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Abstract

In this study, kiwi fruit peels were functionalized using hydrochloric acid (HCl), sulfuric acid (H2SO4) and phosphoric acid (H3PO4). 
The properties of the functionalized materials were determined. Fourier transform infrared spectrometer (FTIR) used to show 
functional groups caused by the agents. Crystalline or amorphous structure clarified by X-ray diffraction (XRD) analysis. Scanning 
electron microscope (SEM) revealed the changes by acidic agents on the surface of kiwi peel. The elemental composition was examined 
using energy-dispersive X-ray spectroscopy (EDX) analysis. The performance of kiwi peels functionalized with different acidic agents 
in sorption experiments were investigated. Kiwi peel functionalized with hydrochloric acid (HAFKP), kiwi peel functionalized with 
sulphuric acid (SAFKP), and kiwi peel functionalized with phosphoric acid (PAFKP) exhibited 94.53, 98.62, and 96.76% sorption, 
respectively, from 50 mL of 10 mg/L dye solution for 0.1 g after 24 h. The data obtained for the sorption of the materials were 
evaluated with kinetic models. Pseudo-first order, pseudo-second order, Elovich and Bangham models considered the processes as 
time-dependent. The processes carried out with HAFKP and PAFKP were fit the pseudo-second order kinetic model and determined 
to interact strongly with dye via chemical bonds. SAFKP, on the other hand, interacts physically with dye according to the pseudo-first 
order kinetic model.
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Öz

Bu çalışmada kivi kabukları hidroklorik asit (HCl), sülfürik asit (H2SO4) ve fosforik asit (H3PO4) kullanılarak fonksiyonelleştirildi. 
Fonksiyonelleştirilmiş malzemelerin özellikleri belirlendi. Ajanların neden olduğu fonksiyonel grupları göstermek için Fourier 
dönüşümlü kızılötesi spektrometresi (FTIR) kullanıldı. X-ışını kırınımı (XRD) analiziyle kristal veya amorf yapı açıklandı. Taramalı 
elektron mikroskobu (SEM), kivi kabuğunun yüzeyinde asidik ajanların neden olduğu değişiklikleri ortaya koydu. Elementel bileşim, 
enerji dağılımlı X-ışını spektroskopisi (EDX) analizi kullanılarak incelendi. Farklı asidik ajanlarla fonksiyonelleştirilen kivi kabuklarının 
sorpsiyon deneylerindeki performansı araştırıldı. Hidroklorik asit ile fonksiyonelleştirilmiş kivi kabuğu (HAFKP), sülfürik asit ile 
fonksiyonelleştirilmiş kivi kabuğu (SAFKP) ve fosforik asit ile fonksiyonelleştirilmiş kivi kabuğu (PAFKP) 0.1 g için 24 saat sonra 
50 mL’lik 10 mg/L boya çözeltisinden sırasıyla % 94.53, 98.62 ve 96.76 sorpsiyon sergiledi. Malzemelerin sorpsiyonu için elde edilen 
veriler kinetik modellerle değerlendirildi. Yalancı birinci derece, yalancı ikinci derece, Elovich ve Bangham modelleri prosesleri zamana 
bağlı olarak ele aldı. HAFKP ve PAFKP ile gerçekleştirilen proseslerin yalancı ikinci derece kinetik modele uyduğu ve boya ile 
kimyasal bağlar yoluyla kuvvetli etkileşime girdikleri belirlendi. SAFKP ise yalancı birinci dereceden kinetik modele göre boya ile 
fiziksel olarak etkileşime girdi.
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1. Introduction
Biomass is agricultural and industrial materials such as 
wood, annual crops, and agricultural and forestry residues 
that are rich in fixed carbon (Panichkittikul et al. 2024). 
Materials obtained from agricultural wastes, industrial by-
products and typical wastes can be used to remove impurities 
in sorption processes (Araujo et al. 2021). In addition to 
their low cost, carbonaceous materials exhibit high surface 
area and porosity and superior stability properties (Taylor et 
al. 2024). One way to best utilize biomass is to apply it as 
a precursor to the production of bio-based carbon porous 
materials (dos Reis et al. 2022).

Materials can be activated by applying physical and chemical 
processes (Tang et al. 2023). The chemical method involves 
treating the material with chemicals (Pereira et al. 2014). 
Although chemicals are used for this method, physical 
activation requires a long time and high temperature and 
energy needs (Yossa et al. 2020). Functional groups can be 
introduced by chemical treatment to ensure the affinity of 
materials to impurities in the aqueous environment (Gita 
et al. 2023). Moreover, chemical activation results in high 
carbon yield, large surface area and well-developed porous 
structure (Kılıç et al. 2012). Different reactions occur for 
different agents, as explained by Xing et al (Xing et al. 
2019). Chemical agents cause strong cross-links through 
dehydration and elimination reactions, prevent volume 
shrinkage, provide high porosity and add functional groups 
to the material (Guo and Lua 2003). Chemical treatment 
agents can be acidic, alkaline and oxidizing agents, metal salts 
and a combination thereof (Zhang et al. 2023). Commonly 
used acidic activating agents are nitric acid, hydrochloric 
acid, sulfuric acid, and phosphoric acid (España et al. 2019).

Dyes are difficult to remove from wastewater because they 
are resistant to biological degradation (Zhu et al. 2014). The 
elimination of crystal violet, an alkaline dye, from industrial 
wastewater attracts attention in terms of water improvement 
(Gupta et al. 2023). It is used in many areas such as fabric 
dyeing, adhesive tapes, ink production, leather processing, 
food industry, fingerprint detection and veterinary medicine 
(Abd El-Hamid et al. 2022, Kumbhar et al. 2022). Since 
crystal violet is widely used as a dye with high economic 
value, it is mixed in effluents and therefore poses a health 
risk (Huang et al. 2023). It can be more toxic than many 
other types of dyes due to the production of dangerous 
aromatic amino products (Benhalima et al. 2023). Its 
complex structure makes it more toxic and dangerous than 
anionic dyes (Tan et al. 2023). Even very low concentrations 

(1 mg/L) threaten living life by negatively affecting light 
transmission to aquatic environments (Loganathan et al. 
2022). Therefore, its effective removal from water is of great 
necessity (Wu et al. 2021).

In this study, it is aimed to determine the changes caused 
by different acidic agents in the properties of kiwi peels, 
to evaluate the effects of each acidic agent individually 
and to compare them with each other. In addition, the 
sorption performances provided by the properties that each 
acidic agent brings to the kiwi peels and the kinetics of the 
sorptions were investigated. In the literature, many different 
biomass such as algae (Kumar et al. 2016), green seaweed 
(Bertoni et al. 2015), soy hull (Blanes et al. 2016), flower 
(Lingamdinne et al. 2016), hickory chips, cotton stalks 
and peanut hulls (Ding et al. 2014), exhausted coffee (Liu 
et al. 2016), reed (Rawajfih and Nsour 2008) and hazelnut 
and almond shell (Pehlivan et al. 2009) have been used for 
sorption purposes. There have been studies involving kiwi 
peels in sorption processes, and it is noteworthy that these 
studies are current. Gubitosa et al. (2022) used kiwi peels as 
adsorbent for Ciprofloxacin removal. A Zn–Fe biochar (KB/
Zn-Fe) was designed from a kiwi branch and used in Pb 
(II) removal from an aqueous solution by Tan et al. (2022a). 
There is a study in which chitosan-modified kiwi branch 
biochar was prepared for Cd (II) removal (Tan et al. 2022b). 
Gong et al. (2024) produced manganese dioxide-decorated 
kiwi peel powder for the removal of Pb2+. Unlike previous 
studies, this study revealed the changes in the properties 
of kiwi peels with hydrochloric acid (HCl), sulfuric acid 
(H2SO4) and phosphoric acid (H3PO4). In addition, 
the effect of each agent on the crystal violet sorption 
performance of kiwi peels was investigated. In this way, the 
preparation of kiwi peels with a different method and the 
use of a different material for sorption than the studies on 
kiwi mentioned above demonstrates the innovative aspect of 
the study. The important points of the study that contribute 
to the studies in this field are that a detailed study is carried 
out by determining the effects of different agents for both 
characterization and sorption, that a wide scope is provided 
for the study by comparing various functionalizations, 
and that the study includes an easy process with common 
chemicals as a preparation method. In addition, according 
to the literature reviews above, the fact that the studies on 
kiwi are from recent years shows that studies on kiwi have 
intensified, and it is seen that this study carried out in this 
direction is currently remarkable.
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2. Materials and Methods
2.1. Functionalization of Biomass

Kiwi fruits were purchased from a market in Bilecik. 
They were peeled and the peels were collected. It was 
left to dry for approximately 2 months in the presence of 
sunlight. The dried peels were broken and ground. It was 
then functionalized by HCl (≥37%, Honeywell Fluka), 
H2SO4 (95-97%, Honeywell Riedel-de Haen) and H3PO4 
(orthophosphoric acid, 85%, Carlo Erba). Acidic agents 
were used without any treatment or dilution. Material 
preparation was carried out by chemical treatment similar 
to previous studies (Van Veenhuyzen et al. 2021, Almeida 
et al. 2021). 8 g of ground kiwi peel was placed in 60 mL of 
acid and stirred slowly for 2 h at 90°C for effective contact. 
Then, it was kept at 90°C for 2 h without mixing. Kiwi peels 
functionalized with acidic agents were washed several times 
with 0.5M sodium hydroxide (NaOH, Carlo Erba) solution. 
It was washed with distilled water and the pH was ensured 
to reach between 6-7. Kiwi peels were dried in an oven 
at 105°C. Raw kiwi peels were named KP, and kiwi peels 
prepared by functionalizing using HCl, H2SO4 and H3PO4 
were called HAFKP, SAFKP and PAFKP, respectively.

2.2. Sorption

Sorption studies were carried out with kiwi peels prepared 
by functionalizing them with acidic agents. The sorption 
efficiency of HAFKP, SAFKP and PAFKP was investigated 
by preparing simulated wastewater containing crystal violet 
(Fluka) dye. Simulated wastewater was prepared at its own 
pH value and in a volume of 50 mL, containing dye at an 
initial concentration of 10 mg/L. A shaking water bath was 
used for the experiments. The experiments were repeated 
twice. Absorbance values of aqueous solutions including the 
dye were determined by Ultraviolet-Visible region (UV-Vis) 
spectroscopy at 590 nm wavelength and recorded. These 
values were converted to concentration values using the 
absorbance versus concentration curve prepared at different 
concentrations of the dye. The concentration values were 
used to calculate the sorption percentage and capacity given 
in Equations (1) and (2), respectively (Manzar et al. 2023):
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C0, Ce and Ct represent the initial, equilibrium and 
concentration values at any time t (mg L−1), qt indicates the 

sorption capacity (mg g−1), V represents the solution volume 
(L), and m indicates the mass of the material (g), respectively 
(Manzar et al. 2023).

2.2.1. Kinetics

Kinetic studies were carried out to evaluate the processes in 
which HAFKP, SAFKP and PAFKP were used in sorption 
processes. The equations used are listed below (Cui et al. 
2015, Berhane et al. 2017, Veneu et al. 2019): 

Pseudo-first order kinetic model:
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Bangham model: q k tt
B
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qe indicates the amount retained in the solid at equilibrium 
(mg g−1), and k1 is the pseudo-first order reaction velocity 
constant (g mg−1 min−1), t represents time (min), k2 is the 
pseudo-second order reaction velocity constant (g mg−1 
min−1), a indicates the initial sorption rate constant (mg 
kg−1 min−1), β indicates a sorption constant (kg mg−1) and a 
β and k3 are related constants for Bangham isotherm (Cui et 
al. 2015, Berhane et al. 2017, Veneu et al. 2019).

2.3. Apparatus

For KP, HAFKP, SAKKP and PAFKP, functional groups 
of raw kiwi peels and materials prepared depending on 
the changing agent were detected using Fourier transform 
infrared spectroscopy (FTIR). The X-ray diffraction 
(XRD) method was applied to investigate the amorphous 
or crystalline structure of functionalized kiwi peels. The 
surface morphologies of the materials were investigated and 
elemental composition of the surfaces was exhibited using 
scanning electron microscopy-energy dispersive X-ray 
spectroscopy (SEM-EDX).

3. Results and Discussion
3.1. Characteristics

The functional groups of KP, HAFKP, SAFKP and PAFKP 
were determined and the effective groups for dye sorption 
were analyzed. Figure 1(a), (b), (c) and (d) show the FTIR 
spectra of KP, HAFKP, SAFKP and PAFKP, respectively. 
The broad and distinct peak seen at 3293 cm-1 for KP in 
Figure 1(a) belongs to the vibrations of O-H groups, 
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Figure 1. FTIR spectra of (A) KP, (B) HAFKP, (C) SAFKP, and (D) PAFKP.
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In Figure 1(a), a CH3 bending peak was detected at 1261 
cm-1 in KP (Guo et al. 2012). The peaks at 1185 (Figure 
1(c)), 1161 (Figure 1(b)) and 1033 (Figure 1(a)) cm-1 
indicate C-O vibrations (Nikafshar et al. 2017, Karabıyık 
et al. 2023, Bandyopadhyay et al. 2021). The 1042 cm-1 peak 
in Figure 1(d) may belong to P=O and P-O-P vibrations of 
PAFKP (Tang et al. 2019, Silva et al. 2021, Wu et al. 2023). 
For SAFKP, the peak at 1040 cm-1 may belong to the –SO2 
group (Figure 1(c)) (Wu et al. 2017). The 1025 cm-1 peak in 
Figure 1(b) indicates C-OH stretching vibrations (Zhang 
et al. 2022). The 922 cm-1 peak seen for PAFKP may belong 
to the presence of P (Mustafa et al. 2023). For KP, there is 
a C–O–C stretching vibration peak at 823 cm-1 (Abolins et 
al. 2020). Interactions of different elements may take place 
in the region below 800 cm-1 (Peng et al. 2023, Isaac et al. 
2023, Jin et al. 2023).

XRD analysis was performed to determine whether HAFKP, 
SAFKP and PAFKP were amorphous or crystalline. Figure 
2(a), (b) and (c) are the XRD diffractograms of HAFKP, 

however, its effect seems to have decreased, which may be due 
to the thermal treatment along with the functionalization 
at 3332, 3353 and 3302 cm-1 for HAFKP, SAFKP and 
PAFKP, respectively (Zbair et al. 2020, Adnan and Moses 
2020, Hao et al. 2023, Tirkey and Babu 2024). The peaks 
that lose their effect for SAFKP and in the range of 2915-
2917 and 2843-2848 cm-1 for other samples indicate CH2 
stretching vibrations (Kuracina et al. 2023, Stelescu et al. 
2022). CO stretching peaks appeared in the range of 2163-
2168 cm-1 in the materials prepared by functionalization of 
KP (Yang and Wöll 2017). KP has a C=O band according 
to 1731 and 1616 cm-1 (Phothong et al. 2024, B.Aziz et 
al. 2019). The peaks seen at 1595, 1557 and 1588 cm-1 for 
HAFKP, SAFKP and PAFKP may belong to C-H, C-N 
and -COOH vibrations, respectively (Gan and Tan 2001, 
Dutta et al. 2019, Yamada and Mizuno 2021). While the 
CH3 bending peak was observed at 1377 cm-1 for HAFKP, 
C-O peaks were observed at 1332, 1392 and 1283 cm-1 for 
KP, SAFKP and PAFKP, respectively (Gupta et al. 2017, 
Jung et al. 2018, Rani et al. 2016, Rajaniverma et al. 2022). 

Figure 2. X-ray diffractograms of (A) HAFKP, (B) SAFKP, and (C) PAFKP.

A

B C
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compared with the SEM analyzes of KP. In the SEM images 
of KP at different magnifications in Figures 3(a) and (b), a 
non-porous, irregular and lumpy surface structure is seen, as 
in the study by Gubitosa et al. in which they examined the 
external and internal structure of the kiwi peel (Gubitosa 
et al. 2022). In the SEM images of HAFKP in Figure 
3(c) and (d), it is clear that HCl causes the formation of 
irregular and crevice-shaped regions on the surface of KP. 
Similar to the previous study presented by Xing et al., it 

SAFKP and PAFKP, respectively. According to Figure 
2, peaks at similar 2θ values were observed for HAFKP, 
SAFKP and PAFKP. Similar to the study by Santos et al., 
HAFKP, SAFKP and PAFKP exhibited an amorphous 
structure with a small number of crystal patterns (Santos 
et al. 2023).

To monitor the changes in the surface structure of KP 
with functionalization, SEM analyzes were performed for 
HAFKP, SAFKP and PAFKP and these analyzes were 

Figure 3. SEM images of KP (A and B), 
HAFKP (C and D), SAFKP (E and F), and 
PAFKP (G and H).

A B

C D
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G H
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EDX analyzes were performed to examine the effect of 
different acids used for functionalization on the elemental 
composition on the surfaces of the materials. Figure 4(a), 
(b), (c) and (d) are EDX analyzes for KP, HAFKP, SAFKP 
and PAFKP, respectively. According to Figure 4(a), KP is a 
material with 21.5% O, 21.3% K, 16.1% Mg, 12.9% Zn and 
11.6% Cu content by mass. For HCl applied HAFKP, 71.0% 
C, 11.4% O, 8.5% Cl and 5.5% Na content were determined 
(Figure 4(b)). SAFKP exhibited 57.9% C, 24.0% Na and 
11.4% O content in Figure 4(c). The major elements for 
PAFKP were 47.1% C, 10.8% O and 10.5% Na (Figure 
4(d)). According to EDX results, it was determined that the 
functionalization of kiwi peels with acidic chemical agents 
provided C content for HAFKP, SAFKP and PAFKP.

resulted in a corrugated and layered surface structure on 
the KP surface with agglomerations with HCl (Xing et 
al. 2016). In Figure 3(e) and (f ) of SAFKP, it is seen that 
H2SO4 causes the formation of a highly porous structure 
containing open pores of different sizes, as shown by Guo 
et al (Guo et al. 2023). In Figure 3(g) and (h) of PAFKP, 
an irregular surface with wide cracks is seen. Accordingly, 
it is seen that the surface structures change as a result of 
the functionalization of the raw material with acidic agents. 
In addition, it is clear in the SEM images in Figure 3 that 
different acidic agents change the surface structure of the 
raw material and cause surface structures of different shapes, 
sizes and distributions. These surface structures show that 
changes have been created on the surface of the non-porous 
KP by acidic functionalizations and that these structures of 
the newly prepared HAFKP, SAFKP and PAFKP may be 
suitable areas for sorption.

Figure 4. EDX analysis of (A) KP, (B) HAFKP, (C) SAFKP, and (D) PAFKP.
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0.1 g, the volume of the dye solution was 50 mL, the initial 
concentration of the dye solution was 10 mg/L, the pH 
value of the dye solution itself, the temperature was 24 °C 
and the shaking speed was 190 rpm. Under these conditions, 
concentration changes were monitored to determine the 
equilibrium times of the processes.

3.2. Sorption Analysis

3.2.1. Determination of sorption performance

The sorption performance of HAFKP, SAFKP and PAFKP 
over time is given in Figure 5(a), (b) and (c), respectively. For 
the experiments, the amount of material was determined as 

Figure 5. Sorption performance of (A) HAFKP, (b) SAFKP, and (C) PAFKP.
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increases at the end of 1440 min were neglected and 1440 
min was determined as the equilibrium time. Similar to 
HAFKP and SAFKP, PAFKP also exhibited high sorption 
performance at equilibrium time. At the end of 1440 min, 
HAFKP, SAFKP and PAFKP exhibited 94.53, 98.62 and 
96.76% sorption and 4.73, 4.93 and 4.84 mg/g capacity, re-
spectively. Although the sorption percentage and capacity 
values are very close to each other, the highest values were 
obtained for SAFKP.

3.2.2. Application of kinetic models to sorption

Kinetic studies were conducted to explain the performance 
of HAFKP, SAFKP and PAFKP. Kinetic studies for 
HAFKP, SAFKP and PAFKP using pseudo-first order, 
pseudo-second order, Elovich and Bangham models are 
plotted in Figure 6(a), (b) and (c), respectively.

The variables of the kinetic models are given in Table 1. 
According to the magnitude of the correlation coefficients 
(R2) of the kinetic models in Table 1, pseudo-second or-
der>pseudo-first order>Elovich>Bangham order was de-
termined for HAFKP. For SAFKP, R2 values increased in 
the order pseudo-first order>pseudo-second order>Elovi-
ch>Bangham. According to R2 values, PAFKP showed a fit 
as pseudo-second order>pseudo-first order>Elovich>Bang-
ham. The largest R2 value for HAFKP and PAFKP was 
determined for the pseudo-second order kinetic model. 
Supporting this situation, the experimental qe values were 
found to be close to the qe values of the pseudo-second order 

In the graph of HAFKP given in Figure 5(a), it is seen that 
high sorption is achieved (~50%) as soon as the experi-
ment starts and this situation continues to increase rapidly 
until approximately 120 min. According to the figure, the 
increase continues after 120 min, but the rate of increase 
gradually decreases. A similar situation was observed for ca-
pacity values. When concentration changes were continued 
to be monitored to determine the equilibrium time, it was 
observed that the sorption performance increased with very 
small increases after 120 min. It was determined that the 
sorption performance of the process did not change due to 
the concentration value remaining constant at the end of 
1440 min and therefore 1440 min was determined as the 
equilibrium time. When the performance of SAFKP was 
followed over time, Figure 5(b) was obtained. As seen in 
the figure, process performance increased over time at lower 
rates than HAFKP. The increasing trend, which started in 
the first moments of the experiment, continued for 480 min. 
Although the increases continued after 480 min, they re-
mained at very low rates. 1440 min was chosen as the equi-
librium time due to negligible increases at the end of 1440 
min. This behavior caused the formation of the curve in Fig-
ure 5(b). However, similar to HAFKP, SAFKP also showed 
high performance at the end of 1440 min. Figure 5(c) shows 
the performance of PAFKP. PAFKP provided lower percent 
sorption values than HAFKP but higher than SAFKP in 
the first moments of the experiment. Although the stable 
sorption rates, which continued for 360 min, decreased after 
360 min, PAFKP continued to perform. Similar to SAFKP, 

Table 1. Variables of kinetic models.

Model Parameter HAFKP SAFKP PAFKP
experimental qe 4.73 4.93 4.84

PFO
qe 4.55 4.74 4.55
k1 0.058 0.012 0.022
R2 0.9129 0.9901 0.9481

PSO
qe 4.79 5.38 5.00
k2 11.75 2.56 4.24
R2 0.9976 0.9891 0.9966

Elovich
a 349.19 0.28 1.41
β 2.73 1.053 1.45
R2 0.7381 0.8922 0.8684

Bangham
aB 0.091 0.22 0.15
k3 2.73 1.18 1.80
R2 0.6651 0.7898 0.7793
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PAFKP, thus a strong bonding occurs through covalent 
bonds (Sasamoto et al. 2022). For SAFKP, although high 
and close R2 values were obtained for both the pseudo-first 
order and pseudo-second order models, the R2 value of the 
pseudo-first order was found to be higher with a very slight 

kinetic model for HAFKP and PAFKP. This model explains 
that chemisorption is the rate-determining step (Lammini 
et al. 2022). The fact that the processes for HAFKP and 
PAFKP are chemical sorption indicates that a chemical re-
action occurs between the dye molecules and HAFKP and 

Figure 6. Experimental and kinetic model graphs of (A) HAFKP, (B) SAFKP and (C) PAFKP.
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