.

Table 6. The dipole moments (Debye) of the studied compounds and their tautomericforms in vacuum phase at 298 K.

Compound	a form	b form	c form
A1	3.223	2.814	4.902
A2	4.064	4.837	8.064
A3	5.115	4.834	5.872
A4	3.776	4.584	7.921

As seen from Table 6, the compound **A1**, **A2**, **A3** and **A4** have high dipole moments. Higher dipole moment means stronger H-bond and/or stronger dipole-dipole interaction.

HOMO and LUMO energies

HOMO, LUMO and E_{GAP} values for **a** tautomer forms of the studied compound were given in Table 7.

at 298 K in vacuum phase.						
номо	LUMO	E GAP [*]				
(eV)	(eV)	(eV)				
-8.033	-5.924	2.109				
-8.629	-5.918	2.710				
-8.610	-5.894	2.716				
-8.109	-5.831	2.278				
	K in vacuu HOMO (eV) -8.033 -8.629 -8.610 -8.109	K in vacuum phase. HOMO LUMO (eV) (eV) -8.033 -5.924 -8.629 -5.918 -8.610 -5.894 -8.109 -5.831				

Table 7. HOMO, LUMO and E_{GAP} values for **a** tautomer forms of the studied compounds
at 298 K in vacuum phase.

EGAP =LUMO-HOMO

As seen from Table 7. E_{GAP} value for each compound is about the same (2.1-2.7 eV). The low values show that these compounds are semiconductive (28-30).

HOMO and LUMO shapes for **a** tautomeric forms of the studied compounds at 298 K in vacuum phase were given in Figure 2.

Figure 2. HOMO and LUMO shapes for **a** tautomer forms of the studied compounds at 298 K in vacuum phase (g).

It seen that electrons of HOMO and LUMO generally condense on aromatic ring in Figure 2.

Electronic Absorption Spectroscopy

UV-Vis excitation energies for **a** tautomer forms of the compounds in different solvents were given in Table 8.

Table 8.	UV-Vis	excitation	energies	for a	a tautomer	forms	of the	compounds	in	different
				S	olvents.					

	Excitat	tion ener	gies (nm)
Solvent/Vacuum	λι	λ2	λз
			(shoulder)
	A1a		
Dimethyl sulfoxide	373.020	275.060	234.470
Ethyl Alcohol	372.540	274.850	227.290
Vacuum	378.270	272.800	226.580
Chloroform	376.280	275.190	227.420
Methyl Alcohol	371.910	274.710	227.220
Water	371.700	274.730	227.240
	A2a		
Dimethyl sulfoxide	381.480	273.340	221.780
Ethyl Alcohol	381.020	273.140	221.730
Vacuum	384.650	271.510	222.120
Chloroform	384.480	273.570	222.130
Methyl Alcohol	380.430	273.000	
Water	380.230	273.000	221.640
	A3a		
Dimethyl sulfoxide	369.320	274.270	227.670
Ethyl Alcohol	368.730	274.050	227.540
Vacuum	370.760	271.760	226.070
Chloroform	372.260	274.300	
Methyl Alcohol	368.080	273.930	227.470
Water	367.910	273.950	227.490
	A4a		
Dimethyl sulfoxide	377.660	272.740	239.210
Ethyl Alcohol	376.990	272.570	
Vacuum	376.590	271.220	239.750
Chloroform	380.090	272.980	226.450
Methyl Alcohol	376.330	272.450	225.910
Water	376.210	272.450	225.890

Three peaks have been observed for almost all the compounds (Table 8). Representative theoretical UV-Vis spectra for **a** tautomer forms of the studied compounds at 298 K in vacuum phase have been shown in Figure 3.

Figure 3. Representative theoretical UV-Vis Spectra for **a** tautomer forms of the studied compounds at 298 K in vacuum phase.

It can be thought that the value of the higher wavelength (λ_1) belongs to the n- π^* transition and the value of the lower wavelength (λ_2 and λ_3) belongs to the π - π^* transition according to the UV-Vis spectra.

Calculated pK_a

The pK_a values of the compounds and relevant possible tautomer forms were calculated with PM6 method by MOPAC2016 program and the results have been given in Table 9.

Compound	H (belonging to the –OH group in phenyl ring A)	H (belonging to the –OH group in phenyl ring B)
A1a	5.211	9.475
A1b		12.654
A1c	8.714	
A2a	5.078	10.880
A2b		13.938
A2c	7.863	
A3a	5.605	9.817
A3b		12.697
A3c	8.631	
A4a	5.271	9.876
A4b		11.168
A4c	8.177	

Table 9. pK_a values (vacuum phase) of the studied compounds and relevant tautomeric forms.

It is determined that H atoms bonded –OH group on phenyl ring **A** for tautomer form **a**. are more acidic and H atoms bonded –OH group on phenyl ring **B** is more basic. This situation shows H-bond between **N1** and **H1** can be strong (Table 5). It is understood that **H1** or **H2** hydrogen can be broken firstly during the formation of the metal complexes of these compounds.

ACKNOWLEDGEMENT

The authors acknowledge the Anadolu University Scientific Research Projects (Project No: 1509F633) for its kind support of this study.

REFERENCES

- 1. Garnovskii AD, Vasil'chenko IS. Rational design of metal coordination compounds with azomethine ligands. Russ Chem Rev. 2002; 71 (11): 943–996.
- Sinha D, Tiwari A. K, Singh S, Shukla G, Mishra P., Chandra H, Mishra AK. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem. 2008; 43 (1): 160–165.
- 3. Asiri AM, Khan SA. Palladium(II) complexes of NS donor ligands derived from steroidal thiosemicarbazones as antibacterial agents. Molecules 2010; 15 (7): 4784–4791.
- 4. Pandeya SN, Sriram D, Nath G, De-Clercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittelforschung 2000; 50 (1): 55–59.
- Asiri AM, Khan SA, Marwani HM, Sharma K. Synthesis, spectroscopic and physicochemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of *in vitro* and density functional theory. Journal of Photochemistry and Photobiology B: Biology. 2013; 120: 82–89.
- Bharti N, Maurya MR, Naqvi F, Azam A. Synthesis and antiamoebic activity of new cyclooctadiene ruthenium(II) complexes with 2-acetylpyridine and benzimidazole derivatives. Bioorg Med Chem Lett. 2010; 10 (20): 2243–2245.

- Bhandari SV, Bothara KG, Paut MK, Patil AA, Sarkate AP, Mokale VJ. Design, synthesis and evaluation of anti-inflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2- thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorg Med Chem. 2008; 16 (4): 1822–1831.
- Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II). Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur J Med Chem. 2006; 41 (1): 147–153.
- 9. Bawa S, Kumar S. Synthesis of Schiff's bases of 8-methyl-tetrazolo[1,5-a]quinoline as potential anti-inflammatory and antimicrobial agents. Ind J Chem. 2009; 48B: 142–145.
- Aboul-Fadl T, Abdel-Aziz HA, Abdel-Hamid MK, Elsaman T, Thanassi J, Pucci MJ. Schiff bases of indoline-2,3-dione: Potential novel inhibitors of mycobacterium tuberculosis (Mtb) DNA Gyrase. Molecules 2011; 16 (9), 7864–7879.
- 11. Huang G-S, Liang Y-M, Wu X-L, Liu W-M, Ma Y-X. Some ferrocenyl Schiff bases with nonlinear optical properties. Appl Organometal Chem. 2003; 17 (9): 706–710.
- 12. Ghazzali M, Langer V, Lopes C, Eriksson A, Ohrstrom L. Syntheses, crystal structures, optical limiting properties, and DFT calculations of three thiophene-2-aldazine Schiff base derivatives. New J Chem. 2007; 31:1777–1784.
- Singh LP, Bhatnagar JM. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 2004; 64 (2): 313–319.
- 14. Cano M, Oriol L, Piñol M, Serrano JL. Photopolymerization of reactive mesogenic Schiff bases and related metallomesogens. Chem Mater. 1999; 11 (1): 94–100.
- 15. Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; California; 1994.
- Okada T, Katou K, Hirose T, Yuasa M, Sekine I. Oxygen Reduction on Pyrolytic Graphite Electrodes Modified with Electropolymerized Cobalt Salen Compounds. J Electrochem Soc. 1999; 146 (7): 2562–2568.
- Percino MJ, Cerón M, Castro ME, Ramírez R, Soriano G, Chapela VM. (E)-2-[(2-hydroxybenzylidene)amino]phenylarsonic acid Schiff base: Synthesis, characterization and theoretical studies. Journal of Molecular Structure. 2015; 1081: 193–200.
- Hassan WM, Zayed EM, Elkholy AK, Moustafa H, Mohamed GG. Spectroscopic and density functional theory investigation of novel Schiff base complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 103: 378–387.
- 19. Beyramabadi SA, Morsali A, Khoshkholgh MJ, Esmaeili AA. N,N/-dipyridoxyl Schiff bases: Synthesis, experimental and theoretical characterization. Spectrochimica Acta A 2011; 83 (1): 467–471.
- 20. Ren T, Liu S, Li G, Zhang J, Guo J. Li W, Yang L. Synthesis, spectroscopic properties and theoretical studies of bis-Schiff bases derived from polyamine and pyrazolones. Spectrochimica Acta A Mol Biomol Spectrosc. 2012; 97:167–175.
- Berber H, Uysal D, Aydoğdu A. o-Hidroksi Schiff Bazı Moleküllerin ve Tautomer Yapılarının Kararlılıklarının, Asitlik Sabitlerinin Teorik olarak Belirlenmesi ve Moleküler Elektronik Özelliklerinin Araştırılması. Fiziksel Kimya Kongresi (Physical Chemistry Congress), Bülent Ecevit Üniversitesi, 15-18 Mayıs 2017. P55.
- 22. Becke AD. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalizedgradient correlation correction. J Chem Phys. 1992; 97: 9173-9177.
- 23. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993; 98: 5648-5652.

- 24. James J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA, <u>HTTP://OpenMOPAC.net</u> (2016).
- 25. CS ChemBioDraw Ultra 12.0 for Microsoft Windows (CS ChemBioDraw Ultra 12.0. 2010).
- Gaussian09 Rev B.01. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT (2009).
- 27. GaussView, Version 5, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2009.
- Sıdır, İ. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: Effect of electron donor unit for organic photovoltaic solar cell, Molecular Physics 2017; 115 (19): 2451-2459.
- Ghomrasni S, Ayachi S, Alimi K. New acceptor-donor-acceptor(A-D-A) type copolymers for efficient organic photovoltaic devices. Journal of Physics and Chemistry of Solids 2015; 76: 105– 111.
- 30. Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K. DFT modeling of conjugated copolymers photophysical properties: Towards organic solar cell application. Synthetic Metals 2014; 198: 314–322.

92