
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

Vulnerability analysis based on Software Bill of
Materials (SBOM): A model proposal for

automated vulnerability scanning for CI/CD
pipelines

Ömercan Kağızmandere1 , Halil Arslan1

1Computer Engineering, Sivas Cumhuriyet University, Sivas, Türkiye
Corresponding Author: harslan@cumhuriyet.edu.tr

Research Paper Received: 18.03.2024 Revised: 28.06.2024 Accepted: 28.06.2024

Abstract—The software bill of materials (SBOM) emerged in 2018 as an important component in software security and software
supply chain management. SBOM is an inventory presented as a list of the components that make up software. In recent years,
whether software products contain vulnerabilities is a phenomenon that should be checked regularly by the users of that product.
This paper deals with the systematic identification and vulnerability analysis of software components based on the concept of
software bill of materials. The fact that a software product itself does not contain vulnerabilities does not mean that the software
product is secure. Even if software projects do not contain any vulnerabilities when examined alone, there may be vulnerabilities in
their components. Vulnerabilities in the dependencies or components of the product may be sufficient for cyber attackers to exploit
that product. Minimizing the damage caused by vulnerabilities in software components is the basis of cyber security efforts. In this
study, the necessity of automatically generating software bill of materials in software development/deployment environments and
performing vulnerability analysis on this bill of materials is demonstrated and a suitable model is proposed.

Keywords—Software Bill of Materials, Vulnerability analysis, Software security

1. Introduction

A software product requires many compo-
nents/dependencies to perform its intended tasks.
These dependencies affect the integrity of the prod-
uct in terms of security as well as the software
product itself. For this reason, a vulnerability in a
system can be exploited and other systems can be
threatened through that system. In other words, in
software systems, the absence of a vulnerability in
the project itself does not mean that the project is

secure. If there is a vulnerability in the dependen-
cies of the project, there is a vulnerability in the
main project. Attacks can occur at any point in a
normal software supply chain, and these attacks are
becoming more visible, destructive and expensive
in today’s world. To prevent this, it has become
critically important to know the dependencies of
a project. A vulnerability in the dependencies can
cause major damage to the main project. Providing
methods to prevent this increases the importance of
the research.

33

https://doi.org/10.55859/ijiss.1455039
https://orcid.org/0009-0009-7997-5196
https://orcid.org/0000-0003-3286-5159

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

The International Organization for Standardiza-
tion (ISO) 25010 quality model is a hierarchical
structure consisting of 8 main and 31 sub-criteria
(ISO/IEC 25010:2011). Within ISO 25010, security
is one of the 8 main criteria. Security is a quality
characteristic that indicates that a product or system
protects information and data [1][2]. Addressing
the security category of a software product in the
context of the ISO 25010 Quality Model cannot be
achieved only by examining the existing product.
A vulnerability that may arise in the dependen-
cies of the software product also puts the security
parameters of the related product at risk. In this
context, SBOM has been proposed to identify the
dependencies of a software product, to examine the
vulnerabilities contained in these dependencies, and
to provide transparency and visibility to both soft-
ware developers and relevant consumers regarding
a software product [3]. The SBOM of a project is
therefore the most up-to-date approach to see the
dependencies of that project. The SBOM is a list of
the components that make up the software.

This study aims to prove that projects with no
apparent vulnerabilities may contain vulnerabilities
due to vulnerabilities in their dependencies. It is
aimed to create an end-to-end model for this pur-
pose. It is stated that this model should be a part
of the pipeline from the development phase of an
application to the live deployment in the Continuous
Integration/Continuous Delivery (CI/CD) phase. In
future studies, the model will be integrated into
CI/CD environments as a crucial step to ensure
that relevant security analyses are considered in
software development processes. In this study, we
first dynamically generate a SBOM in the Soft-
ware Package Data Exchange (SPDX) standard for
tracking and documenting the dependencies used
by a software product. SPDX is an industrial stan-
dard for describing software packages and their

dependencies. It is designed to work with all ven-
dors, programming languages, and frameworks [4].
Within the scope of the study, 10 different open-
source projects with widespread developer and user
support were analyzed in this context. Dynamically
extracted SBOM were then analyzed for vulnerabil-
ities based on product and dependency. As a result,
it has been shown that SBOM data can be one of the
most important parameters to be examined in terms
of both ISO 25010 and cyber security, whether the
projects are distributed as open source or compiled
code.

According to the definitions above, the main re-
search questions of our study are as follows:

• Research Question 1 (RQ 1): Can SBOM be
automatically extracted from source code?

• Research Question 2 (RQ 2): Can vulnerabili-
ties of the source code dependencies be found
through the automatically extracted SBOM
lists?

• Research Question 3 (RQ 3): Is there a correla-
tion, a relationship between the existing product
and its dependencies through vulnerabilities?

2. Literature Review

The Software Bill of Materials fulfills a critical
role in ensuring software supply chain security by
providing a detailed inventory of components and
dependencies that are integral to software develop-
ment. However, there are numerous challenges to
sharing SBOM, including the potential for data fal-
sification and hesitancy to disclose comprehensive
information between software vendors. While these
obstacles hinder the widespread adoption and use
of SBOM, they also highlight the need for a more
secure and flexible mechanism for SBOM sharing.
Considering this, the details of SBOM studies are
reviewed.

34

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

Axelsson et al. investigated how far the open-
source software community has come in adopting
SBOM and how existing SBOM have evolved, fo-
cusing on the SPDX format. For the purpose of this
research, they conducted an archival study in which
they searched for SBOM in open-source software
projects on GitHub and analyzed their content and
evolution [5].

Adewumi et al. conducted a systematic literature
review to guide the formulation and development
of new models by classifying existing open-source
software quality assessment models according to
their quality attributes, the methodologies they use,
and their application domains [6].

Stoddard et al. noted in their research that while
there is significant community discussion on SBOM
generation, there is less discussion focused on
SBOM sharing. Their work is intended to highlight
currently used SBOM sharing solutions and help
readers explore appropriate sharing solutions based
on their needs related to the discovery, access, and
transportation of SBOM [7].

Camp et al. focused on systematic vulnerability
classes based on SBOM standards. As a result
of their study, they concluded that SBOM is a
promising solution not only to secure the supply
chain but also to address the problem of identifying
software components [8].

Xia et al. extended the scope of SBOM to AI sys-
tems by introducing a blockchain-enabled architec-
ture for SBOM sharing. Thus, they coined the term
Artificial Intelligence Bill of Materials (AIBOM).
By demonstrating the feasibility and flexibility of
the proposed SBOM sharing mechanism, they intro-
duced a new solution for securing software supply
chains [9].

Ding et al. proposed a SBOM generation method
based on enterprise big data, which is used to create

a complete electronic file for each product. The
manual process is greatly reduced, and the accuracy
of the data is improved [10].

In his study, Kemppainen stated that when testing
and selecting an SBOM-tool, it is important to con-
sider some aspects such as the software development
environment, the software package managers used,
and the desired SBOM format [11].

Chaora et al. underline that the widespread use
of software in various sectors, including industrial,
manufacturing, and municipal technologies, requires
a reliable and secure software supply chain. The
authors discussed various initiatives to improve risk
management in software supply chains such as
SBOM. The study highlights the critical role of
SBOM in supply chain security and provides valu-
able insights for future research and development in
this area [12].

The research by Harer et al. provides a new per-
spective on enhancing software security by introduc-
ing an automated method for vulnerability discovery
using machine learning. This work contributes to
the larger discussion initiated by previous research
examining issues related to software supply chain
attacks, risk assessment techniques, and the use of
SBOM. The work of Harer et al. addresses the tech-
nical aspect of proactively finding vulnerabilities
[13].

As can be seen from the reviewed studies, it can
be stated that SBOM is a methodology that is a
candidate to play a key role in preventing security
breaches caused by software vulnerabilities. Know-
ing the dependencies/components of the purchased
software can provide a solution to the problem of
vulnerable software for buyers.

35

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

3. Software Bill of Materials (SBOM)

SBOM, serves as a comprehensive inventory de-
tailing the components constituting a piece of soft-
ware [14]. It not only identifies these software
components but also provides essential information
about each, along with outlining the supply chain
relationships among them. The extent and nature
of information within a specific SBOM can vary,
influenced by factors such as the industry and the
specific requirements of SBOM consumers.

Today’s software packages often include numer-
ous third-party components. Companies must ac-
tively monitor and manage each of these compo-
nents to maintain security and functionality. SBOM
are a new version of an old concept. Vendors have
historically used bills of materials (BOM) in supply
chain management to identify the many parts that
make up their products. For example, the ingredient
list of the food we buy at the grocery store is
effectively a BOM. The application of the bill of
materials idea to software is more recent. It became
more prominent in May 2021, when the Biden
administration issued an executive order empha-
sizing SBOM as a way to improve cybersecurity
in the US [14]. Software vendors selling to the
US federal government are required by regulation
to provide SBOM for their products. To this end,
organizations are required to use a software bill of
materials to track these components. This machine-
readable list contains the various dependencies and
elements of a piece of software [7]. A software
BOM lists all component parts and software depen-
dencies involved in the development and delivery
of an application. SBOM are similar to bills of
materials used in supply chains and manufacturing.
They provide a common framework for all vendors
in the IT industry to accurately identify the key code
components from which an application is built [14].

A typical SBOM contains license information,
version numbers, component details, and vendors.
This list allows others to understand what the soft-
ware contains and act accordingly, reducing risks
for both the manufacturer and the user. The main
purpose of an SBOM is to uniquely and unambigu-
ously identify components and their relationships
to each other. To achieve this, a combination of
fundamental information is necessary. The essential
details include [15]:

• Author Name: The individual responsible for
the SBOM entry (which may not always be the
supplier).

• Supplier Name: The component supplier’s iden-
tity in the SBOM entry, allowing for multiple
names or aliases. If the author and supplier are
the same, the supplier identifies the first-party
authorized component. If they differ, the author
provides information about a component from
another supplier.

• Component Name: One or more component
names, with the ability to note multiple names
or aliases. Component names may incorporate
supplier names and can be conveyed using a
generic namespace structure.

• Version String: The version information format
is flexible but must adhere to common industry
standards.

• Component Hash: Utilizing a cryptographic
hash as a unique identifier is the most effective
way to identify a software component.

• Unique Identifier: In addition to the hash, each
component must possess an identification num-
ber that uniquely distinguishes it within the
SBOM.

• Relationship: This defines the connection be-
tween the component and the package. In most
instances, a relationship implies that a specific
component is included in a particular package.

36

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

4. Methodology

The term ”exploit” essentially means to abuse or
take advantage of something. Exploits are codes and
programs developed to use vulnerabilities and bugs
in software or computers. These codes and programs
are used to exploit the system, damaging confiden-
tiality, integrity, and availability [16]. Exploits find
the system’s weakest points and infiltrate it from
there. Exploits pose a great risk to the digital world.
Most cyber-attacks are exploit-based [17]. In order
for companies not to be affected by exploits, they
should regularly scan their existing software and
systems with active/passive vulnerability analysis
tools and close the vulnerabilities that emerge. The
vulnerability of software is a combination of the
vulnerabilities of all components of that product.
Therefore, an effective vulnerability analysis re-
quires analyzing all components that make up the
relevant software.

In this study, a model is proposed in which the
SBOM of software is generated from the source
code and vulnerability analysis of software com-
ponents can be performed. The proposed model is
shown in Figure 1. This model proposes adding two
new steps for SBOM generation and vulnerability
scanning to the pipeline from software development
to deployment. The necessity and validation of the
proposed model are demonstrated with concrete
results. According to this model, an automated
vulnerability analysis is required for code merge
requests as a result of developers’ pull requests to
result in the application deployment step through
CI/CD tools. Automatic SBOM generation is pro-
posed for vulnerability scanning of all software
components.

Jenkins is an open-source automation tool written
in Java with plugins built for Continuous Integration
(CI). Jenkins is used to continuously build and test

software projects. It makes it easy for developers
to integrate project changes and for users to get a
new build. It also integrates with multiple testing
and deployment technologies to ensure the contin-
uous delivery of software. With Jenkins, organi-
zations can accelerate their software development
process through automation. Jenkins can integrate
any development lifecycle process, including build,
document, test, package, phase, deployment, static
analysis, and much more. Plugins allow the integra-
tion of various DevOps phases [18].

Within the scope of the study, firstly, 10 popu-
lar projects (C# based) on GitHub were identified
[19]. The reason we chose C# projects is that the
component detection tool we used was developed
by Microsoft and we predicted that it would achieve
more successful results in the source code. The pop-
ularity of these projects (number of stars and forks)
was taken into account while determining these
projects. In addition, the existing vulnerabilities of
these projects were scanned through the MITRE-
CVE database on the basis of passive vulnerability
analysis, and it was checked whether they contained
vulnerabilities. Common Vulnerabilities and Expo-
sures (CVE) is a publicly available vulnerability
database. The purpose of developing this database
is to facilitate the sharing of information about vul-
nerabilities. A CVE record consists of a description
of the vulnerability, a vulnerability identification
number, and at least one public reference [20]. CVE
aims to provide common names for publicly known
issues. The purpose of CVE is to facilitate data
sharing between separate vulnerability capabilities
(tools, repositories and services) with this ’common
numbering’ [21].

Then, the SBOM of the identified projects were
dynamically generated. SBOM-tool was used to
generate SBOM for the projects [22]. The SBOM-
tool creates a JSON formatted ”manifest.spdx.json”

37

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

Figure 1. The proposed model overview

file of the source project. The tool used to generate
SBOM in the study was developed by Microsoft.
It is a highly scalable and enterprise-ready tool for
generating SPDX 2.2 compliant SBOM for all types
of structures. The tool uses Component Detection
libraries to detect components and the ClearlyDe-
fined API to determine license information for these
components [22]. Component Detection is a pack-
age scanning tool designed for use at compile-time.
It produces a graphical output of all components
detected in various package ecosystems [23].

Vulnerability scans were performed on the SBOM
of the projects. The open-source Bomber tool was
used to determine whether the dependencies of
the projects, whose SBOM were produced, con-
tain vulnerabilities [24]. Bomber scans the ”man-
ifest.spdx.json” file created by the SBOM-tool and
extracts vulnerabilities. As a result of these scans,
the vulnerabilities within the dependencies of a
project were identified and evaluated. Bomber is
specifically designed to scan vulnerabilities through
SBOM lists [24]. In this study, Bomber was uti-
lized to identify potential vulnerabilities within
the components comprising a software application.

Bomber can process SBOM in JSON or XML-based
CycloneDX, SPDX, or Syft formats and conduct
vulnerability scanning.

Software can be available as open-source or com-
piled code. Third-party components sourced from
GitHub or any other public repository are consid-
ered open-source software. In-house software devel-
oped for companies, while not publicly available, is
also categorized as open-source since internal teams
have access to the source code. Compiled or closed-
source software, typically sourced externally, can
also be internal to a company. Companies employ
Software Composition Analysis (SCA) tools from
vendors such as GitHub, Sonatype, Snyk, etc., to
scan all types of open-source software and pro-
vide vulnerability data, sometimes including the
creation of SBOM. However, passive vulnerability
analysis tools cannot scan components of compiled
or closed-source software. This is where SBOM
provided by vendors become crucial. SBOM present
the components that constitute the respective soft-
ware, and tools like Bomber can ascertain whether
these components include any vulnerabilities.

38

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

Table 1.
Projects selected for the experimental study

No Project Name Stars Forks Repo URI (GitHub)
1 OpenRA 13768 2638 OpenRA
2 runtime 13403 4391 dotnet
3 efcore 13060 3064 dotnet
4 abp 11916 3275 abpframework
5 aspnetboilerplate 11420 3761 aspnetboilerplate
6 Captura 9126 1754 MathewSachin
7 spectre.console 8036 421 spectre.console
8 RestSharp 9339 2335 restsharp
9 Radarr 8554 889 Radarr

10 Ocelot 7999 1613 ThreeMammals

In summary, dependencies from 10 projects listed
among the top 100 most popular C# projects
[19], whose source code is available on GitHub,
were extracted using the SBOM-tool. Subsequently,
vulnerability scanning was performed on these
extracted SBOM. The vulnerabilities identified
through the SBOM were evaluated by comparing
them directly with vulnerabilities attributed to the
relevant software products.

5. Experimental Studies

To validate the model proposed in this study, ten
popular C# projects with available source codes on
GitHub were first identified. The projects examined
in the experimental study, along with some of their
features, are listed in Table 1.

To determine the vulnerabilities of the examined
projects, queries were made using the MITRE-CVE
system. No vulnerability records were found on
MITRE for the evaluated projects. Subsequently,
SBOM of the evaluated projects were created, and
their vulnerabilities were investigated through these
SBOM. A sample vulnerability analysis report ob-
tained through Bomber (pertaining to the Radarr
project) is presented in Figure 2.

Table 2.
Count of vulnerabilities in examined projects

No Project Name Vulnerabilities
1 OpenRA 1
2 runtime 2
3 efcore 2
4 abp 190
5 aspnetboilerplate 13
6 Captura 3
7 spectre.console 2
8 RestSharp 2
9 Radarr 8
10 Ocelot 10

Vulnerabilities contained in project dependencies
should be analyzed according to their severity and
EPSS value, with the impact of the vulnerability
considered by product users. The Exploit Predic-
tion Scoring System (EPSS), referred to in the
vulnerability analysis report presented by Bomber,
is the result of a data-driven effort to predict the like-
lihood of a software vulnerability being exploited in
a real-world environment. Its goal is to help network
defenders better prioritize vulnerability remediation
efforts. While other industry standards are useful for
capturing the innate characteristics of a vulnerability
and providing severity metrics, their ability to as-
sess the threat is limited. EPSS fills this gap as
it leverages existing threat information from the
CVE and real-world exploit data. The EPSS model
produces a probability score between 0 and 1 (0 and
100 percent). The higher the score, the greater the
probability of a vulnerability being exploited. This
value helps determine the priority of addressing the
vulnerability [16]. Severity relates to the assessment
of the vulnerability from a technical perspective. It
focuses on the impact and possible consequences
of the vulnerability. Severity statuses may include
Critical, High, Moderate, and Low.

39

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

Figure 2. Sample vulnerability analysis report from Bomber (Radarr project)

SBOM were generated for all projects selected
within the scope of the experimental study, and
vulnerability analysis was performed on these
SBOM. The list of vulnerabilities found in the
dependencies of the analyzed projects is presented
in Table 2.

The findings of the experimental study demon-
strate that the fact that a software product itself
does not contain vulnerabilities does not guarantee
it software product is secure. Vulnerabilities in the
product’s dependencies can still provide opportuni-
ties for attackers to exploit the software. The log4j
vulnerability, which emerged in the last days of
2021, illustrates the damage that vulnerabilities in
software components can cause [25].

6. Conclusion and Discussion

The SBOM of 10 open-source C# projects exam-
ined in this study were initially generated from their
source codes. These SBOM were then analyzed
using passive vulnerability analysis tool Bomber to
scan for vulnerabilities within the software compo-
nents. It was demonstrated that software packages
appearing free of vulnerabilities on individual in-
spection may still contain vulnerabilities within their
components. This finding underscores the impor-

tance of automatically generating an SBOM in soft-
ware development and deployment environments
and conducting vulnerability analysis on this bill of
materials. Consequently, a new CI/CD model has
been proposed, as depicted in Figure 1. This model
advocates integrating two additional steps into the
CI/CD process when a developer’s pull request is
made: automatic SBOM generation from source
code using SBOM-tool and vulnerability scanning
of this SBOM list using Bomber. The necessity
of these steps was validated across the 10 sample
projects. Therefore, we advocate for the integration
of automatic SBOM extraction and vulnerability
scanning via SBOM into CI/CD pipelines such as
Jenkins, GitHub Actions, etc.

In conclusion, this study addressed three research
questions. Firstly, the first and second research
questions have been answered by confirming that
SBOM can be automatically extracted from the
source code and used to identify vulnerabilities.
Secondly, regarding the correlation between product
and dependency vulnerabilities, it was found that
vulnerabilities in dependencies can expose other-
wise seemingly secure software products to ex-
ploitation. This highlights that a software product
free of vulnerabilities itself does not guarantee over-
all security.

40

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

In future studies, will focus on implementing the
proposed model end-to-end within Jenkins integra-
tion. Additionally, with the increasing popularity
of passive vulnerability analysis tools offering ef-
ficiency and continuous scanning in live environ-
ments compared to active tools, further research
on SBOM generation and vulnerability scanning
through passive analysis tools is crucial.

Furthermore, developing quality models based on
SBOM static analysis tools presents a promising
research area. These models could assess SBOM
structure conformity to standards and SBOM con-
tent, enabling software vendors to monitor and
enhance the quality of their software supply chains.
Given the escalating complexity of modern software
and the proliferation of third-party integrations, the
associated security costs are rising. As software
dependencies grow, so does the potential for vul-
nerabilities. Therefore, there is a growing need for
automated structures that can detect vulnerabilities
in dependencies, integrating seamlessly into CI/CD
processes.

7. Threats to Validity

This section outlines the primary threats affecting
the validity of our study’s results. Firstly, the study
is limited to 10 projects and specifically focused on
C# projects. It reflects the outcomes of experiments
conducted from December 2023 to January 2024.
Moreover, vulnerabilities identified in these projects
and their dependencies may have been resolved
subsequently. Therefore, our findings should be vali-
dated in future studies encompassing different types
of projects.

Acknowledgments

This study was produced as a part of the Master
Thesis study of Ömercan Kağızmandere.

References

[1] E. Peters and G. K. Aggrey, “An iso 25010 based quality model
for erp systems,” Adv. Sci. Technol. Eng. Syst. J, vol. 5, no. 2,
pp. 578–583, 2020.

[2] A. A. Pratama and A. B. Mutiara, “Software quality analysis for
halodoc application using iso 25010: 2011,” Int. J. Adv. Comput.
Sci. Appl, vol. 12, no. 8, pp. 383–392, 2021.

[3] A. Arora and C. Garman, “Analysis of software bill of materials
tools,” Cyber Security: A Peer-Reviewed Journal, vol. 6, no. 4,
pp. 334–355, 2023.

[4] S. Butler, J. Gamalielsson, B. Lundell, C. Brax, A. Mattsson,
T. Gustavsson, J. Feist, B. Kvarnström, and E. Lönroth, “Con-
siderations and challenges for the adoption of open source com-
ponents in software-intensive businesses,” Journal of Systems
and Software, vol. 186, p. 111152, 2022.

[5] V. Axelsson and F. Larsson, “Understanding the software bill of
material for supply-chain management in open source projects,”
2023.

[6] A. Adewumi, S. Misra, and N. Omoregbe, “Evaluating open
source software quality models against iso 25010,” in 2015
IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; De-
pendable, Autonomic and Secure Computing; Pervasive Intelli-
gence and Computing. IEEE, 2015, pp. 872–877.

[7] J. T. Stoddard, M. A. Cutshaw, T. Williams, A. Friedman, and
J. Murphy, “Software bill of materials (sbom) sharing lifecycle
report,” Idaho National Lab.(INL), Idaho Falls, ID (United
States), Tech. Rep., 2023.

[8] L. J. Camp and V. Andalibi, “Sbom vulnerability assessment
& corresponding requirements,” NTIA Response to Notice and
Request for Comments on Software Bill of Materials Elements
and Considerations, 2021.

[9] B. Xia, D. Zhang, Y. Liu, Q. Lu, Z. Xing, and L. Zhu, “Trust
in software supply chains: Blockchain-enabled sbom and the
aibom future,” arXiv preprint arXiv:2307.02088, 2023.

[10] X. Ding, F. Zhao, L. Yan, and X. Shao, “The method of
building sbom based on enterprise big data,” in 2019 3rd
International Conference on Electronic Information Technology
and Computer Engineering (EITCE). IEEE, 2019, pp. 1224–
1228.

[11] P. Kemppainen, “Managing 3rd party software components with
software bill of materials,” 2023.

[12] A. Chaora, N. Ensmenger, and L. J. Camp, “Discourse, chal-
lenges, and prospects around the adoption and dissemination of
software bills of materials (sboms),” in 2023 IEEE International
Symposium on Technology and Society (ISTAS). IEEE, 2023,
pp. 1–4.

[13] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.
Ellingwood et al., “Automated software vulnerability detection
with machine learning,” arXiv preprint arXiv:1803.04497, 2018.

41

https://doi.org/10.55859/ijiss.1455039

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Kağızmandere et al., Vol.13, No.2, pp. 33-42
https://doi.org/10.55859/ijiss.1455039

[14] V. V. Sehgal and P. Ambili, “A taxonomy and survey of software
bill of materials (sbom) generation approaches,” in Analytics
Global Conference. Springer, 2023, pp. 40–51.

[15] É. Ó. Muirı́, “Framing software component transparency: Es-
tablishing a common software bill of material (sbom),” NTIA,
Nov, vol. 12, 2019.

[16] J. Jacobs, S. Romanosky, B. Edwards, I. Adjerid, and M. Royt-
man, “Exploit prediction scoring system (epss),” Digital
Threats: Research and Practice, vol. 2, no. 3, pp. 1–17, 2021.

[17] H. Kekül, B. Ergen, and H. Arslan, “A multiclass hybrid
approach to estimating software vulnerability vectors and sever-
ity score,” Journal of Information Security and Applications,
vol. 63, p. 103028, 2021.

[18] J. A. Kupsch, B. P. Miller, V. Basupalli, and J. Burger, “From
continuous integration to continuous assurance,” in 2017 IEEE
28th Annual Software Technology Conference (STC). IEEE,
2017, pp. 1–8.

[19] GitHub Ranking, “GitHub stars and forks ranking list,”
Accessed Nov. 20, 2023. [Online]. Available: https://github.
com/EvanLi/Github-Ranking/blob/master/Top100/CSharp.md

[20] C. Hankin, P. Malacaria et al., “Attack dynamics: an automatic
attack graph generation framework based on system topology,
capec, cwe, and cve databases,” Computers & Security, vol. 123,
p. 102938, 2022.

[21] S. Neuhaus and T. Zimmermann, “Security trend analysis with
cve topic models,” in 2010 IEEE 21st International Symposium
on Software Reliability Engineering. IEEE, 2010, pp. 111–120.

[22] SBOM Tool, “The SBOM tool is a highly scalable and
enterprise ready tool to create SPDX 2.2 compatible SBOMs
for any variety of artifacts,” Accessed Nov. 1, 2023. [Online].
Available: https://github.com/microsoft/sbom-tool

[23] Component Detection, “Scans your project to determine what
components you use,” Accessed Nov. 1, 2023. [Online].
Available: https://github.com/microsoft/component-detection

[24] Bomber, “Scans Software Bill of Materials (SBOMs) for
security vulnerabilities,” Accessed Nov. 1, 2023. [Online].
Available: https://github.com/devops-kung-fu/bomber

[25] P. Ferreira, F. Caldeira, P. Martins, and M. Abbasi, “Log4j
vulnerability,” in International Conference on Information Tech-
nology & Systems. Springer, 2023, pp. 375–385.

42

https://doi.org/10.55859/ijiss.1455039
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/CSharp.md
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/CSharp.md
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/component-detection
https://github.com/devops-kung-fu/bomber

	Introduction
	Literature Review
	Software Bill of Materials (SBOM)
	Methodology
	Experimental Studies
	Conclusion and Discussion
	Threats to Validity
	References

