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Öz 

Bu çalışmada, Parkinson hastalığı, Multipl Skleroz (MS), sağlıklı bireyler ve diğer kategoriler gibi farklı sağlık 

kategorilerinin insan konuşmasından yüksek doğrulukta sınıflandırılması için transformatör tabanlı sinir ağı 

yaklaşımını sunuyoruz. Bu yaklaşım, insan konuşmasının spektrogramlara dönüştürülmesinde yatmaktadır ve 

daha sonra bu spektrogramlar görsel görüntülere dönüştürülmektedir. Bu dönüşüm süreci, ağımızın çeşitli sağlık 

koşullarını belirten karmaşık ses desenlerini ve ince nüansları yakalamasını sağlar. Yaklaşımımızın deneysel 

doğrulaması, Parkinson hastalığı, MS, sağlıklı bireyler ve diğer kategoriler arasında yüksek performanslı sonuçlar 

vermiştir. Bu başarı, spektrogram analizi ve vision based transformer tekniği birleşimine dayanan yenilikçi, 

invaziv olmayan bir tanı aracı sunarak potansiyel klinik uygulamalar için kapıları açmaktadır. 
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Abstract 
In this study, we introduce a transformative approach to achieve high-accuracy classification of distinct health 

categories, including Parkinson's disease, Multiple Sclerosis (MS), healthy individuals, and other categories, 

utilizing a transformer-based neural network. The cornerstone of this approach lies in the innovative conversion 

of human speech into spectrograms, which are subsequently transformed into visual images. This transformation 

process enables our network to capture intricate vocal patterns and subtle nuances that are indicative of various 

health conditions. The experimental validation of our approach underscores its remarkable performance, achieving 

exceptional accuracy in differentiating Parkinson's disease, MS, healthy subjects, and other categories. This 

breakthrough opens doors to potential clinical applications, offering an innovative, non-invasive diagnostic tool 

that rests on the fusion of spectrogram analysis and transformer-based models. 
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1. Introduction  
 

Sound is one of the components that make up human perception in nature. The direction, intensity, and 

duration of sound play a major role in our understanding and interpretation of environmental events. 

Differences in sounds allow us to distinguish events. Sounds are generally composed of harmonic signals. 

The signal emitted in the air is received by the human ear, passed through certain neural processes in the 

brain, reaches the relevant auditory centers, and is interpreted [1]. Artificial intelligence techniques are used 

in sound analysis processes with the imitation of this mechanism. 

 

Voice analysis of people is the subject of many fields of study. Speech signals are used as input sources in 

human-computer interaction to develop various applications such as automatic speech recognition, speech 

emotion recognition, gender and age recognition [2-4].  

 

The human larynx functions in roles such as speaking, breathing, swallowing, coughing and has a complex 

functional structure. The coordination of these roles is very sensitive to being affected in individuals with 

neurological diseases. Sound problems arise because the larynx mechanism cannot meet the demand for 

sound due to functional or structural reasons. There are many factors that will affect the sound production 

mechanism. Speech habits, health problems, chronic diseases, habits, neurological disorders can be given as 

examples of factors that cause voice problems. In this study, neurological disease classification is made by 

voice analysis of patients diagnosed with neurological disease. 

 

In the diagnosis of neurological diseases, the patient's history and physical examination usually come to the 

fore. Voice-related changes can often be overlooked [5]. Even if the patient does not have a complaint about 

the voice that can be expressed directly, the evaluation of the voice during the anamnesis or examination can 

make a significant contribution to the diagnosis of individuals with neurological diseases. With the effect of 

functions such as articulation and phonation during the speech, hypophonic, dysarthric, and ataxic sounds 

can contribute to the diagnosis. While hypophonic speech may suggest basal ganglia involvement with 

accompanying bradymia, it may suggest the involvement of the pyramidal pathway in a patient with first and 

second motor neuron findings. Dysarthric speech pattern suggests cerebellar involvement together with other 

threshold examination findings. A muffled speech pattern can be seen in motor neuron diseases, and speech 

problems up to motor or global aphasia can be seen in patients with cerebral cortical involvement. All these 

voice changes, together with the affected neurological system and other findings, provide important 

information about the diagnosis. 

 

In the literature, there are studies based on computer-based processing of patients' voice data and early 

detection and diagnosis of diseases in health sciences. Abnormal condition detection by processing breath 

sound [4], [6], heart sound [7-12], knee joint sound processing for non-invasive diagnosis and monitoring of 

joint disorders such as osteoarthritis and chondromalacia [13], COVID-19 detection from cough, sound, 

breath sound, Alzheimer's detection from the speech process [14], Parkinson's detection [15] can be given as 

examples of sound processing studies in the health field [16-23]. 

 

The frequency spectrum of an audio signal can be expressed visually in the form of a spectrogram. The 

spectrogram can be constructed using an optical spectrometer, bank of band-pass filters, Fourier transform, 

or wavelet transform methods. Spectral representations are involved in classification or regression neural 

networks. 

 

There are examples in the literature on converting audio signals to spectrograms and classifying them with 

artificial intelligence techniques. COVID-19 detection with lung breath sound [24], seizure detection from 

electroencephalography (EEG) signals [25], recognition of surrounding sounds, bird sound recognition [26], 

and emotion detection from community voice [27] are some examples of such studies. 

 

The application of deep learning models for voice recognition in predicting vocal fold diseases related to 

neurological disorders has shown promise [28]. By leveraging spectrogram-based techniques, researchers 

have been able to develop AI tools for predicting vocal cord pathology in primary care settings, emphasizing 

the importance of spectrogram analysis in diagnosing voice-related issues [29]. The analysis of voice 
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spectrograms plays a significant role in detecting, monitoring, and classifying neurological diseases based on 

voice characteristics. By utilizing advanced technologies like convolutional neural networks (CNN) and deep 

learning models, researchers are making strides in leveraging spectrogram data to improve the diagnosis and 

management of neurological conditions through voice analysis. 

 

Transformer networks, initially designed for natural language processing (NLP), have found groundbreaking 

applications in various domains, including image classification. In image classification tasks, the primary 

objective is to categorize input images into predefined classes or labels [30]. Traditionally, CNNs have been 

the dominant choice for image classification due to their ability to capture spatial hierarchies within images. 

However, transformer networks have introduced a paradigm shift by leveraging attention mechanisms to 

process images in a non-sequential manner, making them highly effective in capturing global dependencies 

and relationships within image data [31-35]. 

 

Transformers find versatile applications in health data utilization. These applications span disease diagnosis 

by analyzing symptoms and medical histories, medical image processing such as segmentation and detection, 

drug discovery via genetic and molecular analysis, medical text processing for reports and records, 

biomedical natural language understanding, and health record management. Transformers offer a flexible 

framework for handling health data, showing great promise across various healthcare domains [36-39]. 

 

In the scope of this research, we employed transformer models to classify human voices, a task that sets the 

foundation for our investigation. Employing our proprietary dataset, we sourced audio recordings from both 

healthy individuals and those affected by conditions like Multiple Sclerosis and Parkinson's, introducing a 

distinctive dimension to our work. The collection process involved individuals with diagnosed conditions, 

underscoring our unique methodology. This unconventional approach significantly contributed to the 

ingenuity of our study, and because of this innovative dataset creation, we achieved remarkable levels of 

accuracy. 

 

The upcoming sections of the paper encompass various aspects, including a review of related works, an in-

depth exploration of the employed methodology, a detailed presentation of the dataset used, and an insightful 

discussion. 

 

2. Relevant Work 
 
In the literature, there are computer-based auxiliary studies for the detection of neurological diseases. In Table 

1, the type of neurological disease, data types used in the diagnosis, method, and study years are given. This 

table provides information about various neurological disorders, the type of data used for diagnosis, the 

number of samples, diagnosis methods (such as Artificial Intelligence, Support Vector Machine, etc.), 

accuracy percentages, publication years, and references for each study. The disorders covered include 

Multiple Sclerosis (MS), Alzheimer's, and Parkinson's disease, along with the specific data types and 

methods used for diagnosis. As evident from the table, successful classification outcomes are achieved by 

training the language datasets obtained through speech features using artificial intelligence techniques.  

 

The existing literature has bolstered our belief in the feasibility of classifying neurological diseases based on 

sound data. Contemporary literature explores the transformation of sound data into spectrograms and 

subsequent classification through deep learning techniques, although typically focusing on individual 

diseases. In contrast, our proposed study seeks to discern both MS and Parkinson's diseases from a dataset 

encompassing 12 patient categories (MS, Amyotrophic Lateral Sclerosis (ALS),  Spinocerebellar Ataxia 

(SCA), Alzheimer's, Epilepsy, Parkinson's, Myasthenia Graves, Myelitis, Motor Aphasia, Psychological, 

Fiedreich Ataxia, Language Problem) and healthy individuals. A distinguishing feature of this study is the 

dataset's diverse range of disease types, setting it apart from prior research. We employ a larger patient cohort 

and solely utilize voice recordings for classification purposes. The utilization of everyday mobile phones for 

voice recording, as opposed to specialized devices, makes our approach practical, cost-effective, and distinct 

from prior dataset creation methodologies. 
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Table 1. Relevant work 

 
Neurological 

Disorder 

Data type to use in 

the diagnosis 

Number of 

samples 
Diagnosis method 

Accuracy 

(%) 

Year of 

Publication 
Reference 

MS 
Conversation, 

demographics 

65 patients, 66 

healthy individuals 
Artificial Intelligence 82 2022 [40] 

MS 
brain magnetic 

resonance images 

168 lesion images 

obtained from 3 

patients 

Support Vector 

Machine 
81.5 2010 [41] 

Alzheimer Speech Features 

2033 audio 

recordings collected 

from 99 patients 

Machine Learning 78.7 2019 [42] 

Alzheimer Speech Features 

80 healthy, 13 early 

diagnoses, 5 

patients 

LDA classifier 85.7 2016 [43] 

MS 

surface 

electromyography 

(sEMG) signals 

450-sentence 

speech collected 

from 3 sick 

individuals 

CNN 81 2020 [44] 

Parkinson 

Pc-Gita (Vowel 

monologues, 

sentences,words, 

read text) 

50 healthy, 50 

Parkinson 

individuals 
CNN 98.3 2020 [45] 

Alzheimer Speech Features 

254 Alzheimer’s 

and 250 Healthy 

individuals 

Machine Learning  89.4 2020 [46] 

Parkinson Speech Features 

91 subjects, 43 

suffering from PD 

with each person on 

an average giving 5-

6 different samples 

CNN 89.15 2019 [47] 

Parkinson, 

ALS 
Speech Features 

60 ALS, 60 

Parkinson, 60 

Healthy individuals 

CNN 87 2020 [48] 

Parkinson Speech Features 

120 speech samples 

from 20 Healthy, 28 

Parkinson 

individuals 

Generative Adversarial 

Network 
90.5 2020 [49] 

Parkinson Speech Features 

181 speakers, 1797 

recordings from 3 

different languages 

Vision Transformer 78 2021 [50] 

Parkinson Gait 64468 gait data Transformer 97.4 2022 [51] 

Parkinson Drawing 
315 Healthy, 279 

Parkinson sample 
CNN 95.29 2023 [52] 

MS, Parkinson Speech Features 

204 MS, 172 

Parkinson, 212 

Other, 94Healthy 

individuals 

Vision Transformer 93.14 - 
Our proposed 

research 

 

3. Method 
 

For many years the key point in audio analysis has been feature design and selection. In feature extraction, 

higher-order statistics of spectral center and spectral shape, zero crossing statistics, harmonics, fundamental 

frequency, and temporal explanations were used [53]. Today, feature extraction is done by deep networks. 

In this method, networks produce successful results when enough samples are used. The Fourier transform 

enables the representation of signals from the time domain into the frequency domain. This concept was 

introduced by Jean Baptiste Joseph Fourier, a French mathematician and physicist. Utilizing the Fourier 

Transform, the original time-based signal can be deconstructed into sinusoidal components, each possessing 

an amplitude, phase, and frequency. A waveform that appears complex in the time domain translates to a 

vertical line within the frequency domain. This concise depiction in the frequency domain serves to highlight 

essential frequencies. The Fourier Transform effectively dissects intricate time-based signals into distinct 



 
 

Fırat Üni Deny. ve Say. Müh. Derg., 3(2), 160-174, 2024 

E. Soylu, S. Gül, K.A. Koca, M. Türkoğlu, M. Terzi 

 

  
165 

 

frequency constituents, simplifying comprehension. The transition from the frequency domain back to the 

time domain preserves all data, ensuring fidelity. Given that audio signals are dynamic and not static, their 

characteristics fluctuate over time. Consequently, attempting a single Fourier transform across an entire 5-

minute lecture's speech would be impractical. Such an approach would yield indistinct data for analysis. 

Alternatively, the Fourier transform is applied to successive signal frames, introducing the concept of Short-

Time Fourier Transform (STFT). This approach better accommodates the variable nature of audio signals 

and enhances the extraction of meaningful features for analysis. The human perception of sound intensity 

follows a logarithmic scale, emphasizing the significance of logarithmic amplitude. Calculating the 

logarithmic value can be achieved using the Librosa library. Librosa, a Python package tailored for music 

and audio analysis, encompasses essential components to construct information retrieval systems employed 

in audio analysis [54-56].  

 

Utilizing spectrograms, which visually represent sound signals, and employing deep learning for 

classification purposes is crucial due to several reasons. Firstly, spectrograms enable the capture of complex 

patterns within audio data, facilitating comprehensive analysis. Secondly, by treating sound as images, deep 

learning models can extract relevant features using image processing techniques, enhancing classification 

accuracy. Additionally, spectrogram-based representations offer interpretable features, aiding in 

understanding the acoustic properties associated with different health conditions. Lastly, leveraging deep 

learning architectures designed for image classification tasks ensures compatibility and efficiency in health 

category classification. Overall, combining spectrograms and deep learning techniques presents a powerful 

approach for sound-based classification in healthcare, advancing diagnostic capabilities and patient care. 

 

In this study, voice data from different neurological patients and healthy individuals were evaluated. 

Individuals are told a sample sentence and recorded. The collected data were labelled by the specialist 

physician. Diagnosis of diseases and affected neurological systems were recorded after neurological 

evaluation. 

 

The dataset was created by eliminating the misleading ones in the obtained data. It is aimed to collect enough 

data to enable machine learning for each disease category. The steps of the method used in this study can be 

summarized as follows. The block diagram of the proposed system is given in Figure 1. 

• Data collecting 

• Data labelling 

• Data elimination 

• Extraction of spectrograms of audio signals  

• Classification with vision transformer (ViT) 
 

Mobile Phone
Human

Audio Signal

Spectrogram

Vision 
Transformer

Output Class
 MS
 Parkinson
 Healthy
 Other

Classification
 Method  

 

Figure 1. Patient voice classification block diagram 

 
In the Colab environment, librosa library was used for the conversion of sound files to spectrograms, 

tensorflow library for convolutional neural network models, matplotlib library for graphical drawings, cv2 

library for image cropping and resizing. 
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3.1. Dataset Description 

 
The dataset used in this study was obtained by having patients diagnosed with MS, Parkinson and other 

neurological diseases (ALS, SCA, Alzheimer's, Epilepsy, Parkinson, Myasthenia Graves, Myelitis, Motor 

Aphasia, Psychological, Fiedreich Ataxia, Language Problem) and healthy individuals say a common 

sentence in Turkish. In the dataset, there were .wav audio files of 204 individuals with MS, 172 with 

Parkinson's, 212 with other neurological diseases, and 94 healthy individuals. The study group consisted of 

individuals between the ages of 18 and 65 who had been diagnosed with a neurological disease. 

The dataset meticulously obtained and employed in this study deserves commendation for its unprecedented 

contribution to the field of healthcare and software development. It stands as a testament to the pioneering 

spirit of multidisciplinary research, bridging the realms of medicine and technology. This unique dataset, 

drawn from real patients and healthy individuals, represents a valuable resource that has paved the way for 

innovative and groundbreaking advancements. Its richness, authenticity, and comprehensiveness serve as the 

cornerstone of our transformative approach, allowing us to harness the power of artificial intelligence and 

machine learning for the early diagnosis and differentiation of neurological diseases. In Figure 2, the process 

of obtaining the spectrogram graph from the audio file and cutting the image is shown visually, respectively. 

By applying this process to each sound file, spectrogram images are obtained. The details of the dataset are 

given in Table 2. 85% of these images are used to create a classification model and 15% is used to test the 

accuracy of the model. The training and test data in the dataset are randomly determined. 

 

Audio Wave

 
 

Figure 2. Process of obtaining spectrogram from audio file 

 

Table 2. Details of the dataset 

 

Class Number of samples Train data Test Data 

Healthy 94 80 14 

MS 204 174 30 

Parkinson 172 146 26 

Other 212 180 32 

Total 682 580 102 

 

Google Colaboratory, shortly Colab, was used for image classification with dataset editing and transfer-based 

deep learning technique. Colab is a product offered by Google Research. It is particularly suitable for machine 

learning, data analysis, and education. With Colab, people can write and execute Python code through the 

browser. 

 

3.2.Transformers 

Unlike CNNs that process images pixel by pixel, transformer networks divide images into N patches fixed-

size patches. This process is called linear embedding of patches (Elin). Each image patch xi is linearly 

embedded into a lower-dimensional space using the Elin operation enabling the network to capture essential 

features given in Eq.1. 

 

𝑧𝑖 = 𝐸𝑙𝑖𝑛(𝑥𝑖) (1) 
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Transformer networks, originally developed for sequence data, don't inherently possess spatial information. 

To address this, positional encodings are introduced, allowing the model to understand the relative positions 

of patches. To incorporate positional information, positional encodings are added to the token embeddings 

as given in Eq.2.  

𝑧𝑖_𝑝𝑜𝑠 = 𝑧𝑖 + 𝐸𝑝𝑜𝑠(𝑖) (2) 

 

The self-attention mechanism is a key component of transformers. It allows each patch to attend to all other 

patches, capturing long-range relationships and enabling the model to recognize complex patterns. The self-

attention mechanism calculates attention scores and output embeddings for each pair of tokens (i, j) as given 

in Eq.3. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑧𝑖_𝑝𝑜𝑠 , 𝑧𝑗_𝑝𝑜𝑠) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(𝑧𝑖_𝑝𝑜𝑠 ∙𝑧𝑗_𝑝𝑜𝑠)

𝑇

√𝑑𝑘
∙ 𝑧𝑗_𝑝𝑜𝑠 (3) 

 

The transformer encoder processes the embedded patches along with positional encodings. Multiple layers 

of encoders capture hierarchical features and generate context-aware representations. Multi-Head Self-

Attention combines multiple attention heads to capture different relationships. The equation of this process 

is given in Eq.4. Each Head_k operates similarly to the self-attention mechanism but with different learned 

weight matrices. Each Head_k operates similarly to the self-attention mechanism but with different learned 

weight matrices. 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑧𝑖_𝑝𝑜𝑠) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻𝑒𝑎𝑑1(𝑧𝑖_𝑝𝑜𝑠), … . , 𝐻𝑒𝑎𝑑ℎ(𝑧𝑖_𝑝𝑜𝑠)) ∙ 𝑊_𝑜 (4) 

 

The Transformer Encoder processes the output of the multi-head self-attention and combines it with the 

original input. The equation of this process is given in Eq.5. LayerNorm performs layer normalization, and 

the output is added to the original token embedding. 

 

𝑂𝑢𝑡𝑝𝑢𝑡𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑧𝑖_𝑝𝑜𝑠) + 𝑧𝑖_𝑝𝑜𝑠) (5) 

 

Once the patch representations are processed, a global classification token is added. This token aggregates 

information from all patches and contributes to the final classification decision. The aggregation function 

combines all the token embeddings into a single global token as given in Eq. 6. 

 

𝐺𝑙𝑜𝑏𝑎𝑙_𝑇𝑜𝑘𝑒𝑛 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑧1_𝑝𝑜𝑠, … , 𝑧𝑁_𝑝𝑜𝑠) (6) 

 

The global token's representation is fed into the classification layer, which maps it to the respective classes 

as given in Eq. 7. Here, W_cls represents the weight matrix for the classification layer 

 

𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑔𝑖𝑡𝑠 = 𝐺𝑙𝑜𝑏𝑎𝑙_𝑇𝑜𝑘𝑒𝑛 ∙ 𝑊𝑐𝑙𝑠 (7) 

 

The softmax activation function is applied to the class logits to obtain class probabilities as given in Eq. 8. 

We chose to use the softmax activation function to obtain class probabilities because softmax ensures that 

the output probabilities sum up to 1, which is desirable for interpreting the output as probabilities of different 

classes. Additionally, softmax normalizes the logits, making them more interpretable and suitable for multi-

class classification tasks. Softmax is more suitable for obtaining class probabilities at the output layer. 

 

𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑔𝑖𝑡𝑠) (8) 

 

The model is trained using labelled image data and a loss function. Commonly used loss functions include 

categorical cross-entropy. After training, the model's accuracy is evaluated on unseen test data. Transformer 

networks' success in image classification highlights their adaptability to diverse data types and tasks beyond 
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NLP. They have demonstrated state-of-the-art performance on various benchmark datasets and have 

contributed to pushing the boundaries of image understanding. The architecture of model is given in Figure 

3. The illustration is inspired from [57].  
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Figure 3. Model overview  

 

In our research, we conducted a retraining process on Google's 'vit-base-patch16-224-in21k' model. The ViT-

Base model comprises 12 layers with a hidden size of 768, an MLP size of 3072, and incorporates 12 attention 

heads, totaling 86 million parameters [57]. Utilizing the Adam optimizer and setting a learning rate of 1e-6, 

along with adjusting hyperparameters after 100 epochs, we managed to decrease the training loss to 0.05. 

The epoch count was decided after numerous iterations, reaching the desired error level as the determining 

factor. The training progress outcomes are depicted in Figure 4. 

 

 
Figure 4. Train loss curve 
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4. Results 
 

In this study, a dataset was created from the recorded data by having 682 individuals with neurological 

diseases say an example sentence. By transforming the audio data in the created dataset into spectrogram 

images, the classification of neurological diseases is provided by vision transformer-based learning. The 

confusion matrix of experiments is given in Figure 5. As a result of experiments with test data, an 92.15% 

success rate was obtained.  

 

 
 

Figure 5. Confusion Matrix 

 

Table 3 contains various metrics used to evaluate the performance of a classification model. n truth (True 

Count) is the number of actual data points for each class. n classified (Classified Count) is the number of data 

points correctly classified by the model for each class. Accuracy measures the ratio of correct predictions 

made by the model to the total number of data points. This metric assesses the overall performance of the 

model. Precision indicates the proportion of positive predictions that are true positives. It measures how 

accurate the model's positive predictions are for a class. Recall measures how many of the true positive 

examples were correctly predicted. It assesses the model's ability to capture true positives. For instance, the 

recall for the "Parkinson" class is 94%, indicating that most of the true positives for this class were correctly 

predicted. The F1 score is a metric that balances precision and recall. Ideally, you want to achieve a high F1 

score with both high precision and recall. As can be seen from the table, "Healthy" and "Parkinson" classes 

have high accuracy and F1 scores. Out of 102 test inputs, 94 were correctly predicted, resulting in an overall 

accuracy of 92.15%. 

 
Table 3. Results for ViT 

 

  

Truth data   

Healthy MS Parkinson Other 
Classification  

overall 

F1 

Score 

C
la

ss
if

ie
r
 r

e
su

lt
s Healthy 14 0 0 0 14 100% 

MS 0 25 3 2 30 83% 

Parkinson 0 0 26 0 26 100% 

Other 0 0 3 29 32 91% 

Truth 

overall 
14 25 32 31 102   

 Recall 100% 100% 81.25% 93.55%   

 Overall 

accuracy 
92.15%      

 
 

We also conducted testing on the dataset using various other architectures, resulting in the outcomes 

presented in Table 3. DenseNet121 achieved an accuracy of 67.91%. DenseNet201 achieved an accuracy of 

64.93%. Xception achieved an accuracy of 73.88%. InceptionV3 achieved an accuracy of 72%. MobileNet 

achieved an accuracy of 73.13%. EfficientNetB0 achieved an accuracy of 80.6%. EfficientNetB0 

architecture showed strong performance with an accuracy of 80.6%. EfficientNetV2B3 achieved an accuracy 

Class Healthy MS Parkinson Other

Healthy 14 0 0 0

MS 0 25 3 2

Parkinson 0 0 26 0

Other 0 0 3 29
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of 76.87%. Vision Transformer achieved an accuracy of 92.15%. The Vision Transformer architecture 

performed exceptionally well with an accuracy of 92.15%. This indicates that it correctly classified a vast 

majority of the test data, demonstrating its effectiveness for the task. 

 
Table 4. Accuracy results for other deep learning techniques 

 

Architecture Accuracy  

DenseNet121 67.91 % 

DenseNet201 64.93 % 

Xception 73.88 % 

InceptionV3 72 % 

MobileNet 73.13 % 

EficientNetB0 80.6 % 

EfficientNetV2B3 76.87 % 

Vision Transformer 92.15% 

 

5. Discussion 
 

In recent years, the intersection of artificial intelligence and healthcare has opened up exciting possibilities 

for the early detection and diagnosis of various medical conditions. One particularly promising area of 

research is the classification of neurological diseases through the analysis of audio data. This innovative 

approach holds immense potential in revolutionizing the field of healthcare, especially in the realm of 

neurological disorders. 

 

Neurological diseases encompass a wide range of disorders, including but not limited to Parkinson's disease, 

Multiple Sclerosis (MS), Alzheimer's disease, and more. Early detection and accurate diagnosis of these 

conditions are pivotal for improving patient outcomes and enhancing the quality of life for individuals 

affected by these diseases. Audio-based neurological disease classification plays a crucial role in achieving 

early detection. By analyzing the unique vocal patterns and speech characteristics of patients, machine 

learning models can identify subtle deviations that might indicate the presence of neurological disorders. This 

non-invasive approach can significantly reduce the time between symptom onset and diagnosis, enabling 

timely medical intervention and treatment. 

 

One of the most compelling aspects of audio-based classification is its potential to democratize healthcare. 

Access to specialized medical facilities and experts can be limited in many regions, particularly in rural or 

underserved areas. Audio-based diagnostic tools can be easily distributed and utilized remotely, bridging the 

gap between patients and healthcare resources. Patients can record their speech and vocal samples in the 

comfort of their homes, making it easier to monitor their health and share data with healthcare providers. 

This accessibility not only reduces the burden on healthcare systems but also empowers individuals to take 

a more active role in managing their health. Audio-based neurological disease classification offers an 

objective and quantitative approach to diagnosis. Traditional diagnostic methods may rely on subjective 

assessments or a series of clinical tests, which can be prone to human error or bias. In contrast, machine 

learning models process audio data with consistency, providing reliable and reproducible results. 

 

These models can analyze a multitude of features within speech data, detecting subtle changes that may 

escape human observation. As a result, healthcare professionals can make more informed decisions, leading 

to improved patient care. The field of audio-based neurological disease classification is still evolving, 

presenting exciting opportunities for further research and innovation. The development of advanced machine 

learning algorithms and the integration of state-of-the-art technologies, such as Vision Transformers, promise 

even greater accuracy and specificity in disease classification. 
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Additionally, collaborative efforts between researchers, clinicians, and technology experts are crucial for 

advancing this field. As we continue to refine and expand our understanding of neurological disease markers 

in audio data, we pave the way for novel diagnostic tools that can benefit millions of individuals worldwide. 

 

6. Conclusions 
 

In this study, we propose a transformative approach that aims to achieve highly accurate classification within 

different health categories, including Parkinson's disease, Multiple Sclerosis (MS), healthy individuals, and 

other categories. We utilize a transformer-based neural network as the basis of our approach. The most 

important innovation lies in the conversion of human speech into spectrograms, which are then converted 

into visual images. This transformation process allows our neural network to capture complex sound patterns 

and subtle nuances that indicate various health conditions. Experimental validation of our approach yields 

impressive results. It demonstrates exceptional accuracy in distinguishing between Parkinson's disease, MS, 

healthy subjects, and other categories. This breakthrough offers an innovative and non-invasive diagnostic 

tool that combines spectrogram analysis with transformer-based models, offering promising prospects for 

potential clinical applications. 

 

We also conducted comparative experiments with various other deep learning architectures. These 

experiments demonstrate the superiority of ViT in achieving an accuracy of 92.15%, outperforming other 

architectures in correctly classifying health categories. We are currently continuing data collection and 

actively working to broaden the range of classes while striving to attain higher levels of accuracy in our 

forthcoming research endeavors. 

 

Our research marks a promising step towards leveraging advanced machine learning techniques, specifically 

Vision Transformers, for effective health category classification based on sound patterns. These results have 

significant potential to improve diagnostic capabilities and contribute to non-invasive medical evaluations. 

Our research presents a non-invasive diagnostic tool capable of significantly enhancing the accuracy and 

efficiency of clinical diagnoses, particularly for conditions like Parkinson's disease and Multiple Sclerosis. 

By effectively classifying health categories based on sound patterns, healthcare professionals are empowered 

to make more informed decisions regarding patient care and treatment plans. Moreover, our method opens 

new horizons in remote monitoring and telemedicine applications. The ability to convert human speech into 

spectrograms and analyze them using transformer-based neural networks enables the development of 

smartphone apps or similar devices for recording and remotely analyzing speech patterns. This innovation 

can revolutionize healthcare delivery by facilitating timely assessments of patients' health statuses without 

the need for in-person visits. Additionally, our approach holds promise for early detection and prevention 

efforts. By capturing subtle nuances in sound patterns associated with various health conditions, it has the 

potential to identify early signs of Parkinson's disease, Multiple Sclerosis, and other ailments. Such early 

detection can prompt timely interventions, ultimately leading to improved patient outcomes and reduced 

healthcare burdens. Our research serves as a catalyst for further advancements in machine learning techniques 

within healthcare. It lays the groundwork for future studies to expand the range of classes beyond Parkinson's 

disease and Multiple Sclerosis, and to enhance the accuracy of classification algorithms. Through continued 

research and development, our approach stands to revolutionize healthcare practices, offering innovative 

solutions to pressing medical challenges. 

 

7. Acknowledgement 
 

This study attracted great attention at the 58th National Neurology Congress in Turkey and was awarded the 

second prize in the oral presentation category. 

 

8. Author Contribution Statement  
 

In the study, Murat Terzi, Emel Soylu, Sema Gül contributed to the creation of the idea, design, and literature 

review; Emel Soylu, Kübra Arslan Koca, Muammer Türkoğlu contributed to the analysis of the results, the 

provision of materials, and the review of the results. 



 
 

Fırat Üni Deny. ve Say. Müh. Derg., 3(2), 160-174, 2024 

E. Soylu, S. Gül, K.A. Koca, M. Türkoğlu, M. Terzi 

 

  
172 

 

9. Ethics Committee Approval and Conflict of Interest 
 

The study protocol for this dataset was approved by the Ondokuz Mayıs University Clinical Research Ethics 

Committee (2022-545/2023). Written informed consent form was obtained from the address in the working 

environment and patient contents were extracted to ensure anonymity. 

 

10. References 
 

[1] B. Karasulu, “Çoklu ortam sistemleri için siber güvenlik kapsamında derin öğrenme kullanarak ses 

sahne ve olaylarının tespiti,” Acta INFOLOGICA, vol. 3, no. 2, pp. 60–82, 2019. 

[2] A. Tursunov, J. Y. Choeh, and S. Kwon, “Age and gender recognition using a convolutional neural 

network with a specially designed multi-attention module through speech spectrograms,” Sensors, 

vol. 21, no. 17, p. 5892, 2021. 

[3] M. Vacher, J.-F. Serignat, and S. Chaillol, “Sound classification in a smart room environment: an 

approach using GMM and HMM methods,” in The 4th IEEE Conference on Speech Technology 

and Human-Computer Dialogue (SpeD 2007), Publishing House of the Romanian Academy 

(Bucharest), 2007, vol. 1, pp. 135–146. 

[4] J. Acharya and A. Basu, “Deep neural network for respiratory sound classification in wearable 

devices enabled by patient specific model tuning,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 

3, pp. 535–544, 2020. 

[5] G. Woodson, “Management of neurologic disorders of the larynx,” Ann. Otol. Rhinol. \& 

Laryngol., vol. 117, no. 5, pp. 317–326, 2008. 

[6] A. Abushakra and M. Faezipour, “Acoustic signal classification of breathing movements to 

virtually aid breath regulation,” IEEE J. Biomed. Heal. informatics, vol. 17, no. 2, pp. 493–500, 

2013. 

[7] E. Soares, P. Angelov, and X. Gu, “Autonomous learning multiple-model zero-order classifier for 

heart sound classification,” Appl. Soft Comput., vol. 94, p. 106449, 2020. 

[8] Z. Dokur and T. Ölmez, “Heart sound classification using wavelet transform and incremental self-

organizing map,” Digit. Signal Process., vol. 18, no. 6, pp. 951–959, 2008. 

[9] M. Tschannen, T. Kramer, G. Marti, M. Heinzmann, and T. Wiatowski, “Heart sound classification 

using deep structured features,” in 2016 Computing in Cardiology Conference (CinC), 2016, pp. 

565–568. 

[10] P. Langley and A. Murray, “Heart sound classification from unsegmented phonocardiograms,” 

Physiol. Meas., vol. 38, no. 8, p. 1658, 2017. 

[11] Z. Ren, N. Cummins, V. Pandit, J. Han, K. Qian, and B. Schuller, “Learning image-based 

representations for heart sound classification,” in Proceedings of the 2018 international conference 

on digital health, 2018, pp. 143–147. 

[12] M. Deng, T. Meng, J. Cao, S. Wang, J. Zhang, and H. Fan, “Heart sound classification based on 

improved MFCC features and convolutional recurrent neural networks,” Neural Networks, vol. 

130, pp. 22–32, 2020. 

[13] K. S. Kim, J. H. Seo, J. U. Kang, and C. G. Song, “An enhanced algorithm for knee joint sound 

classification using feature extraction based on time-frequency analysis,” Comput. Methods 

Programs Biomed., vol. 94, no. 2, pp. 198–206, 2009. 

[14] I. Vigo, L. Coelho, and S. Reis, “Speech-and language-based classification of alzheimer’s disease: 

a systematic review,” Bioengineering, vol. 9, no. 1, p. 27, 2022. 

[15] J. Rusz et al., “Speech biomarkers in rapid eye movement sleep behavior disorder and parkinson 

disease,” Ann. Neurol., vol. 90, no. 1, pp. 62–75, 2021. 

[16] K. K. Lella and A. Pja, “Automatic diagnosis of covıd-19 disease using deep convolutional neural 

network with multi-feature channel from respiratory sound data: cough, voice, and breath,” 

Alexandria Eng. J., vol. 61, no. 2, pp. 1319–1334, 2022. 

[17] M. Faezipour and A. Abuzneid, “Smartphone-based self-testing of covıd-19 using breathing 

sounds,” Telemed. e-Health, vol. 26, no. 10, pp. 1202–1205, 2020. 

[18] N. Melek Manshouri, “Identifying covıd-19 by using spectral analysis of cough recordings: a 

distinctive classification study,” Cogn. Neurodyn., vol. 16, no. 1, pp. 239–253, 2022. 



 
 

Fırat Üni Deny. ve Say. Müh. Derg., 3(2), 160-174, 2024 

E. Soylu, S. Gül, K.A. Koca, M. Türkoğlu, M. Terzi 

 

  
173 

 

[19] N. Sharma et al., “Coswara--a database of breathing, cough, and voice sounds for covıd-19 

diagnosis,” arXiv Prepr. arXiv2005.10548, 2020. 

[20] A. Tena, F. Clarià, and F. Solsona, “Automated detection of covıd-19 cough,” Biomed. Signal 

Process. Control, vol. 71, p. 103175, 2022. 

[21] L. Kranthi Kumar and P. J. A. Alphonse, “COVID-19 disease diagnosis with light-weight CNN 

using modified MFCC and enhanced GFCC from human respiratory sounds,” Eur. Phys. J. Spec. 

Top., pp. 1–18, 2022. 

[22] M. Kuluozturk et al., “DKPNet41: directed knight pattern network-based cough sound 

classification model for automatic disease diagnosis,” Med. Eng. \& Phys., p. 103870, 2022. 

[23] T. Nguyen and F. Pernkopf, “Lung sound classification using co-tuning and stochastic 

normalization,” IEEE Trans. Biomed. Eng., 2022. 

[24] T. Tuncer, E. Akbal, E. Aydemir, S. B. Belhaouari, and S. Dogan, “A novel local feature generation 

technique based sound classification method for covid-19 detection using lung breathing sound,” 

Eur. J. Tech., vol. 11, no. 2, pp. 165–174, 2021. 

[25] G. C. Jana, R. Sharma, and A. Agrawal, “A 1D-CNN-spectrogram based approach for seizure 

detection from EEG signal,” Procedia Comput. Sci., vol. 167, pp. 403–412, 2020. 

[26] J. Xie, K. Hu, M. Zhu, J. Yu, and Q. Zhu, “Investigation of different CNN-based models for 

improved bird sound classification,” IEEE Access, vol. 7, pp. 175353–175361, 2019. 

[27] V. Franzoni, G. Biondi, and A. Milani, “Crowd emotional sounds: spectrogram-based analysis 

using convolutional neural network.,” in SAT@ SMC, pp. 32–36,  2019. 

[28] H. Hu et al., “Deep learning application for vocal fold disease prediction through voice recognition: 

preliminary development study,” J. Med. Internet Res., 2021. 

[29] E. C. Compton et al., “Developing an artificial ıntelligence tool to predict vocal cord pathology in 

primary care settings,” Laryngoscope, 2022. 

[30] A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 30, 2017. 

[31] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in vision: A 

survey,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1–41, 2022. 

[32] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, and A. Veit, “Understanding 

robustness of transformers for image classification,” in Proceedings of the IEEE/CVF international 

conference on computer vision, 2021, pp. 10231–10241. 

[33] K. S. Kalyan, A. Rajasekharan, and S. Sangeetha, “Ammus: A survey of transformer-based 

pretrained models in natural language processing,” arXiv Prepr. arXiv2108.05542, 2021. 

[34] J. Beal, E. Kim, E. Tzeng, D. H. Park, A. Zhai, and D. Kislyuk, “Toward transformer-based object 

detection,” arXiv Prepr. arXiv2012.09958, 2020. 

[35] Z. Shao et al., “Transmil: Transformer based correlated multiple instance learning for whole slide 

image classification,” Adv. Neural Inf. Process. Syst., vol. 34, pp. 2136–2147, 2021. 

[36] F. Shamshad et al., “Transformers in medical imaging: a survey,” Med. Image Anal., p. 102802, 

2023. 

[37] A. Hatamizadeh et al., “Unetr: Transformers for 3d medical image segmentation,” in Proceedings 

of the IEEE/CVF winter conference on applications of computer vision, 2022, pp. 574–584. 

[38] Z. Liu, Q. Lv, Z. Yang, Y. Li, C. H. Lee, and L. Shen, “Recent progress in transformer-based 

medical image analysis,” Comput. Biol. Med., p. 107268, 2023. 

[39] Z. Liu and L. Shen, “Medical image analysis based on transformer: A review,” arXiv Prepr. 

arXiv2208.06643, 2022. 

[40] E. Svoboda, T. Boril, J. Rusz, T. Tykalova, D. Horakova, C. Guttman, K. B. Blagoev, H. Hatabu 

and V. Valtchinov, “Assessing clinical utility of Machine Learning and Artificial Intelligence 

approaches to analyze speech recordings in Multiple Sclerosis: A Pilot Study,” arXiv Prepr. 

arXiv2109.09844, 2021. 

[41] D. Yamamoto et al., “Computer-aided detection of multiple sclerosis lesions in brain magnetic 

resonance images: False positive reduction scheme consisted of rule-based, level set method, and 

support vector machine,” Comput. Med. Imaging Graph., vol. 34, no. 5, pp. 404–413, 2010. 

[42] F. Haider, S. De La Fuente, and S. Luz, “An assessment of paralinguistic acoustic features for 

detection of Alzheimer’s dementia in spontaneous speech,” IEEE J. Sel. Top. Signal Process., vol. 

14, no. 2, pp. 272–281, 2019. 

[43] J. Weiner, C. Herff, and T. Schultz, “Speech-based detection of alzheimer’s disease in 



 
 

Fırat Üni Deny. ve Say. Müh. Derg., 3(2), 160-174, 2024 

E. Soylu, S. Gül, K.A. Koca, M. Türkoğlu, M. Terzi 

 

  
174 

 

conversational german.,” in Interspeech, 2016, pp. 1938–1942. 

[44] A. Kapur, U. Sarawgi, E. Wadkins, M. Wu, N. Hollenstein, and P. Maes, “Non-ınvasive silent 

speech recognition in multiple sclerosis with dysphonia,” Proc. Mach. Learn. Heal. NeurIPS Work., 

pp. 25–38, 2020. 

[45] L. Zahid et al., “A spectrogram-based deep feature assisted computer-aided diagnostic system for 

Parkinson’s disease,” IEEE Access, vol. 8, pp. 35482–35495, 2020. 

[46] L. Liu, S. Zhao, H. Chen, and A. Wang, “A new machine learning method for identifying 

Alzheimer’s disease,” Simul. Model. Pract. Theory, vol. 99, p. 102023, 2020. 

[47] A. Johri, A. Tripathi, and others, “Parkinson disease detection using deep neural networks,” in 2019 

Twelfth international conference on contemporary computing (IC3), 2019, pp. 1–4. 

[48] B. N. Suhas et al., “Speech task based automatic classification of ALS and Parkinson’s Disease and 

their severity using log Mel spectrograms,” in 2020 international conference on signal processing 

and communications (SPCOM), 2020, pp. 1–5. 

[49] Z.-J. Xu, R.-F. Wang, J. Wang, and D.-H. Yu, “Parkinson’s disease detection based on 

spectrogram-deep convolutional generative adversarial network sample augmentation,” IEEE 

Access, vol. 8, pp. 206888–206900, 2020. 

[50] D. Hemmerling et al., “Vision transformer for parkinson’s disease classification using multilingual 

sustained vowel recordings.” 

[51] H.-J. Sun and Z.-G. Zhang, “Transformer-based severity detection of parkinson’s symptoms from 

gait,” in 2022 15th International Congress on Image and Signal Processing, BioMedical 

Engineering and Informatics (CISP-BMEI), 2022, pp. 1–5. 

[52] S. M. Abdullah et al., “Deep transfer learning based parkinson’s disease detection using optimized 

feature selection,” IEEE Access, vol. 11, pp. 3511–3524, 2023. 

[53] L. Wyse, “Audio spectrogram representations for processing with convolutional neural networks,” 

vol. 1, no. 1, pp. 37–41, 2017. 

[54] F. Ye and J. Yang, “A deep neural network model for speaker identification,” Appl. Sci., vol. 11, 

no. 8, p. 3603, 2021. 

[55] “Stft.” [Online]. Available: https://musicinformationretrieval.com/stft.html. 

[56] B. Li, “On identity authentication technology of distance education system based on voiceprint 

recognition,” in Proceedings of the 30th Chinese Control Conference, 2011, pp. 5718–5721. 

[57] A. Dosovitskiy et al., “An image is worth 16x16 words: transformers for image recognition at scale. 

arxiv 2020,” arXiv Prepr. arXiv2010.11929, 2010. 

 

 

 


