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Graphical/Tabular Abstract (Grafik Özet) 

This study proposes an approach to compare the performances of the models pre-trained for mobile 

robot path planning in terms of path length, path curvature, and journey time. / Bu çalışma, mobil 

robot yol planlaması için önceden eğitilmiş modellerin yol uzunluğu, yol eğriliği ve yolculuk süresi 

açısından performansını karşılaştırmak için bir yaklaşım önermektedir.  

 

Figure A: The flow of the proposed model evaluation approach /Şekil A:. Önerilen model 

değerlendirme yaklaşımının akışı  

Highlights (Önemli noktalar)  

➢ A comparison approach is devised to evaluate the performances of the Deep Q-learning 

models trained for mobile robot path path planning tasks. / Mobil robot yol planlama 

görevleri için eğitilen Derin Q-Öğrenme algoritmalarının performans 

değerlendirmelerinin yapılabilmesi için bir karşılaştırma yaklamaşımı tasarlanmıştır.  

➢ The proposed approach is implemented by means of Robot Operating System (ROS), 

Python programming language, and PyTorch libraries. / Önerilen yaklaşım Robot İşletim 

Sistemi, Python programlama Dili ve PyTorch kütüphaneleri ile icra edilmiştir. 

➢ The attained results from model inferences are tracked via the proposed scheme. / Model 

çıkarımlarından elde edilen sonuçlar önerilen akış ile izlenmiştir (kaydedilmiştir). 

➢ Evaluation and path planning results are displayed by using an implemented Graphical 

User Interface (GUI). / Değerlendirme ve yol planlama sonuçları icra edilen Grafiksel 

kullanıcı arayücü ile görüntülenmiştir. 

Aim (Amaç): The aim of this article is to design a comparison approach to evaluate the 

performances of the pre-trained Deep Q-Learning models for dynamic path planning. / Bu 

makalede dinamik yol planlama için eğitilen Derin Q-Öğrenme modellerinin değerlendirilebilmesi 

için bir karşılaştırma yaklaşımının tasarlanması amaçlanmıştır. 

Originality (Özgünlük): This paper focuses on the inference performances of the models rather 

than training performance. / Bu makale modellerin eğitim performanslarından ziyade modellerin 

çıkarım performanslarına odaklanmıştır. 

Results (Bulgular): With the proposed approach, the success of the models in path planning tasks 

can be observed effectively. / Önerilen yaklaşım ile modellerin yol planlama görevlerindeki başarısı 

etkin bir şekilde gözlemlenebilmektedir. 

Conclusion (Sonuç): The obtained results show that the proposed approach can be used to 

compare models trained for dynamic path planning tasks with the implemented interface. / Elde 

edilen sonuçlar, önerilen yaklaşım, icra edilen arayüz ile dinamik yol planlama görevleri için 

eğitilen modellerin karşılaştırılması amacı kullanılabileceğini göstermektedir. 
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Abstract 

Search algorithms such as A* or Dijkstra are generally used to solve the path planning problem 

for mobile robots. However, these approaches require a map and their performance decreases in 

dynamic environments. These drawbacks have led researchers to work on dynamic path planning 

algorithms. Deep reinforcement learning methods have been extensively studied for this purpose 

and their use is expanding day by day. However, these studies mostly focus on training 

performance of the models, but not on inference.  In this study, we propose an approach to 

compare the performance of the models in terms of path length, path curvature and journey time. 

We implemented the approach by using Python programming language two steps: inference and 

evaluation. Inference step gathers information of path planning performance; evaluation step 

computes the metrics regarding the information. Our approach can be tailored to many studies to 

examine the performances of trained models. 

 

Mobil Robot Yol Planlama Problemi için Derin Q-Öğrenme Modellerinin 

Değerlendirilmesi 

Makale Bilgisi 

Araştırma makalesi 
Başvuru: 20/03/2024 

Düzeltme: 05/07/2024 

Kabul: 16/08/2024 
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Öz 

Mobil robotlar için yol planlama problemini çözmek için genellikle A* veya Dijkstra gibi arama 

algoritmaları kullanılır. Ancak bu yaklaşımların bir harita gereksinimi bulunmakla birlikte 

dinamik ortamlarda performansları düşer. Bu dezavantajlar araştırmacıları dinamik yol planlama 

algoritmaları üzerinde çalışmaya yöneltmiştir. Derin takviyeli öğrenme yöntemleri bu amaçla 

kapsamlı bir şekilde incelenmiş ve bu yöntemlerin kullanımı her geçen gün artmaktadır. Ancak 

bu çalışmalar çoğunlukla modellerin eğitim performansına odaklanmakta olup çıkarıma dayalı 

bir performans değerlendirmesi yapılmamaktadır. Bu çalışmada, modellerin performansını yol 

uzunluğu, yol eğriliği ve yolculuk süresi açısından karşılaştırmak için bir yaklaşım 

önerilmektedir. Önerilen yaklaşım Python programlama dili kullanılarak çıkarım ve 

değerlendirme olarak iki adımda gerçeklenmiştir. Çıkarım adımı yol planlama performansı 

hakkında bilgi toplamakta olup; değerlendirme adımı ise bu bilgilerle ilgili metrikleri 

hesaplamaktadır. Önerilen yaklaşım, eğitilen modellerin performanslarını incelemek için birçok 

çalışmaya uyarlanabilir. 

 

1. INTRODUCTION (GİRİŞ) 

Path planning in robotics research can be defined as 

a task for calculating the best path from initial 

location to the goal location for a mobile robot. Path 

planning generates sub-locations comprising an 

obstacle-free trajectory to the target. For this aim, 

algorithms such as A* and Dijkstra are adopted for 

the environments have a priori map [1, 2]. However, 

changes in the environment and dynamic obstacles 

require re-routing for a pre-planned path in real-

world missions. Dynamic path planning methods 

are applied in such cases and studies are being 

assessed continuously to obtain a decent dynamic 

path planning method. Reinforcement learning and 

Deep Reinforcement Learning methods have 

become popular in the field of dynamic path 

planning recently [3-5].  

https://orcid.org/0000-0003-1656-5770


Gök / GU J Sci, Part C, 12(3): 620-627 (2024) 

621 
 

Among the deep reinforcement learning algorithms, 

algorithms such as Deep Q-Learning and Double 

Deep Q-Learning are used in studies using discrete 

action, while algorithms such as Deep Deterministic 

Policy Gradients are used in studies where 

continuous action setting is preferred [6, 7]. In this 

regard, it can be said that there is a trade-off 

between performance and complexity. According to 

our experiences, while Deep Q-Learning algorithms 

are relatively simple, algorithms based on policy 

gradients are somewhat more complex. Although 

there are many studies on this subject, the absence 

of an accessible comparison and testing 

environment in general makes it difficult to make 

comparisons between the performances of those 

approaches. For instance, [4] presents an approach 

Q-learning and topological maps employing an 

authentic evaluation setting based on Box2D 

library. Similarly, [8] employs a 2D simulation tool 

based on Pyglet package to obtain a better training 

time. Even individual simulation solutions provide 

low resource usage, performance, and time gain, 

reimplementation of these approaches may be 

cumbersome. 

In this manuscript, a study on the design and 

evaluation of test software that can be used to 

analyze the performance of Deep Q-learning 

models is presented. For this aim, we first trained 

two local path planning models with Double Deep 

Q-Network (D2QN) and Dueling Double Q-

Network (D3QN), then we deployed these models 

in the proposed test scenario for the inference. The 

test software drives the mobile robot to 99 randomly 

generated points and uses the measures of path 

length traveled, path curvature, number of collisions 

and travel time to decide which model is better. In 

addition, the route followed by the robot and the 

working environment are visualized with the 

designed graphical user interface (GUI) of the 

software. Although the proposed scheme has been 

tested with D2QN and D3QN models, it can also be 

opted for other deep reinforcement learning models. 

The generally accessible and well-documented 

Turtlebot3 mobile robot and Gazebo simulation 

software is adopted for the experiments. To 

facilitate better reproducibility, the experimental 

environment presented in the Turtlebot3 Machine 

Learning documentation was chosen as the 

reference [9]. The reference study employs robot 

operating system (ROS) infrastructure to establish 

an appropriate communication between simulation 

and machine learning software. ROS is a meta-

operating system that combines communication and 

utilities for robotics research. Thanks to the tools it 

provides and its flexible structure, it became a major 

robotics research environment [10]. 

2. REINFORCEMENT LEARNING 

APPROACH FOR MOBILE ROBOT PATH 

PLANNING (MOBİL ROBOT YOL 

PLANLAMA İÇİN TAKVİYELİ ÖĞRENME 

YAKLAŞIMI) 

The Reinforcement learning problems are basically 

considered as a Markov Decision Process (MDP), 

modeled as a tuple (S, A, T, R, γ), where S and A 

implies the environment’s state space and action 

space, respectively. The term agent in 

Reinforcement Learning refers to the learner that 

executes learning by interacting with the 

environment through trial and error. The 

environment expresses a world formation in which 

the agent implements learning tasks [3, 11, 12]. At 

each time step t, the agent takes an action at ∈ A and 

changes its state from st ∈ S to the new state st+1. 

T(at, st, st+1) = P(st+1|s, a) denotes the transition 

probability for the agent moving from state st to the 

new state st+1 after taking action at. The agent 

receives a scalar reward rt from the environment and 

develops an action selection policy π: S → A. 

Reward function is defines as R : S → A and the 

agent aims to obtain a maximized sum of discounted 

future rewards beginning from t0 under the policy π 

as given in Eq. 1: 

𝑅𝑡 = ∑ 𝛾𝑡−𝑡0

𝑇

𝑡=𝑡0

𝑟𝑡 (1) 

where T denotes the terminal time step and γ ∈ [0,1] 

is the discounting factor. The discounting factor 

penalizes the value of future rewards due to the 

uncertainty. Each state can be associated with a 

value function V(s0) estimating the expected amount 

of future rewards can be received beginning from s0 

following the policy π. Value function can be 

formulated by using Eq. 2: 

𝑉𝜋(𝑠) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠; 𝜋] (2) 

The action value represents the gain of an action at 

at state st, where the gain is defined as the expected 

future reward under policy π as given in Eq. 3: 

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎; 𝜋] (3) 

Eq. 3 can also be obtained by adding a condition for 

action selection to the value function equation Eq. 

2. A policy is expressed optimal if it achieves the 

best expected return and is defined as in Eq. 4:  
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𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝑄𝜋(𝑠, 𝑎) (4) 

Q-learning refers to the iterative estimation of the 

optimal state-action value function based on the 

Bellman optimality as defined in Eq. 5: 

𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝔼[𝑟𝑡 + 𝑚𝑎𝑥𝑄∗(𝑠𝑡+1, 𝑎)|𝑠𝑡 , 𝑎𝑡] (5) 

When the agent has the full view of the 

environment, it can directly calculate Q-values by 

utilizing Eq. 4 for each state-action pair (Figure 1). 

However, real world problems mostly represent too 

many states, which are infeasible and complex to 

compute one by one. In such cases, convergence 

approach is utilized instead of direct calculation of 

the Q-values by employing neural networks [10]. 

The term Q-Network is a specialized version of a 

neural network that is opted to converge to the Q-

values (Figure 2). The action-state value function is 

rewritten as Q(s, a, θt) where θ denotes the weights 

of the Q-Network. 

 

Figure 1. Q-Table filled up by using Bellman 

Equation for M actions and N states (M aksiyon ve N 

durum için Q-Tablosunun Bellman Eşitliği ile doldurulması) 

Those weights are updated by utilizing past 

experiences of the agent due to the lack of prior 

information. In a reinforcement learning 

environment, moving from an old state to a new 

state is called a transition. Every transition with a 

returning reward from the environment is called an 

experiment. An experiment can be written as a tuple 

<st, at, st+1, r>.  

 

Figure 2. Deep Q-Network and approximated Q-

Values (Derin Q-Ağı ve yaklaşılan Q-Değerleri) 

Update procedure of the Q-Network can be 

formulated as in Eq. 6: 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 (𝑦𝑦
𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)) ∇𝜃𝑡

𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) (6) 

Where α is the learning rate and yt
Q is the target 

value function. Target value function can be 

computed using Eq. 7: 

𝑦𝑡
𝑄

= 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡) (7a) 

= 𝑅𝑡+1 +  𝛾𝑄(𝑠𝑡+1, argmax
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡) (7b) 

The studies in the literature adopted Double Deep 

Q-Network approach where a second neural 

network whose weights θ- are updated lately to 

tackle the instability problems encountered in Deep 

Q-Network utilization. Eq. 7 can be written as in Eq. 

8 to indicate new situation: 

𝑦𝑡
𝐷𝑄𝑁

= 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡) (8a) 

= 𝑅𝑡+1 +  𝛾𝑄(𝑠𝑡+1, argmax
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜃−) (8b) 

Dueling Double Q-Network approach is the further 

optimized version of DQN which taking value 

function into account to obtain advantage function 

stated in Eq. 9: 

𝑄𝜋(𝑠, 𝑎) = 𝑉𝜋(𝑠) + [𝐴𝜋(𝑠, 𝑎) −
1

|𝐴|
∑ 𝐴𝜋(𝑠, 𝑎)

𝑎′

] (10) 

where the computation is realized within the neural 

network stream by sharing network parameters [13, 

14]. The network scheme regarding the Eq. 10 is 

given Figure 3. 

 

Figure 3. Dueling Q-Network Architecture (Düello 

Q-Ağı Mimarisi) 

When dynamic path planning is considered in the 

DRL framework, the mobile robot statement 

replaces the term agent. An example environment 

with four static obstacles, walls, and robot model is 

given in Fig. 4 demonstrating a typical application 

for a mobile robot simulation. For a typical Deep Q-

Learning scenario employing a mobile robot for 
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path planning, a mobile robot explores its 

surrounding environment by crashing into walls or 

obstacles. Each formation also containing the 

robot's position in the environment denotes a state. 

The mobile robot tries to reach its goal by taking 

pre-determined actions such as turning or going 

straight. These actions are chosen based on the 

robot's observations according to its state in the 

environment, and each action moves the 

environment to a new state. Moving from an old 

state to a new state is called a transition. Every 

transition with a returning reward from the 

environment is called an experiment. Reaching the 

goal or colliding with an obstacle also refers to an 

experiment during the learning progress [8, 15]. 

 

Figure 4. Typical Application of Agent-

Environment Interaction Process (Ajan-Ortam 

etkileşiminin tipi uygulaması) 

The observations and rewards are the training data 

for the Q-value evaluation according to Eq. 8 given 

in previous section. To facilitate a stable learning 

process, an experience replay buffer is utilized 

during neural network training. Experiences of the 

robot are saved into a table; then randomly selected 

mini-batches of experiences are used for training 

(Figure 5). In this way, past experiences are 

exploited to ensure stable learning progress [16]. 

 

Figure 5. Experience Replay Buffer utilization 
(Deneyim tekrar kullanım tamponunun kullanılışı) 

The simple flow given in Fig. 5 can be summarized 

as follows: 

▪ The agent selects an action a from action 

set A regarding its observation and 

executes it in the environment. 

▪ Action a, current state st, next state st+1 

after the execution of the action and 

reward rt are stored into ERB 

The DQN model is updated with randomly sampled 

experiments from ERB. D2QN and D3QN methods, 

as value-based algorithms, were employed for 

dynamic path planning by numerous papers such as 

[4, 14, 19]. These models are preferred due to 

extensive usage and presenting a straightforward 

approach to Q-Learning. Hereby, the reference 

implementation employs D2QN method, and 

D3QN implementation is easily obtained alongside 

little changes in the model definition. Integration of 

policy-based algorithms like Actor-Critic (A2C), 

and Deep Deterministic Policy Gradients (DDGP) 

may provide better path planning performance as 

reported in [10, 16], however, the source code of the 

reference needs to be altered much for training. We 

favor the D2QN and D3QN approaches by adhering 

to the reference code base to present better 

reproducibility. 

3. MATERIALS AND METHODS (MATERYAL 

VE METOD) 

Robot simulations are frequently used in the 

training of deep reinforcement learning models for 

mobile robots due to the difficulties encountered in 

real environments. For instance, a mobile robot can 

run out of battery during time consuming training 

process or frequent collisions at the beginning of 

training can damage the robot. Gazebo and ROS 

integration is a widely preferred combination of 

robotics research. Gazebo provides efficient robot 

modeling and environment simulation capabilities 

within physics and 3D engines. In addition to this, 

researchers can interface robots via adequate 

messages, topics and services defined in ROS. The 

environment expresses a world formation in which 

the robot implements learning tasks. For instance, a 

mobile robot explores its surrounding environment 

by crashing into walls or obstacles [10, 16, 17]. 

3.1. Sate and Observation (Durum ve Gözlem) 

State can be considered in three measures; distance 

from the goal point (Dg), mobile robot heading 

angle from the goal (θ), and 26 laser distance data 

acquired from Light Detection and Ranging 

(LiDAR) Unit mounted on the top of the Turtlebot3. 

Measured Dg and θ are depicted in Figure 6 and 

LIDAR traces can be seen in Fig. 4. The distance 

data represents the distances from the walls and 
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obstacles occupying space in the environment. All 

the distance measurements clipped into the interval 

of [0, 3.5]. Observation provides a partial 

measurement of the environment with the mobile 

robot and with the training phase [9, 18]. The 

observation combines these three measures in a 

vector formation as given in Eq. 11: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =< 𝐼1, 𝐼2, . . 𝐼26, 𝐷𝑔, 𝜃 > (11) 

 

Figure 6. State of the robot with respect to the 

Goal (Robotun hedefe göre durumu) 

3.2. Action Set and Action Selection (Eylem Kümesi 

ve eylem Seçimi) 

In Deep Q-Learning approach, basically, the actions 

getting the robot close to the goal are rewarded 

while the actions getting the robot away from the 

goals are penalized. Actions are discretized into a 

finite set to ease the implementation of training and 

inference phases. In this study, Turtlebot3 has a 

constant linear velocity of 0.15 m/s and angular 

velocity is determined through action selection 

policy. The five discrete actions given in Figure 7. 

Linear velocity is related to the distance and angular 

velocity is related to the heading angle, respectively. 

 

Figure 7. Action set and related angular speeds 
(Eylem kümesi ve ilgili açısal hızlar) 

A mobile robot takes random actions to reach its 

goal at the beginning of the training. The DQN 

model is updated according to the taken action and 

its effect on the state of the robot. During the 

training progress, action selection relies on the 

trained model more and random action selection is 

less preferred. Random action selection expresses 

the exploration allowing an agent to improve its 

current knowledge about each action. Taking 

actions with respect to the model means exploitation 

that makes the agent greedy about action selection. 

Even if exploitation seems to be more advantageous 

from the perspective of obtaining better rewards, it 

may lead to sub-optimal behavior. Thus, a simple 

method called epsilon-greedy is utilized to balance 

exploration and exploitation to cope with the 

dilemma. In this method, a uniform random value p 

∈ [0,1) is determined and compared to the 

hyperparameter epsilon ε. If p is smaller than ε, a 

random action is determined, otherwise, current-

best action is estimated through the model. At the 

end of each episode, ε is decreased by multiplying 

an epsilon decay parameter and, thus the mobile 

robot exploits its knowledge more [14, 19]. 

3.3. Experimental Environment (Deney Ortamı) 

The experimental environment is the same as given 

in the Turtlebot3 Machine Learning reference [9] 

and includes three scenarios with the same 

dimensions (2mx2m) and different configurations. 

In all three scenarios, the area where the robot roams 

are surrounded by a wall. In the first scenario, the 

working environment of the robot is empty, and the 

robot is driven to randomly generated targets. In the 

second scenario, there are four cylindrical fixed 

obstacles in the mission area. In the third, the 

situation in which these obstacles move in a circular 

manner is examined. The point to be noted here is 

that in Gazebo, these obstacles are grouped as a 

single object with a circular velocity component 

(w=0.5 rad/sn). As a result, the four obstacles are 

rotated around the robot and create a dynamic 

situation for the robot. The simulation environment 

with static obstacles is depicted in Figure 8. Thanks 

to Gazebo and ROS integration, various tests can be 

done easily in the experimental environment. 

Reference implementation was conducted on ROS 

Melodic on Ubuntu 18.04, which both are not 

supported currently. Thus, in this study, the 

experiments are carried out with ROS Noetic on 

Ubuntu 20.04. Furthermore, since ROS Noetic 

supports Python3, Python 2.7 scripts were rewritten 

in Python 3.8. We also preferred PyTorch 2.0 

library instead of Tensorflow 2.1 due to 

performance and incompatibility issues we 

encountered during the study. Tensorflow 1.8, 

which is utilized in reference, is not available with 

Python 3.x versions. Remaining package structure 

is utilized as is, thus, current work can be 

reproduced and validated for future assessments. 

We trained D2QN and D3QN models within the 

aforementioned scenarios with the modified 

versions Python scripts of the reference 
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implementation. Finally, we save the trained models 

for the inference and evaluation steps.  

 

Figure 8. Simulation environment (Simülasyon 

Ortamı) 

Inference step (script) utilizes saved model to 

collect information to assess the driving 

performance. The script simply subscribes to the 

odom topic of Turtlebot3 node and saves position 

and time information during robot’s journey to the 

goal; thus, inference script can be adopted to 

evaluate other reinforcement learning models 

utilized in ROS environments. In the evaluation 

step, saved information is interpreted by evaluation 

script to make a comparison between trained 

models. 

3.4. Model Inference (Model Çıkarımı) 

The experimental software consists of two Python 

script files. The inference script, tb3_drl.py, reads 

the previously trained model and the coordinates 

from the target coordinate file goals.txt. There are 

99 randomly generated goal points in the goals.txt. 

It takes observations by spawning each target in the 

Gazebo environment and starts to predict the actions 

that will drive Turtlebot3 to the target. The program 

flow is illustrated in Figure 9. Here, each task to go 

to a destination can be called an episode. Each step 

of the episode is called a step. An episode is 

completed each time the robot reaches the target 

without collision.  

 

Figure 9. Inference Flow (Model Çıkarımı) 

The script file records information of each episode 

in a text file called episodes.txt. Each of row of the 

text file contains the fields given in Fig. 10. The 

field travel time gives the elapsed time to reach the 

goal; Succeeded field states whether the mobile 

robot reached the target successfully. 

Episode 
Number 

(int) 

X value for 
Goal 

Coordinate 
(float) 

Y value for 
Goal 

Coordinate 
(float) 

Travel 
Time 

(float) 

Succeeded? 
(Boolean) 

Figure 10. Information row for each episode (Herbir 

episode için alınan bilgi satırı) 

In addition to this, the information for each step is 

recorded in discrete text files named with episode 

numbers (0.txt, 1.txt, .., 99.txt). Fig. 11. shows the 

positions of the robot and the obstacles for each step 

in a row. In this way, evaluation information is 

generated for each goal. 

Robot 

Position 
(x, y) 

Obstacle 

#1 
Position 

(x1, y1) 

Obstacle 

#2 
Position 

(x2, y2) 

Obstacle 

#3 
Position 

(x3, y3) 

Obstacle 

#4 
Position 

(x4, y4) 

Figure 11. Positions row for each step (Herbir adım 

için alınan pozisyon satırı) 

Thus, by recording the position of both the robot and 

the obstacles at each step, the trajectory followed by 

the robot can be drawn, the path length and path 

curvature can be easily calculated. The higher 

values of the road curvature metric indicate that the 

robot performs the turning maneuver more. This 

means that the robot consumes more energy on the 

way to the target. 

Path length and path curvature demonstrate the 

performance of the model under test. In Figure 12, 

a sample experimental model is given, as well as the 

screenshot of the evaluation application where the 

calculations are made. As seen here, the metrics 

related to the evaluation of the model are shown. 

The two models used here can be easily compared 

with each other via the evaluation tool. 

3.5. Model Evaluation (Model Değerlendirme) 

Evaluation script displays a GUI (Graphical User 

Interface) to reveal the performance of each model 

under consideration clearly. It reads previously 

saved information from episodes.txt and from each 

file involving position data in connection with 

episodes (0.txt, 1.txt, .., 99.txt). The metrics path 

length and path curvature are computed by placing 

trajectory points in Eq. 12 and Eq. 13., respectively.  
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𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ = ∑ √(𝑥𝑖+1 − 𝑥𝑖) + (𝑦𝑖+1 − 𝑦𝑖)

𝑁−1

𝑖=0

 (12) 

𝑃𝑎𝑡ℎ 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
1

𝑁
∑ |𝑎𝑟𝑐𝑡𝑎𝑛2(

𝑦𝑖+1 − 𝑦𝑖

𝑥𝑖+1 − 𝑥𝑖
)|

𝑁−1

𝑖=0

 (13) 

In Eq. 12 and Eq. 13, N denotes the number of states 

the mobile robot must pass through to reach the 

goal; (xi, yi) and (xi+1, yi+1) denotes the coordinates 

of the mobile robot between consecutive states. In 

Eq. 13, the average of the directional changes is 

calculated using the built-in function arctan2 with 

the Python3 math library [15]. 

To showcase the advantages of each model, pre-

determined metrics are shown in the GUI (Figure 

12). There’s a sample journey belonging to Stage 3 

with moving obstacles. Thus, trajectories in the plot 

area seems to coincide with obstacles. The 

trajectory generated by D3QN model is better in 

terms of journey time, path length and path 

curvature. Our mobile robot adopting D2QN model, 

follows a policy which tends to avoid the obstacles 

causing an inefficient path generation. On the 

contrary, our robot adopting D3QN model, tracks a 

more straightforward path to the goal. 

 

Figure 12. User interface of evaluation script 
(Değerlenrime betiğinin Kullanıcı Arayüzü) 

Track visualization in the GUI provide insight how 

the employed model performs path planning. 

Orange colored path exhibits the effect of the value 

branch in the D3QN structure to the path planning 

performance enhancing the way of reacting to the 

dynamic obstacles. The paths ending in a distant 

location from target are regarded as collision. The 

collision case is evident in journey time values 

relatively low. Since, the shape of the paths does not 

provide detailed information about turning 

maneuvers during the journey, we utilize path 

curvature to obtain a measure of changes in angular 

speed. The models tend to keep the angular speed 

close to zero as possible can be evaluated as better 

among utilized models due to low energy 

consumption. Eventually, generated paths infer the 

integration of immediate reactions of the model on 

the path to the goal location. 

The scale of the plot area can be adjusted using 

horizontal and vertical sliders in the GUI. However, 

for different obstacle configurations, evaluation 

script should be modified accordingly. For this 

purpose, configuration can be parsed through 

launch files of ROS nodes. Although our approach 

present insights about model deployment for the 

scenarios considered is limited to Turtlebot3 

Machine Learning repo, it can be adopted to new 

settings providing accurate localization information 

at certain time intervals. Since maples approaches 

lack of adaptive localization compensations, we 

assume that we receive correct positions through 

odom topic of the robot simulations.  

4. CONCLUSIONS (SONUÇLAR) 

Although there are numerous studies conducted on 

dynamic path planning with DRL methods, the 

performance evaluation is mainly focused on 

training performance considering total cumulative 

rewards. However, model performance can be 

further assessed by use of inference methods and 

appropriate metrics. This present study proposes a 

method for evaluating the performance of DRL 

models within the ROS framework and the Gazebo 

environment. An application is carried out to enable 

researchers to better assess the outcomes of the DRL 

models to be deployed within dynamic path 

planning. This application consists of two steps: 

first, the information related to the inference test is 

recorded, then the recorded data is evaluated to 

decide which model performs better. Planned paths 

are visualized and associated metrics are calculated 

to show the performance of each model. In the end, 

the D3QN method was found to outperform the 

D2QN model in inference tests. The proposed 

testing scheme could be used for any other DRL 

model with simple modifications. 
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