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Abstract: Differential item functioning (DIF) indicates existence of items in a test on which different groups 

of examinees perform differentially. The groups in DIF analyses are typically designated based on their manifest 

characteristics such as gender and ethnicity. Previous research showed that, examinees of a manifest group may 

not be homogeneous on the dimension that is actually causing DIF. That is, the manifest groups have a weak 

relationship with the latent groups that explicit true differential performance on items. In this study, DIF items 

on the basis of gender were identified for PISA 2012 mathematics data from Turkish subsample. Then, latent 

groups in the subsample were estimated in order to detect the true groups that perform differentially. 
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Introduction 
 

Unidimensional item response theory (IRT) models assume that the underlying latent trait that explains the 

common variance among item responses is one dimensional (Lord & Novick, 1968). In other words, the items 

are uncorrelated for fixed values of the underlying latent trait (i.e., local independence; McDonald, 1999), 

because no additional dimension is sufficiently dominant to explain a substantial amount (i.e., 20% or higher) of 

the common variance among items (Reckase, 1979)1. 

 

Differential item functioning (DIF) (e.g., Holland & Wainer, 1993) refers to performance differences between 

groups on certain items after the groups have been matched on the latent ability that is intended to be measured 

by the item (Dorans & Holland, 1993). In other words, the groups perform differentially on these items not 

because they differ on the latent ability that is intended to be measured, but because they differ on a nuisance 

dimension which is not of interest (Ackerman, 1992). Differential item functioning threaten construct validity in 

the assesment because of unintended multidimensionality in the construct that is being measured (Steinberg & 

Thissen, 1996). DIF analyses ensure that interpretations of test scores are valid for all distinct groups of the 

examinees (Zwick, 2012). 

 

The groups in DIF analyses are typically determined based on their manifest characteristics such as gender, race 

and ethnicity. There are two issues worth of consideration regarding this approach. First, the manifest groups are 

not homogeneous on the dimension that is actually causing DIF (Samuelsen, 2005). Second, the typical approach 

of DIF detection identifies the items with DIF, however does not explain the the dimension that is actually 

causing DIF (Cohen & Bolt, 2005). 

 

Mixture item response theory models can be used to identify the latent groups that actually perform differentially 

on items (Cohen & Bolt, 2005). DIF analysis that is based on manifest groups could be called manifest DIF and 

DIF analysis that is based on latent groups could be called latent DIF (Cho, Suh, & Lee, 2016). The manifest 

groups in manifest DIF and the latent groups that are detected in latent DIF are often not comparable (Cohen & 

Bolt, 2005). 

 

In this study, DIF items based on gender were identified for PISA 2012 mathematics data from Turkey. Then, 

latent groups in Turkish data were estimated by using a mixture 2-parameter logistic (2PL) IRT model in order 
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to detect the true groups that perform differentially on the items as well as to determine the items that indicate 

DIF. 

 

 

Methods 
 

Manifest DIF 

 

There are different methods and approaches for DIF detection (e.g., the Mantel–Haenszel procedure, the 

Standardization procedure, logistic regression, logistic discriminant function analysis, Lord’s chi-square, Raju’s 

area measures, likelihood ratio test). The IRT model-based likelihood ratio test (LR) was used in this study for 

detection of DIF (Thissen, Steinberg, & Gerrard, 1968; Thissen, Steinberg, & Wainer, 1993). IRTLRDIF 

(Thissen, 2001) software was used to conduct the LR analysis. 

 

 

Latent DIF 

 

A mixture 2PL IRT model was used to detect the true groups that perform differentially. A 2PL IRT model is 

one of the unidimensional IRT models that is for dichotomous items (e.g., multiple choice). The 2PL model 

defines the probability that an examinee   with ability    answers item   correctly    (  )  by the following 

equation: 
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where    is the item difficulty parameter for item   and    is the item discrimination parameter for item  .  
 

A mixture 2PL IRT model defines the probability of a correct response to item i by examinee j as: 

     (     |   )  ∑  
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where θjg is the examinee’s ability in latent group g, and big is the item difficulty parameter in latent group g, and 

aig is the item discrimination parameter in latent group g. 

 

 

Estimation of mixture 2PL IRTmodel parameters 

 

Estimation of parameters in the mixture 2PL IRT model was done by using the Markov Chain Monte Carlo 

(MCMC) method as implemented in the computer software OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 

2009). A burn-in period of 3,000 iterations was used with a total number of 15,000 iterations. Following priors 

were used for MCMC estimation of model parameters: 

 

                          
                                                                                                                                             (   

                          

 

 

Dataset 

 

The data used in this study is from the 2012 cycle of the Program for International Student Assessment (PISA; 

OECD, 2014). In this example, data from Turkey was analyzed with a sample size of 351. Data from booklet 5 

was used resulting 36 items to be analyzed. Examinees were deleted from the dataset if they provided a missing 

response to at least one item. The partial credit items were recoded dichotomously. That is, a full credit was 

recoded as a correct response and a partial credit was recoded as an incorrect response. 
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Results and Findings 
 

LR analysis detected seven items with DIF based on gender. Mixture 2PL IRT analysis resulted in one 

underlying latent class based on both Akaike’s information criterion (AIC; Akaike, 1974) and based on 

Schwarz’s Bayesian information criterion (BIC; Schwarz, 1978). 

 

 

Conclusion 
 

Mixture 2PL IRT model yielded only one underlying latent class. That is, there were not any groups that perform 

differentially on the test items. The LR DIF analyses on the other hand yielded that female and male students 

performed differentially on seven items. Detection of groups that perform differentially seems to be misleading 

when the grouping is done based on gender. It is because no underlying latent groups detected that performs 

differentially on the given items. 
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Footnotes 
 

1Local independence and unidimensionality are related yet different concepts. However, a multidimensional IRT 

model and a locally dependent IRT model are indistinguishable in practice (Ip, 2010), endorsing that the local 

dependency may be an indicator of multidimensionality (Reise, Scheines, Widaman, & Haviland, 2013; 

Steinberg & Thissen, 1996). 

 

 


