
 Gazi Üniversitesi Gazi University

Fen Bilimleri Dergisi Journal of Science

PART C: TASARIM VE

TEKNOLOJİ

PART C: DESIGN AND

TECHNOLOGY

GU J Sci, Part C, 12(3): 620-627 (2024)

*Corresponding author, e-mail: mehmet.gok@istiklal.edu.tr DOI: 10.29109/gujsc.1455778

Evaluation of the Deep Q-Learning Models for Mobile Robot Path Planning

Problem

Mehmet GÖK1*

1Kahramanmaraş İstiklal University, Faculty of Arhitecture, Engineering, and Design, Department of Computer Engineering, Kahramanmaraş,

Turkey

Article Info

Research article

Received: 20/03/2024
Revision: 05/07/2024

Accepted: 16/08/2024

Keywords

Deep Q-Learning

Mobile Robots
Model Inference

Path Planning

Makale Bilgisi

Araştırma makalesi

Başvuru: 20/03/2024

Düzeltme: 05/07/2024

Kabul: 16/08/2024

Anahtar Kelimeler

Derin Q-Öğrenme

Mobil Robotlar
Model Çıkarımı

Yol Planlama

Graphical/Tabular Abstract (Grafik Özet)

This study proposes an approach to compare the performances of the models pre-trained for mobile

robot path planning in terms of path length, path curvature, and journey time. / Bu çalışma, mobil

robot yol planlaması için önceden eğitilmiş modellerin yol uzunluğu, yol eğriliği ve yolculuk süresi

açısından performansını karşılaştırmak için bir yaklaşım önermektedir.

Figure A: The flow of the proposed model evaluation approach /Şekil A:. Önerilen model

değerlendirme yaklaşımının akışı

Highlights (Önemli noktalar)

➢ A comparison approach is devised to evaluate the performances of the Deep Q-learning

models trained for mobile robot path path planning tasks. / Mobil robot yol planlama

görevleri için eğitilen Derin Q-Öğrenme algoritmalarının performans

değerlendirmelerinin yapılabilmesi için bir karşılaştırma yaklamaşımı tasarlanmıştır.

➢ The proposed approach is implemented by means of Robot Operating System (ROS),

Python programming language, and PyTorch libraries. / Önerilen yaklaşım Robot İşletim

Sistemi, Python programlama Dili ve PyTorch kütüphaneleri ile icra edilmiştir.

➢ The attained results from model inferences are tracked via the proposed scheme. / Model

çıkarımlarından elde edilen sonuçlar önerilen akış ile izlenmiştir (kaydedilmiştir).

➢ Evaluation and path planning results are displayed by using an implemented Graphical

User Interface (GUI). / Değerlendirme ve yol planlama sonuçları icra edilen Grafiksel

kullanıcı arayücü ile görüntülenmiştir.

Aim (Amaç): The aim of this article is to design a comparison approach to evaluate the

performances of the pre-trained Deep Q-Learning models for dynamic path planning. / Bu

makalede dinamik yol planlama için eğitilen Derin Q-Öğrenme modellerinin değerlendirilebilmesi

için bir karşılaştırma yaklaşımının tasarlanması amaçlanmıştır.

Originality (Özgünlük): This paper focuses on the inference performances of the models rather

than training performance. / Bu makale modellerin eğitim performanslarından ziyade modellerin

çıkarım performanslarına odaklanmıştır.

Results (Bulgular): With the proposed approach, the success of the models in path planning tasks

can be observed effectively. / Önerilen yaklaşım ile modellerin yol planlama görevlerindeki başarısı

etkin bir şekilde gözlemlenebilmektedir.

Conclusion (Sonuç): The obtained results show that the proposed approach can be used to

compare models trained for dynamic path planning tasks with the implemented interface. / Elde

edilen sonuçlar, önerilen yaklaşım, icra edilen arayüz ile dinamik yol planlama görevleri için

eğitilen modellerin karşılaştırılması amacı kullanılabileceğini göstermektedir.

https://orcid.org/0000-0003-1656-5770

*Corresponding author, e-mail: mehmet.gok@istiklal.edu.tr DOI: 10.29109/gujsc.1455778

GU J Sci, Part C, 12(3): 620-627 (2024)

 Gazi Üniversitesi Gazi University

Fen Bilimleri Dergisi Journal of Science

PART C: TASARIM VE

TEKNOLOJİ

PART C: DESIGN AND

TECHNOLOGY

http://dergipark.gov.tr/gujsc

Evaluation of the Deep Q-Learning Models for Mobile Robot Path Planning

Problem

Mehmet GÖK1*

1Kahramanmaraş İstiklal University, Faculty of Arhitecture, Engineering, and Design, Department of Computer Engineering, Kahramanmaraş,

Turkey

Article Info

Research article

Received: 20/03/2024

Revision: 05/07/2024

Accepted: 16/08/2024

Keywords

Deep Q-Learning
Mobile Robots

Model Inference

Path Planning

Abstract

Search algorithms such as A* or Dijkstra are generally used to solve the path planning problem

for mobile robots. However, these approaches require a map and their performance decreases in

dynamic environments. These drawbacks have led researchers to work on dynamic path planning

algorithms. Deep reinforcement learning methods have been extensively studied for this purpose

and their use is expanding day by day. However, these studies mostly focus on training

performance of the models, but not on inference. In this study, we propose an approach to

compare the performance of the models in terms of path length, path curvature and journey time.

We implemented the approach by using Python programming language two steps: inference and

evaluation. Inference step gathers information of path planning performance; evaluation step

computes the metrics regarding the information. Our approach can be tailored to many studies to

examine the performances of trained models.

Mobil Robot Yol Planlama Problemi için Derin Q-Öğrenme Modellerinin

Değerlendirilmesi

Makale Bilgisi

Araştırma makalesi
Başvuru: 20/03/2024

Düzeltme: 05/07/2024

Kabul: 16/08/2024

Anahtar Kelimeler

Derin Q-Öğrenme

Mobil Robotlar
Model Çıkarımı

Yol Planlama

Öz

Mobil robotlar için yol planlama problemini çözmek için genellikle A* veya Dijkstra gibi arama

algoritmaları kullanılır. Ancak bu yaklaşımların bir harita gereksinimi bulunmakla birlikte

dinamik ortamlarda performansları düşer. Bu dezavantajlar araştırmacıları dinamik yol planlama

algoritmaları üzerinde çalışmaya yöneltmiştir. Derin takviyeli öğrenme yöntemleri bu amaçla

kapsamlı bir şekilde incelenmiş ve bu yöntemlerin kullanımı her geçen gün artmaktadır. Ancak

bu çalışmalar çoğunlukla modellerin eğitim performansına odaklanmakta olup çıkarıma dayalı

bir performans değerlendirmesi yapılmamaktadır. Bu çalışmada, modellerin performansını yol

uzunluğu, yol eğriliği ve yolculuk süresi açısından karşılaştırmak için bir yaklaşım

önerilmektedir. Önerilen yaklaşım Python programlama dili kullanılarak çıkarım ve

değerlendirme olarak iki adımda gerçeklenmiştir. Çıkarım adımı yol planlama performansı

hakkında bilgi toplamakta olup; değerlendirme adımı ise bu bilgilerle ilgili metrikleri

hesaplamaktadır. Önerilen yaklaşım, eğitilen modellerin performanslarını incelemek için birçok

çalışmaya uyarlanabilir.

1. INTRODUCTION (GİRİŞ)

Path planning in robotics research can be defined as

a task for calculating the best path from initial

location to the goal location for a mobile robot. Path

planning generates sub-locations comprising an

obstacle-free trajectory to the target. For this aim,

algorithms such as A* and Dijkstra are adopted for

the environments have a priori map [1, 2]. However,

changes in the environment and dynamic obstacles

require re-routing for a pre-planned path in real-

world missions. Dynamic path planning methods

are applied in such cases and studies are being

assessed continuously to obtain a decent dynamic

path planning method. Reinforcement learning and

Deep Reinforcement Learning methods have

become popular in the field of dynamic path

planning recently [3-5].

https://orcid.org/0000-0003-1656-5770

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

621

Among the deep reinforcement learning algorithms,

algorithms such as Deep Q-Learning and Double

Deep Q-Learning are used in studies using discrete

action, while algorithms such as Deep Deterministic

Policy Gradients are used in studies where

continuous action setting is preferred [6, 7]. In this

regard, it can be said that there is a trade-off

between performance and complexity. According to

our experiences, while Deep Q-Learning algorithms

are relatively simple, algorithms based on policy

gradients are somewhat more complex. Although

there are many studies on this subject, the absence

of an accessible comparison and testing

environment in general makes it difficult to make

comparisons between the performances of those

approaches. For instance, [4] presents an approach

Q-learning and topological maps employing an

authentic evaluation setting based on Box2D

library. Similarly, [8] employs a 2D simulation tool

based on Pyglet package to obtain a better training

time. Even individual simulation solutions provide

low resource usage, performance, and time gain,

reimplementation of these approaches may be

cumbersome.

In this manuscript, a study on the design and

evaluation of test software that can be used to

analyze the performance of Deep Q-learning

models is presented. For this aim, we first trained

two local path planning models with Double Deep

Q-Network (D2QN) and Dueling Double Q-

Network (D3QN), then we deployed these models

in the proposed test scenario for the inference. The

test software drives the mobile robot to 99 randomly

generated points and uses the measures of path

length traveled, path curvature, number of collisions

and travel time to decide which model is better. In

addition, the route followed by the robot and the

working environment are visualized with the

designed graphical user interface (GUI) of the

software. Although the proposed scheme has been

tested with D2QN and D3QN models, it can also be

opted for other deep reinforcement learning models.

The generally accessible and well-documented

Turtlebot3 mobile robot and Gazebo simulation

software is adopted for the experiments. To

facilitate better reproducibility, the experimental

environment presented in the Turtlebot3 Machine

Learning documentation was chosen as the

reference [9]. The reference study employs robot

operating system (ROS) infrastructure to establish

an appropriate communication between simulation

and machine learning software. ROS is a meta-

operating system that combines communication and

utilities for robotics research. Thanks to the tools it

provides and its flexible structure, it became a major

robotics research environment [10].

2. REINFORCEMENT LEARNING

APPROACH FOR MOBILE ROBOT PATH

PLANNING (MOBİL ROBOT YOL

PLANLAMA İÇİN TAKVİYELİ ÖĞRENME

YAKLAŞIMI)

The Reinforcement learning problems are basically

considered as a Markov Decision Process (MDP),

modeled as a tuple (S, A, T, R, γ), where S and A

implies the environment’s state space and action

space, respectively. The term agent in

Reinforcement Learning refers to the learner that

executes learning by interacting with the

environment through trial and error. The

environment expresses a world formation in which

the agent implements learning tasks [3, 11, 12]. At

each time step t, the agent takes an action at ∈ A and

changes its state from st ∈ S to the new state st+1.

T(at, st, st+1) = P(st+1|s, a) denotes the transition

probability for the agent moving from state st to the

new state st+1 after taking action at. The agent

receives a scalar reward rt from the environment and

develops an action selection policy π: S → A.

Reward function is defines as R : S → A and the

agent aims to obtain a maximized sum of discounted

future rewards beginning from t0 under the policy π

as given in Eq. 1:

𝑅𝑡 = ∑ 𝛾𝑡−𝑡0

𝑇

𝑡=𝑡0

𝑟𝑡 (1)

where T denotes the terminal time step and γ ∈ [0,1]

is the discounting factor. The discounting factor

penalizes the value of future rewards due to the

uncertainty. Each state can be associated with a

value function V(s0) estimating the expected amount

of future rewards can be received beginning from s0

following the policy π. Value function can be

formulated by using Eq. 2:

𝑉𝜋(𝑠) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠; 𝜋] (2)

The action value represents the gain of an action at

at state st, where the gain is defined as the expected

future reward under policy π as given in Eq. 3:

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎; 𝜋] (3)

Eq. 3 can also be obtained by adding a condition for

action selection to the value function equation Eq.

2. A policy is expressed optimal if it achieves the

best expected return and is defined as in Eq. 4:

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

622

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝑄𝜋(𝑠, 𝑎) (4)

Q-learning refers to the iterative estimation of the

optimal state-action value function based on the

Bellman optimality as defined in Eq. 5:

𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝔼[𝑟𝑡 + 𝑚𝑎𝑥𝑄∗(𝑠𝑡+1, 𝑎)|𝑠𝑡 , 𝑎𝑡] (5)

When the agent has the full view of the

environment, it can directly calculate Q-values by

utilizing Eq. 4 for each state-action pair (Figure 1).

However, real world problems mostly represent too

many states, which are infeasible and complex to

compute one by one. In such cases, convergence

approach is utilized instead of direct calculation of

the Q-values by employing neural networks [10].

The term Q-Network is a specialized version of a

neural network that is opted to converge to the Q-

values (Figure 2). The action-state value function is

rewritten as Q(s, a, θt) where θ denotes the weights

of the Q-Network.

Figure 1. Q-Table filled up by using Bellman

Equation for M actions and N states (M aksiyon ve N

durum için Q-Tablosunun Bellman Eşitliği ile doldurulması)

Those weights are updated by utilizing past

experiences of the agent due to the lack of prior

information. In a reinforcement learning

environment, moving from an old state to a new

state is called a transition. Every transition with a

returning reward from the environment is called an

experiment. An experiment can be written as a tuple

<st, at, st+1, r>.

Figure 2. Deep Q-Network and approximated Q-

Values (Derin Q-Ağı ve yaklaşılan Q-Değerleri)

Update procedure of the Q-Network can be

formulated as in Eq. 6:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 (𝑦𝑦
𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)) ∇𝜃𝑡

𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) (6)

Where α is the learning rate and yt
Q is the target

value function. Target value function can be

computed using Eq. 7:

𝑦𝑡
𝑄

= 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡) (7a)

= 𝑅𝑡+1 + 𝛾𝑄(𝑠𝑡+1, argmax
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡) (7b)

The studies in the literature adopted Double Deep

Q-Network approach where a second neural

network whose weights θ- are updated lately to

tackle the instability problems encountered in Deep

Q-Network utilization. Eq. 7 can be written as in Eq.

8 to indicate new situation:

𝑦𝑡
𝐷𝑄𝑁

= 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡) (8a)

= 𝑅𝑡+1 + 𝛾𝑄(𝑠𝑡+1, argmax
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜃−) (8b)

Dueling Double Q-Network approach is the further

optimized version of DQN which taking value

function into account to obtain advantage function

stated in Eq. 9:

𝑄𝜋(𝑠, 𝑎) = 𝑉𝜋(𝑠) + [𝐴𝜋(𝑠, 𝑎) −
1

|𝐴|
∑ 𝐴𝜋(𝑠, 𝑎)

𝑎′

] (10)

where the computation is realized within the neural

network stream by sharing network parameters [13,

14]. The network scheme regarding the Eq. 10 is

given Figure 3.

Figure 3. Dueling Q-Network Architecture (Düello

Q-Ağı Mimarisi)

When dynamic path planning is considered in the

DRL framework, the mobile robot statement

replaces the term agent. An example environment

with four static obstacles, walls, and robot model is

given in Fig. 4 demonstrating a typical application

for a mobile robot simulation. For a typical Deep Q-

Learning scenario employing a mobile robot for

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

623

path planning, a mobile robot explores its

surrounding environment by crashing into walls or

obstacles. Each formation also containing the

robot's position in the environment denotes a state.

The mobile robot tries to reach its goal by taking

pre-determined actions such as turning or going

straight. These actions are chosen based on the

robot's observations according to its state in the

environment, and each action moves the

environment to a new state. Moving from an old

state to a new state is called a transition. Every

transition with a returning reward from the

environment is called an experiment. Reaching the

goal or colliding with an obstacle also refers to an

experiment during the learning progress [8, 15].

Figure 4. Typical Application of Agent-

Environment Interaction Process (Ajan-Ortam

etkileşiminin tipi uygulaması)

The observations and rewards are the training data

for the Q-value evaluation according to Eq. 8 given

in previous section. To facilitate a stable learning

process, an experience replay buffer is utilized

during neural network training. Experiences of the

robot are saved into a table; then randomly selected

mini-batches of experiences are used for training

(Figure 5). In this way, past experiences are

exploited to ensure stable learning progress [16].

Figure 5. Experience Replay Buffer utilization
(Deneyim tekrar kullanım tamponunun kullanılışı)

The simple flow given in Fig. 5 can be summarized

as follows:

▪ The agent selects an action a from action

set A regarding its observation and

executes it in the environment.

▪ Action a, current state st, next state st+1

after the execution of the action and

reward rt are stored into ERB

The DQN model is updated with randomly sampled

experiments from ERB. D2QN and D3QN methods,

as value-based algorithms, were employed for

dynamic path planning by numerous papers such as

[4, 14, 19]. These models are preferred due to

extensive usage and presenting a straightforward

approach to Q-Learning. Hereby, the reference

implementation employs D2QN method, and

D3QN implementation is easily obtained alongside

little changes in the model definition. Integration of

policy-based algorithms like Actor-Critic (A2C),

and Deep Deterministic Policy Gradients (DDGP)

may provide better path planning performance as

reported in [10, 16], however, the source code of the

reference needs to be altered much for training. We

favor the D2QN and D3QN approaches by adhering

to the reference code base to present better

reproducibility.

3. MATERIALS AND METHODS (MATERYAL

VE METOD)

Robot simulations are frequently used in the

training of deep reinforcement learning models for

mobile robots due to the difficulties encountered in

real environments. For instance, a mobile robot can

run out of battery during time consuming training

process or frequent collisions at the beginning of

training can damage the robot. Gazebo and ROS

integration is a widely preferred combination of

robotics research. Gazebo provides efficient robot

modeling and environment simulation capabilities

within physics and 3D engines. In addition to this,

researchers can interface robots via adequate

messages, topics and services defined in ROS. The

environment expresses a world formation in which

the robot implements learning tasks. For instance, a

mobile robot explores its surrounding environment

by crashing into walls or obstacles [10, 16, 17].

3.1. Sate and Observation (Durum ve Gözlem)

State can be considered in three measures; distance

from the goal point (Dg), mobile robot heading

angle from the goal (θ), and 26 laser distance data

acquired from Light Detection and Ranging

(LiDAR) Unit mounted on the top of the Turtlebot3.

Measured Dg and θ are depicted in Figure 6 and

LIDAR traces can be seen in Fig. 4. The distance

data represents the distances from the walls and

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

624

obstacles occupying space in the environment. All

the distance measurements clipped into the interval

of [0, 3.5]. Observation provides a partial

measurement of the environment with the mobile

robot and with the training phase [9, 18]. The

observation combines these three measures in a

vector formation as given in Eq. 11:

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =< 𝐼1, 𝐼2, . . 𝐼26, 𝐷𝑔, 𝜃 > (11)

Figure 6. State of the robot with respect to the

Goal (Robotun hedefe göre durumu)

3.2. Action Set and Action Selection (Eylem Kümesi

ve eylem Seçimi)

In Deep Q-Learning approach, basically, the actions

getting the robot close to the goal are rewarded

while the actions getting the robot away from the

goals are penalized. Actions are discretized into a

finite set to ease the implementation of training and

inference phases. In this study, Turtlebot3 has a

constant linear velocity of 0.15 m/s and angular

velocity is determined through action selection

policy. The five discrete actions given in Figure 7.

Linear velocity is related to the distance and angular

velocity is related to the heading angle, respectively.

Figure 7. Action set and related angular speeds
(Eylem kümesi ve ilgili açısal hızlar)

A mobile robot takes random actions to reach its

goal at the beginning of the training. The DQN

model is updated according to the taken action and

its effect on the state of the robot. During the

training progress, action selection relies on the

trained model more and random action selection is

less preferred. Random action selection expresses

the exploration allowing an agent to improve its

current knowledge about each action. Taking

actions with respect to the model means exploitation

that makes the agent greedy about action selection.

Even if exploitation seems to be more advantageous

from the perspective of obtaining better rewards, it

may lead to sub-optimal behavior. Thus, a simple

method called epsilon-greedy is utilized to balance

exploration and exploitation to cope with the

dilemma. In this method, a uniform random value p

∈ [0,1) is determined and compared to the

hyperparameter epsilon ε. If p is smaller than ε, a

random action is determined, otherwise, current-

best action is estimated through the model. At the

end of each episode, ε is decreased by multiplying

an epsilon decay parameter and, thus the mobile

robot exploits its knowledge more [14, 19].

3.3. Experimental Environment (Deney Ortamı)

The experimental environment is the same as given

in the Turtlebot3 Machine Learning reference [9]

and includes three scenarios with the same

dimensions (2mx2m) and different configurations.

In all three scenarios, the area where the robot roams

are surrounded by a wall. In the first scenario, the

working environment of the robot is empty, and the

robot is driven to randomly generated targets. In the

second scenario, there are four cylindrical fixed

obstacles in the mission area. In the third, the

situation in which these obstacles move in a circular

manner is examined. The point to be noted here is

that in Gazebo, these obstacles are grouped as a

single object with a circular velocity component

(w=0.5 rad/sn). As a result, the four obstacles are

rotated around the robot and create a dynamic

situation for the robot. The simulation environment

with static obstacles is depicted in Figure 8. Thanks

to Gazebo and ROS integration, various tests can be

done easily in the experimental environment.

Reference implementation was conducted on ROS

Melodic on Ubuntu 18.04, which both are not

supported currently. Thus, in this study, the

experiments are carried out with ROS Noetic on

Ubuntu 20.04. Furthermore, since ROS Noetic

supports Python3, Python 2.7 scripts were rewritten

in Python 3.8. We also preferred PyTorch 2.0

library instead of Tensorflow 2.1 due to

performance and incompatibility issues we

encountered during the study. Tensorflow 1.8,

which is utilized in reference, is not available with

Python 3.x versions. Remaining package structure

is utilized as is, thus, current work can be

reproduced and validated for future assessments.

We trained D2QN and D3QN models within the

aforementioned scenarios with the modified

versions Python scripts of the reference

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

625

implementation. Finally, we save the trained models

for the inference and evaluation steps.

Figure 8. Simulation environment (Simülasyon

Ortamı)

Inference step (script) utilizes saved model to

collect information to assess the driving

performance. The script simply subscribes to the

odom topic of Turtlebot3 node and saves position

and time information during robot’s journey to the

goal; thus, inference script can be adopted to

evaluate other reinforcement learning models

utilized in ROS environments. In the evaluation

step, saved information is interpreted by evaluation

script to make a comparison between trained

models.

3.4. Model Inference (Model Çıkarımı)

The experimental software consists of two Python

script files. The inference script, tb3_drl.py, reads

the previously trained model and the coordinates

from the target coordinate file goals.txt. There are

99 randomly generated goal points in the goals.txt.

It takes observations by spawning each target in the

Gazebo environment and starts to predict the actions

that will drive Turtlebot3 to the target. The program

flow is illustrated in Figure 9. Here, each task to go

to a destination can be called an episode. Each step

of the episode is called a step. An episode is

completed each time the robot reaches the target

without collision.

Figure 9. Inference Flow (Model Çıkarımı)

The script file records information of each episode

in a text file called episodes.txt. Each of row of the

text file contains the fields given in Fig. 10. The

field travel time gives the elapsed time to reach the

goal; Succeeded field states whether the mobile

robot reached the target successfully.

Episode
Number

(int)

X value for
Goal

Coordinate
(float)

Y value for
Goal

Coordinate
(float)

Travel
Time

(float)

Succeeded?
(Boolean)

Figure 10. Information row for each episode (Herbir

episode için alınan bilgi satırı)

In addition to this, the information for each step is

recorded in discrete text files named with episode

numbers (0.txt, 1.txt, .., 99.txt). Fig. 11. shows the

positions of the robot and the obstacles for each step

in a row. In this way, evaluation information is

generated for each goal.

Robot

Position
(x, y)

Obstacle

#1
Position

(x1, y1)

Obstacle

#2
Position

(x2, y2)

Obstacle

#3
Position

(x3, y3)

Obstacle

#4
Position

(x4, y4)

Figure 11. Positions row for each step (Herbir adım

için alınan pozisyon satırı)

Thus, by recording the position of both the robot and

the obstacles at each step, the trajectory followed by

the robot can be drawn, the path length and path

curvature can be easily calculated. The higher

values of the road curvature metric indicate that the

robot performs the turning maneuver more. This

means that the robot consumes more energy on the

way to the target.

Path length and path curvature demonstrate the

performance of the model under test. In Figure 12,

a sample experimental model is given, as well as the

screenshot of the evaluation application where the

calculations are made. As seen here, the metrics

related to the evaluation of the model are shown.

The two models used here can be easily compared

with each other via the evaluation tool.

3.5. Model Evaluation (Model Değerlendirme)

Evaluation script displays a GUI (Graphical User

Interface) to reveal the performance of each model

under consideration clearly. It reads previously

saved information from episodes.txt and from each

file involving position data in connection with

episodes (0.txt, 1.txt, .., 99.txt). The metrics path

length and path curvature are computed by placing

trajectory points in Eq. 12 and Eq. 13., respectively.

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

626

𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ = ∑ √(𝑥𝑖+1 − 𝑥𝑖) + (𝑦𝑖+1 − 𝑦𝑖)

𝑁−1

𝑖=0

 (12)

𝑃𝑎𝑡ℎ 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
1

𝑁
∑ |𝑎𝑟𝑐𝑡𝑎𝑛2(

𝑦𝑖+1 − 𝑦𝑖

𝑥𝑖+1 − 𝑥𝑖
)|

𝑁−1

𝑖=0

 (13)

In Eq. 12 and Eq. 13, N denotes the number of states

the mobile robot must pass through to reach the

goal; (xi, yi) and (xi+1, yi+1) denotes the coordinates

of the mobile robot between consecutive states. In

Eq. 13, the average of the directional changes is

calculated using the built-in function arctan2 with

the Python3 math library [15].

To showcase the advantages of each model, pre-

determined metrics are shown in the GUI (Figure

12). There’s a sample journey belonging to Stage 3

with moving obstacles. Thus, trajectories in the plot

area seems to coincide with obstacles. The

trajectory generated by D3QN model is better in

terms of journey time, path length and path

curvature. Our mobile robot adopting D2QN model,

follows a policy which tends to avoid the obstacles

causing an inefficient path generation. On the

contrary, our robot adopting D3QN model, tracks a

more straightforward path to the goal.

Figure 12. User interface of evaluation script
(Değerlenrime betiğinin Kullanıcı Arayüzü)

Track visualization in the GUI provide insight how

the employed model performs path planning.

Orange colored path exhibits the effect of the value

branch in the D3QN structure to the path planning

performance enhancing the way of reacting to the

dynamic obstacles. The paths ending in a distant

location from target are regarded as collision. The

collision case is evident in journey time values

relatively low. Since, the shape of the paths does not

provide detailed information about turning

maneuvers during the journey, we utilize path

curvature to obtain a measure of changes in angular

speed. The models tend to keep the angular speed

close to zero as possible can be evaluated as better

among utilized models due to low energy

consumption. Eventually, generated paths infer the

integration of immediate reactions of the model on

the path to the goal location.

The scale of the plot area can be adjusted using

horizontal and vertical sliders in the GUI. However,

for different obstacle configurations, evaluation

script should be modified accordingly. For this

purpose, configuration can be parsed through

launch files of ROS nodes. Although our approach

present insights about model deployment for the

scenarios considered is limited to Turtlebot3

Machine Learning repo, it can be adopted to new

settings providing accurate localization information

at certain time intervals. Since maples approaches

lack of adaptive localization compensations, we

assume that we receive correct positions through

odom topic of the robot simulations.

4. CONCLUSIONS (SONUÇLAR)

Although there are numerous studies conducted on

dynamic path planning with DRL methods, the

performance evaluation is mainly focused on

training performance considering total cumulative

rewards. However, model performance can be

further assessed by use of inference methods and

appropriate metrics. This present study proposes a

method for evaluating the performance of DRL

models within the ROS framework and the Gazebo

environment. An application is carried out to enable

researchers to better assess the outcomes of the DRL

models to be deployed within dynamic path

planning. This application consists of two steps:

first, the information related to the inference test is

recorded, then the recorded data is evaluated to

decide which model performs better. Planned paths

are visualized and associated metrics are calculated

to show the performance of each model. In the end,

the D3QN method was found to outperform the

D2QN model in inference tests. The proposed

testing scheme could be used for any other DRL

model with simple modifications.

DECLARATION OF ETHICAL STANDARDS
(ETİK STANDARTLARIN BEYANI)

The author of this article declares that the materials

and methods they use in their work do not require

ethical committee approval and/or legal-specific

permission.

Bu makalenin yazarı çalışmalarında kullandıkları materyal ve

yöntemlerin etik kurul izni ve/veya yasal-özel bir izin

gerektirmediğini beyan ederler.

Gök / GU J Sci, Part C, 12(3): 620-627 (2024)

627

AUTHORS’ CONTRIBUTIONS (YAZARLARIN

KATKILARI)

Mehmet GÖK: He conducted the experiments,

analyzed the results and performed the writing

process.

Deneyleri yapmış, sonuçlarını analiz etmiş ve maklenin yazım

işlemini gerçekleştirmiştir.

CONFLICT OF INTEREST (ÇIKAR ÇATIŞMASI)

There is no conflict of interest in this study.

Bu çalışmada herhangi bir çıkar çatışması yoktur.

REFERENCES (KAYNAKLAR)

[1] H. Aydemir, M. Tekerek, and M. Gök,

“Complete coverage planning with clustering

method for autonomous mobile robots”,

Concurr. Comput. Pract. Exp., 2023,

doi:10.1002/cpe.7830

[2] M. Gök, Ö. Ş. Akçam, and, M. Tekerek,

“Performance Analysis of Search Algorithms

for Path Planning”, Kahramanmaraş Sütçü

İmam University Journal of Engineering

Sciences, 26 (2), 379-394.,

doi:10.17780/ksujes.1171461

[3] T. P. Lillicrap et al., “Continuous control with

deep reinforcement learning”, in 4th

International Conference on Learning

Representations, 2016, pp. 1-14.

[4] Y. Kato, K. Kamiyama, and K. Morioka,

“Autonomous robot navigation system with

learning based on deep Q-network and

topological maps”, in 2017 IEEE/SICE

International Symposium on System

Integration, 2018, pp. 1040-1046.

[5] A. I. Karoly, P. Galambos, J. Kuti, and I. J.

Rudas, “Deep Learning in Robotics: Survey on

Model Structures and Training Strategies”,

IEEE Trans. on Systems, Man, and Cybernetics:

Systems, vol. 51, no. 1, pp. 266–279, 2021.

[6] H. Van Hasselt, “Double Q-learning”, in 24th

Annual Conference on Neural Information

Processing Systems, 2010, pp. 1–9.

[7] A. Kamalova, S. G. Lee, and S. H. Kwon,

“Occupancy Reward-Driven Exploration with

Deep Reinforcement Learning for Mobile

Robot System”, Applied Sciences

(Switzerland), vol. 12, no. 18, 2022.

[8] J. Gao, W. Ye, J. Guo, and Z. Li, “Deep

reinforcement learning for indoor mobile robot

path planning”, Sensors, vol. 20, no. 19, 2020,

pp. 1–15.

[9] Turtlebot3 ROBOTIS e-Manual.

https://emanual.robotis.com/docs/en/platform/t

urtlebot3/machine_learning/ (accessed Sept.

15, 2023).

[10] J. Tsai, C. C. Chang, Y. C. Ou, B. H. Sieh, and

Y. M. Ooi, “Autonomous Driving Control

Based on the Perception of a Lidar Sensor and

Odometer”, Applied Sciences (Switzerland),

vol. 12, no. 15, 2022.

[11] T. Ribeiro, F. Gonçalves, I. Garcia, G. Lopes,

and A. F. Ribeiro, “Q-Learning for

Autonomous Mobile Robot Obstacle

Avoidance”, in 19th IEEE International

Conference on Autonomous Robot Systems and

Competitions, 2019.

[12] M. C. Bingöl, (2021). Investigation of the

Standard Deviation of Ornstein - Uhlenbeck

Noise in the DDPG Algorithm. Gazi University

Journal of Science Part C: Design and

Technology, 9(2), 200-210.

https://doi.org/10.29109/gujsc.872646

[13] Z. Wang, T. Schaul, M. Hessel, H. Van

Hasselt, M. Lanctot, and N. De Frcitas,

“Dueling Network Architectures for Deep

Reinforcement Learning”, in 33rd International

Conference on Machine Learning, vol. 4, no. 9,

2016, pp. 2939–2947.

[14] R. Van Hoa, L. K. Lai, and L. T. Hoan,

“Mobile Robot Navigation Using Deep

Reinforcement Learning in Unknown

Environments”, International Journal of

Electrical and Electronics Engineering (SSRG-

IJEEE), vol. 7, no. 8, 2020, pp. 15–20.

[15] U. Orozco-Rosas, K. Picos, J. J. Pantrigo, A. S.

Montemayor, and A. Cuesta-Infante, ‘Mobile

Robot Path Planning Using a QAPF Learning

Algorithm for Known and Unknown

Environments’, IEEE Access, vol. 10, no.

August, 2022, pp. 84648–84663.

[16] M. Wu, Y. Gao, A. Jung, Q. Zhang, and S. Du,

“The actor-dueling-critic method for

reinforcement learning”, Sensors, vol. 19, no. 7,

2019, pp. 1–20.

[17] H. Aydemir, M. Tekerek, and M. Gök,

“Examining of the effect of geometric objects

on slam performance using ROS and Gazebo”,

El-Cezeri Journal of Science and Engineering,

vol. 8, no. 3, 2021, pp. 1441–1454.

[18] M. Luong and C. Pham, “Incremental Learning

for Autonomous Navigation of Mobile Robots

based on Deep Reinforcement Learning”,

Journal of Intelligent & Robotic Systems, vol.

101, no. 1, 2021, pp. 1–11.

[19] M. F. R. Lee and S. H. Yusuf, “Mobile Robot

Navigation Using Deep Reinforcement

Learning”, Processes, vol. 10, no. 12, 2022.

https://doi.org/10.29109/gujsc.872646

