
 

 

Turkish Journal of Engineering – 2024, 8(4), 640-646. 

 

 

Turkish Journal of Engineering 

https://dergipark.org.tr/en/pub/tuje 

e-ISSN 2587-1366 

 
 
 

Development of geometry-driven quantitative prediction for shrinkage porosity in T-junction 
of steel sand castings 
 

Kamar Mazloum *1 , Amit Sata 1  

 

1 Marwadi University, Department of Mechanical Engineering, India, kamar.mazloum112219@marwadiuniversity.ac.in, 
amit.sata@marwadieducation.edu.in 
 
 

Cite this study: Mazloum, K., & Sata, A. (2024). Development of geometry-driven quantitative prediction for 
shrinkage porosity in T-junction of steel sand castings. Turkish Journal of Engineering, 8 (4), 640-
646. 

 
https://doi.org/10.31127/tuje.1454237 
 
 

Keywords  Abstract 
Shrinkage porosity 
Plain carbon steel 
Casting simulation 
Sand casting 
Criterion function 

 Shrinkage porosity poses a significant challenge in metal casting processes, impacting both 
productivity and energy efficiency, especially when dealing with components that are not 
accepted or reprocessed. Addressing this issue requires proactive measures, and predictive 
techniques play a crucial role in minimizing its occurrence. Among these methods, the 
Criterion Function stands out as a valuable empirical model extensively explored in the 
literature. By intricately linking solidification processes to the development of shrinkage 
porosity, the Criterion Function leverages key process parameters, including thermal gradient, 
molten metal velocity during solidification, and cooling rate, to offer predictive insights into 
the location and presence of porosity. However, a criterion function is needed that also 
considers the effect of geometric variations as well as the size of the defect (shrinkage 
porosity). In this study, a casting with three T-joints was taken as a benchmark shape to 
develop a geometry-based quantitative prediction model for plain carbon steel castings. Real 
experimental results were combined with solidification simulation results to produce reliable 
data, which were then used to extrapolate the results. The developed quantitative prediction 
model, which includes the effect of geometric changes, has been validated and proven effective 
in predicting shrinkage porosity. 
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1. Introduction  
 

Plain carbon steel is economically efficient, strong, 
and durable, making it ideal for industrial casting [1,2]. 
This allows for the production of a wide variety of 
components. The formation of porosity resulting from 
solidification shrinkage, or shrinkage porosity, is an 
important issue in the industrial casting business. It is 
typically viewed as unsatisfactory because it adversely 
affects the mechanical qualities of cast components [3-5]. 
In order to ensure the quality of plain carbon steel parts, 
shrinkage porosity must be handled, necessitating 
effective solutions for high-quality manufacturing 
procedures. Shrinkage porosity appears in the final 
phase of solidification, where the reduction in the central 
matrix's volume cannot be fully compensated by molten 
steel flowing in from upstream, primarily due to a high 

solid fraction [6]. During the solidification process, 
identifying a generated liquid phase isolated region in 
the casting allows for the preliminary determination of 
both its location and potential defects. Subsequently, 
predictions about the location and size of defects can be 
made post-solidification [7,8]. Analyzing the 
temperature distribution during the filling and 
solidification of liquid metal enables anticipating defect 
locations and provides insights to improve the 
manufacturing process [9]. The casting production 
process is complex, and the quality of the final product 
depends on various process parameters. Currently, metal 
foundries largely rely on a "trial and error" approach in 
their design, with casting designers' expertise playing a 
significant role in ensuring quality and minimizing 
potential errors. Achieving optimal results for casting 
parameters is challenging through traditional 
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mathematical calculations [10-12]. To achieve high-
quality casting, it is essential to experimentally control 
casting parameters or utilize engineering and production 
systems such as Computer-Aided Simulation (CAS) 
[13,11]. Casting simulation proves to be a highly effective 
strategy for preventing shrinkage porosity in metal 
castings, contributing to lower rejection rates, decreased 
energy loss, and enhanced productivity in foundries [14]. 
In the last two decades, the application of casting 
simulation and numerical methods has gained popularity 
with the advancement of powerful computing facilities. 
This method involves solving governing equations 
representing various physical phenomena in metal 
casting, such as flow, heat transfer, solidification, phase 
transformation, and stress/strain formation [15]. While 
statistical and artificial intelligence-based techniques 
have been employed for defect prediction [16], their 
widespread adoption is limited due to the challenges 
associated with extensive data collection. 

In a series of separate investigations concentrating on 
predicting defects in casting processes, various advanced 
techniques using numerical methods are explored to 
forecast different types of defects. One study specifically 
explores the application of Darcy's Equation to predict 
the occurrence of shrinkage and gas porosity [17]. 
Another approach, like the Finite Element Method (FEM), 
is employed because it can simulate various structural 
elements [18]. For instance, one investigation utilizes 
FEM to anticipate porosity distribution, considering 
factors like exothermic powder, chills, and pads [19]. 
Another paper investigates metal flow through finite 
element analysis, using the continuity equation to 
prevent casting defects such as porosity and air 
entrainment [20]. A separate study employs modeling 
methods to analyze the impact of varying conditions on 
molten fluidity, particularly assessing the filling stage 
during casting [21]. Another investigation establishes a 
method for predicting the fraction and distribution of 
micro porosity [22]. For example, one of these studies 
utilizes a mushy-zone refinement technique to predict 
pipe shrinkage, macro porosity, and micro porosity [23]. 
The Volume of Fluid (VOF) approach is utilized in a 
different study to predict the formation and shape of 
shrinkage [24]. Furthermore, effective prediction of the 
volumetric fraction of porosity resulting from hydrogen 
gas precipitation in plate casting is demonstrated [25]. 
Lastly, a distinct study extends its predictive capabilities 
to the development of shrinkage in alloys characterized 
by both short and lengthy freezing ranges [26]. Together, 
these varied studies offer valuable insights into defect 
prediction, presenting a comprehensive approach to 
foresee and address various casting defects. 

Casting simulation relies heavily on criterion 
functions, derived essentially from thermal parameters 
[27]. These functions are obtained by solving governing 
equations through suitable numerical methods to 
forecast the occurrence of shrinkage porosity. The 
utilization of these criterion functions is notably 
advantageous, given their ease of integration with 
casting simulation tools and the straightforward 
interpretation of results. Table 1 provides a compilation 
of assorted criterion functions used for particular 
metallic alloys. 

Criterion functions, recognized for their effectiveness, 
have been developed in recent years to forecast the 
occurrence of shrinkage porosity, primarily addressing 
thermal parameters within specific process-alloy 
combinations. However, further exploration is needed to 
assess both the quantity of shrinkage porosity and the 
geometric influence on shrinkage porosity. 

 

Table 1. The assorted criterion functions [28]. 
Criterion 
Function 

Bishop Davies Khan Niyama Lee 
St 

Kao 

Year 1951 1975 1980 1982 1990 1994 

Model: 
Ga×ts

d

vs
b×Rc 

 

a 1 1 0 1 1 0.38 

b 0 -1 -1 0 -1 
-

1.62 

c 0 0 0 -0.5 0 0 

d 0 0 0 0 2/3 0 

Remarks 
Cast 
Steel 

-- -- Steel 
Al 

alloy 
-- 

Nomenclature: R: Cooling rate, vs: Solidification velocity, ts: 
local solidification time, G: Temperature gradient 

 

2. Selection of a benchmark shape 
 

Variations in the shape of metal castings influence the 
location and size of shrinkage porosity. In the 
development of an empirical model for predicting 
shrinkage porosity, selecting a standard form became 
necessary. Castings with a junction shape are often 
associated with a higher likelihood of developing 
shrinkage porosity [29]. Consequently, the T-junction 
shape was chosen as the benchmark, combining three T-
junctions, as illustrated in Figure 1. The benchmark 
shape encompasses four cases of stem thickness, each 
with three different values of stem length, resulting in a 
total of 12 designs, as appeared in Table 2. The 
dimensions of the casting's depth, total length, and arm 
thickness remained constant. However, to investigate the 
impact of geometry on porosity formation, two ratios 
related to arm thickness were considered: the thickness 
ratio 𝑅1 (arm thickness to stem thickness) and the length 
ratio 𝑅2 (arm thickness to stem length). The arm length 
was intentionally selected to ensure feeding 
independence, preventing solidification in one junction 
from affecting the other two. In all cases, the angle 
formed by the arm and stem remains a constant 90 
degrees in sectional orientation. For this study, it is 
presumed that the arm and stem have zero radius. 

 

 
Figure 1. A benchmark shape combining three T-
junctions. 
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Table 2. The dimensions pertaining to the benchmark 
casting. 

Case 
No 

Thickness 
Depth 

(d) 
mm 

Length 

Stem 
(T) 
mm 

Arm 
(t) 

mm 

Stem 
(I1) 
mm 

Stem 
(I2) 
mm 

Stem 
(I3) 
mm 

Total 
(L) 
mm 

1 5 

20 40 40 60 80 240 
2 10 
3 20 
4 30 

 

3. Geometry-Influenced criterion function 
development methodology 

 

Current methods for predicting shrinkage porosity 
primarily focus on solidification-related factors, such as 
alloy temperature gradient and cooling rate. Numerous 
researchers have established correlations between these 
parameters and shrinkage porosity occurrence. 
Developing a criterion function to predict shrinkage 
porosity for a specific alloying process that considers the 
geometry effect requires collecting information not only 
about geometric parameters but also about temperature 
gradient and cooling rate during solidification.  

 

 
Figure 2. The technique employed in developing a 
geometry-influenced criterion function. 
 

This information is typically obtained through 
numerical solutions or experiments. While numerical 
solutions demand precise boundary conditions for 
accuracy, obtaining real-time parameters during 
experiments poses significant challenges. Hence, an 
integrated approach is adopted for leveraging both 
numerical methods and experimental data to 
comprehensively understand solidification phenomena. 
Figure 2 illustrates this process, followed by a detailed 
step-by-step discussion of the methodology. 
 

4. Simulations and experiments setup 
 

Since large-scale cast-steel goods made of plain 
carbon steel are widely utilized in industry, this metal 
has been chosen as cast metal.  Wide-ranging industries, 
including power generation, construction, 
transportation, and autos [30], have used large-scale cast 
steel products as essential structural elements. Table 3 
lists the elements that make up plain carbon steel. 

Table 3. Plain Carbon Steel elements (courtesy: regional 
industrial sand-casting foundry). 

Carbon Silicon Manganese 
Phosphorus 
and Sulphur 

Iron 

0.045 
% 

0.48 
% 

0.85 
 % 

Less than 
0.09 % 

More than 
98 % 

 

4.1. Simulations 
 

The simulation for all cases of the benchmark shape 
mentioned in Table 2 was conducted for the solidification 
process using casting simulation software developed 
based on fundamentals of Vector Element Method (VEM) 
which has been elaborately discussed in several technical 
literatures [31, 32]. This method is relatively quick in 
providing simulated results in comparison with other 
methods. The simulations were carried out with a mesh 
size of 0.5 𝑚𝑚. Simulation of the plain carbon steel 
solidification is depicted in Figure 3. The occurrence of 
shrinkage porosity can be predicted in the solidification 
process through transient thermal analysis with the 
application of appropriate initial and boundary 
conditions. The initial mold temperature was set to 27 ℃, 
and the pouring temperature to 1657 ℃. The Interfacial 
heat transfer coefficient for plain carbon steel to silica 
sand mold is taken as 570 W/m2 K, and for the mold to 
the surrounding air, it is 11.2 W/m2 K, assumed to be 
constant throughout solidification. The silica sand has a 
density of 1490 kg/m3 and exhibits a thermal 
conductivity of 0.519 W/m K and a specific heat of 
1170 J/kg. Simulated results suggest that the benchmark 
shape may develop shrinkage porosity if a feeder is not 
provided during experiments. 

 

 
Figure 3. Simulation of the plain carbon steel 
solidification. 
 

4.2. Experiments 
 

All variations in the benchmark shape were tested 
through experiments. For each variation in the 
benchmark form, two castings were made under 
identical conditions to account for any uncertainties.  
 

Table 4. Particulars regarding the experiment. 

Molding box dimensions 340 ×  340 ×  125 [mm] 

Number of mold boxes two 

Pouring basin specifications Square c/s 50 [mm] 

Sprue dimensions 
Cylinder: 25 [mm] 
Height: 125 [mm] 

Rectangular gate 
dimensions 

25 ×  10 [mm] 

Number of gates two 

Number of cavities Double 

 

Figure 4 illustrates the use of silica-based sand to 
create castings in green sand molds. Simple wood was 
utilized to craft the patterns, and to enhance the surface 
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smoothness of benchmark castings, wooden templates 
were painted with oil paint. After heating the metal to 
1657 °𝐶 in an induction furnace, it was poured under 
gravity. Table 4 displays the specific details of the 
experiment setup. 

 

Table 5. shrinkage porosity across all junctions. 

Junction Data 
Case 

1 
Case 

2 
Case 

3 
Case 

4 

1 

R1 

=
Stem thickness

Arm thickness
 

0.25 0.5 1 1.5 

R2 

=
Stem length

Arm thickness
 

2 2 2 2 

Porosity [cm3] 0.1 0.2 1.6 2.5 

Nomenclature 
[mm] 

(T − t −
I1, I2, I3) 

20-5-
40 

20-
10-
40 

20-
20-
40 

20-
30-
40 

2 

R1 

=
Stem thickness

Arm thickness
 

0.25 0.5 1 1.5 

R2 

=
Stem length

Arm thickness
 

3 3 3 3 

Porosity [cm3] 0 2.2 2.3 2.5 

Nomenclature 
[mm] 

(T − t −
I1, I2, I3) 

20-5-
60 

20-
10-
60 

20-
20-
60 

20-
30-
60 

3 

R1 

=
Stem thickness

Arm thickness
 

0.25 0.5 1 1.5 

R2 

=
Stem length

Arm thickness
 

4 4 4 4 

Porosity [cm3] 0 0 0.1 0.45 

Nomenclature 
[mm] 

(T − t −
I1, I2, I3) 

20-5-
80 

20-
10-
80 

20-
20-
80 

20-
30-
80 

Casting Volume [cm3] 228 264 336 408 

 

To assess the presence of shrinkage porosity, 
benchmark castings were sliced both longitudinally and 
horizontally, 20 mm from the top surface. The primary 
goal of this section is to measure the volume of formed 
shrinkage porosity. Furthermore, by developing a 
quantitative model related to geometric influence, the 
study explores the impact of thermal parameters such as 
temperature gradient and rate of cooling, in conjunction 
with geometry, to estimate the magnitude of shrinkage 
porosity.  

As shown in Table 5, the trials resulted in shrinkage 
porosity at various junctions, where the volume of water 
within the cavity determined the measurement of 
shrinkage porosity for each junction. To estimate the 
volume of shrinkage porosity in the castings, a medical 
syringe with a minimum increment of 0.1 ml was used to 

inject a known amount of water into the voids formed 
through shrinkage porosity. According to experimental 
findings, the primary factors influencing the production 
of shrinkage porosity are thickness ratio and length ratio. 
It is evident that the formation of shrinkage porosity was 
greater at junction 2 compared to the other junctions. 
 

 
Figure 4.  Experimental procedure: a) pattern of casting, 
b) mold, c) the cast product, d) cross-section in the 
casting. 

 

5. Aligning/correlating real experiments with 
simulation: 

 

The simulation tool is linked to the experimental 
results to obtain better and more reliable results, 
enabling us to develop a reliable experimental model that 
predicts the quantity of shrinkage porosity. The 
simulation provides us with results about the 
solidification time and the maximum temperature 
gradient at each junction in the castings. Then, we can 
determine the % limiting value of the thermal gradient 
and correlate the volume of shrinkage porosity in the real 
experiments with the simulation results. Subsequently, it 
becomes straightforward to compute the limiting value 
of the thermal gradient and the cooling rate using 
equations 1 and 2: 

Limiting value of thermal gradient (G)  =
 Thermal gradient max ∗
 (limiting value of thermal gradient%)                              (1)  

Cooling rate (r)  =
 (pouring temperature –  solidus temperature) /
 Solidification time                                                                   (2) 

 
The curve fitting method was used to establish the 

correlation between the limiting value of the thermal 
gradient and the thickness ratio. This aids in calculating 
the limiting thermal gradient values for various thickness 
ratio variations in benchmark castings, as represented by 
equations 3, 4, and 5. 

First junction: 
 G =  −1.523R1

3  +  3.534R1
2  −  1.370R1  +  0.288 (3)  

Second junction: 
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 G =  3.215R1
3  −  10.21R1

2  +  9.900R1  −  1.872     (4) 
Third junction: 
 G =  −0.373R1

3  +  1.088R1
2  −  0.687R1  +  0.154 (5) 

 

6. Development model of criterion function 
 

It is necessary to generate more data to acquire 
sufficient information for creating a criterion function to 
predict shrinkage porosity. For this purpose, the number 
of thickness ratios has been increased, ranging from 0.25 
to 1.5 with a step of 0.05 (the stem thickness is 
incremented by 1 mm with each change) for each T-
junction while maintaining the same length ratio at 2, 3, 
and 4. This results in 26 different thickness ratios (𝑅1) 
variations corresponding to each length ratio (𝑅2), 
totaling 78 variations.   

The criterion function to be developed in this study 
will encompass both thermal and geometrical effects. 
The variables considered within this criterion include the 
limiting value of thermal gradient, as well as length and 
thickness ratios, and cooling rate. The limiting value of 
the thermal gradient was calculated using equations 3, 4, 
and 5 for all 78 variations. The limiting value of the 
thermal gradient is related to the maximum thermal 
gradient, and this relationship determines the % limiting 
value of the gradient. A simulation of the solidification 
process was conducted, and the % limiting gradient and 
thickness ratio values were input into a simulation tool 
to obtain the shrinkage porosity. Information regarding 
the cooling rate was also obtained from the simulation. 
The results for the first junction are presented in Table 6. 

 

Table 6. The resulting data for developing the criterion function related to the first junction. 

No. 
Thickness 
ratio (R1) 

Length 
ratio (R2) 

Limiting value of 
thermal gradient 

(G) [℃/mm] 

Thermal gradient 
max (Gmax) 

[℃/mm] 

% limiting value 
of thermal 

gradient (% G ) 

Cooling 
rate (r) 
[℃/sec] 

Shrinkage 
porosity (P) 

[cm3] 

1 0.25 2 0.14 12.44 1.15 1.32 0.10 

2 0.30 2 0.15 12.44 1.24 1.32 0.10 

3 0.35 2 0.18 12.44 1.42 1.32 0.12 

4 0.40 2 0.21 12.44 1.67 1.32 0.11 

5 0.45 2 0.25 12.44 2.00 1.32 0.12 

6 0.50 2 0.30 12.30 2.41 1.22 0.21 

7 0.55 2 0.35 12.20 2.87 1.14 0.27 

8 0.60 2 0.41 12.13 3.37 1.06 0.36 

9 0.65 2 0.47 12.09 3.91 1.00 0.43 

10 0.70 2 0.54 12.06 4.46 0.94 0.49 

11 0.75 2 0.61 12.05 5.03 0.88 0.56 

12 0.80 2 0.67 12.05 5.59 0.84 0.57 

13 0.85 2 0.74 11.97 6.19 0.76 0.70 

14 0.90 2 0.81 11.69 6.91 0.73 0.85 

15 0.95 2 0.87 11.42 7.62 0.70 1.18 

16 1.00 2 0.93 11.18 8.31 0.67 1.59 

17 1.05 2 0.98 10.96 8.97 0.65 1.81 

18 1.10 2 1.03 10.76 9.57 0.63 2.11 

19 1.15 2 1.07 10.61 10.08 0.63 2.36 

20 1.20 2 1.10 10.51 10.48 0.59 2.46 

21 1.25 2 1.12 10.42 10.78 0.57 2.89 

22 1.30 2 1.13 10.34 10.96 0.55 2.98 

23 1.35 2 1.13 10.54 10.74 0.54 2.83 

24 1.40 2 1.12 10.45 10.69 0.52 2.93 

25 1.45 2 1.09 10.37 10.50 0.51 2.76 

26 1.50 2 1.04 10.34 10.10 0.50 2.51 

 
The resulting data are utilized in developing a 

quantitative prediction model through the multiple 
regression technique, considering the geometrical factor, 
to predict the quantity of shrinkage porosity. In Table 7, 
it can be observed that the developed regression model 
is well-fitted, as evidenced by the high R-square (0.955) 
and adjusted R-square (0.938) values. The satisfactory 
range of t-stat and p-values for the limiting thermal 
gradient value, as well as length and thickness ratios and 
cooling rate, further supports the model's reliability. The 
low p-values highlight the significance of every factor in 
the quantitative prediction model, with the limiting value 
of thermal gradient (G) being the most important, 

followed by thickness ratio (𝑅1), cooling rate (r), and 
length ratio (𝑅2). Equation (6) showcases the developed 
geometry-driven criterion function. 
 

Table 7. Summary Report of Regression Analysis. 

R Square 0.955 

R Square 
(adj) 

0.938 

 ln (R1) ln(R2) ln(G) ln(r) 

Coefficients -1.381 0.215 1.913 -1.675 

t Stat -5.882 1.580 28.482 -4.697 

P-value 
1.47783 

e-07 
0.118796482 

8.49336 
e-39 

1.38352 
e-05 
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%P =  
G1.913  ∙  R2

0.215

r1.675 ∙  R1
1.282  (6) 

 
Where: G: Limiting value of thermal gradient, R1: 

Thickness ratio, r: Cooling rate, R2: Length ratio, %P: The 
volume of shrinkage porosity expressed as a percentage 
of the total casting volume. 

 
7. Validation   
 

To verify the validity of the developed criterion 
function, an experiment was carried out on a casting with 
thickness and length ratios of 1.75 and 5, respectively. 
The shrinkage porosity measured in this experiment was 
approximately 2.5 𝑐𝑚3 (ml of water). Subsequently, this 
case was simulated, and the volume of shrinkage 
porosity was predicted using the developed criterion 
function by correlating the data obtained from this 
simulation, which includes parameters such as cooling 
rate and maximum temperature gradient, with real 
experimental data. The predicted shrinkage porosity 
volume from the developed function was 2.64 𝑐𝑚3, 
indicating a high accuracy of approximately 95%. Figure 
5 presents a cross-section of the plain carbon steel 
casting utilized in this experiment to validate the T-joint 
casting. 
 

 
Figure 5. Cross-section of Plain Carbon Steel Casting for 
T-Junction Validation. 
 

8. Conclusion  
 

The study focuses on developing a geometry-based 
quantitative prediction model for shrinkage porosity for 
T-junction steel sand castings. Casting of the designed 
benchmark shape and analysis of porosity formation 
reveal the significant influence of the presence of joints 
on shrinkage porosity. Correlating experimental data 
with a simulation tool and generating more data by 
simulating castings of varying thickness ratios helped 
develop a more reliable criterion function. The resulting 
criterion function considers the influence of thermal and 
geometric factors simultaneously, enabling designers to 
utilize these data when planning experiments to prevent 
shrinkage porosity. The developed criterion function 
could help enhance the casting simulation tools already 

in use for estimating shrinkage porosity in Plain Carbon 
Steel castings with T connections. 
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