
 
 

The Eurasia Proceedings of Science, Technology,  
Engineering & Mathematics (EPSTEM) 

ISSN: 2602-3199 
 

 

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, 

permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

- Selection and peer-review under responsibility of the Organizing Committee of the conference 

*Corresponding author: Izzet Goksel- E-mail: gokseli@itu.edu.tr 

© 2017 Published by ISRES Publishing: www.isres.org 

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM) 

 

Volume 1, Pages 304-309 

 

ICONTES2017: International Conference on Technology, Engineering and Science 

 

A SPECTRAL METHOD TO OBTAIN SOLITON SOLUTIONS  

TO CQNLS EQUATION 
 

Izzet Goksel 

Istanbul Technical University 

 

Ilkay Bakirtas 

Istanbul Technical University 

 

 

Abstract: In optics, the cubic-quintic nonlinear Schrödinger (CQNLS) equation models electromagnetic wave 

propagation in various optical media. Competing cubic and quintic nonlinearities will allow the existence of 

stable soliton solutions (see Göksel et al. (2015)). In this study, a numerical method is introduced to obtain these 

solitons in different self-focusing / self-defocusing cubic-quintic media. Solitons obtained numerically by this 

spectral method are then validated by comparison with exact solutions. 
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Introduction 
 

This study deals with the soliton solutions of the (1+1)D cubic-quintic nonlinear Schrödinger (CQNLS) 

equation. First, analytical solutions are calculated in detail for different media. Then, solutions are obtained 

numerically and compared with their analytical counterparts. 

 

 
Analytical Solutions 

 

Consider the following (1+1)D CQNLS equation: 

  
iu

z
(x,z) + u

xx
(x,z) +a u(x,z)

2

u(x,z) + b u(x,z)
4

u(x,z) = 0 (1) 

where α and β are real constants,   corresponds to the complex-valued, slowly varying amplitude of the electric 

field in the  -plane propagating in the  -direction and     corresponds to diffraction. To obtain soliton solutions, 

the following ansatz is used: 

 
  
u(x,z) = f (x)eimz  where lim

x®±¥
f (x) = 0 and m > 0 .   (2) 

Substituting  

 

  

u
z
= im feimz

u
xx

= f ''eimz

u
2

= feimz fe- imz = f 2

 (3) 

into Eq. (1) yields 

 
  
-m f + f ''+a f 3 + b f 5( )eimz = 0 . (4) 

Multiplying Eq. (4) by 
  
2 f 'e- imz  gives 

 
  
2 f ' f ''- 2m f  f '+ 2a f 3 f '+ 2b f 5 f ' = 0 .   (5) 

Integrating Eq. (5) with respect to   yields 
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( f ')2 - m f 2 +

a

2
f 4 +

b

3
f 6 = C

1
 .  (6) 

The localization conditions 
  
lim
x®±¥

f (x) = 0 and lim
x®±¥

f '(x) = 0 require the integration constant 
  
C

1
 to be zero: 

 
  
( f ')2 - m f 2 +

a

2
f 4 +

b

3
f 6 = 0 .   (7) 

Substituting  

 

  

f (x) =
1

y(x)
 i.e.  f = y-0.5  and  f ' = -

y-1.5

2
y'   (8) 

into Eq. (7) yields 

 
  

y-3

4
(y')2 - my-1 +

a

2
y-2 +

b

3
y-3 = 0 .  (9) 

Multiplying Eq. (9) by     gives 

 
  
(y')2 - 4my2 + 2a y+

4b

3
= 0 .  (10) 

Eq. (10) is a separable ODE of first order as follows: 

 

  

dy

dx
= ± 4my2 - 2a y-

4b

3
 .  (11) 

Separating the variables   and  , one obtains 

 

  

±2 mdx =
1

y2 -
a

2m
y-

b

3m

dy .  (12) 

Integrating both sides of Eq. (12), i.e. 

 

  

±2 m dxò =
1

y2 -
a

2m
y-

b

3m

dyò   (13) 

results in 

 

  

±2 mx+ lnC = ln y2 -
a

2m
y-

b

3m
+ y-

a

4m
 (14) 

where     is an integration constant. Exponentiating both sides of Eq. (14) gives 

 

  

Ce
±2 mx

= y2 -
a

2m
y-

b

3m
+ y-

a

4m
 .  (15) 

Squaring Eq. (15) yields 

 

  

C2e
±4 mx

= y2 -
a

2m
y-

b

3m
+ y-

a

4m

æ

èç
ö

ø÷

2

+ 2 y2 -
a

2m
y-

b

3m
y-

a

4m

æ

èç
ö

ø÷

             = 2y2 -
a

m
y+

a 2

16m2
-

b

3m
+ y2 -

a

2m
y-

b

3m
2y-

a

2m

æ

èç
ö

ø÷
 .

  (16) 

Multiplying Eq. (15) by 

 

a

2m
 gives 

 

  

a

2m
Ce

±2 mx
=

a

2m
y2 -

a

2m
y-

b

3m
+

a

2m
y-

a 2

8m2
 .  (17)

   

Adding Eq. (16) and (17) side by side, one obtains 

 

  

C2e
±4 mx

+
a

2m
Ce

±2 mx
= 2y2 -

a

2m
y-

a 2

16m2
-

b

3m
+ 2y y2 -

a

2m
y-

b

3m
 .   (18) 

After regrouping Eq. (18), one gets 

 

  

C2e±4 mx
+

a

2m
Ce±2 mx

+
a 2

16m2
+

b

3m
= 2y y-

a

4m
+ y2 -

a

2m
y-

b

3m

æ

è
ç

ö

ø
÷   (19) 

and after substituting Eq. (15) in here, one obtains 
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C2e±4 mx
+

a

2m
Ce±2 mx

+
a 2

16m2
+

b

3m
= 2y ×Ce±2 mx

 . (20) 

Solving for   yields 

 

   

y =
1

2
Ce±2 mx

+
a 2

32m2
+

b

6m

æ

è
ç

ö

ø
÷C-1e∓2 mx

+
a

4m
 .  (21) 

 

Substituting Eq. (21) back in Eq. (8), one obtains 

 

   

f =
1

1

2
Ce±2 mx

+
a 2

32m2
+

b

6m

æ

è
ç

ö

ø
÷C-1e∓2 mx

+
a

4m

 .   (22) 

The localization condition 

  

0 = lim
x®±¥

f (x) =
1

1

2
Ce

±2 mx
+

a

4m

 requires the integration constant   to be positive: 

   C > 0 .  (23) 

Under the condition in Eq. (23), the localization condition 

   

0 = lim
x®∓¥

f (x) =
1

a 2

32m2
+

b

6m

æ

è
ç

ö

ø
÷C-1e∓2 mx

+
a

4m

 

requires 

 
 
a 2 +

16

3
bm > 0 ,   (24) 

which also implies that α and β cannot be zero at the same time: 

 
 
(a ,b) ¹ (0,0) . (25) 

Considering Eq. (25) and combining the conditions on μ in Eq. (2) and (24) yield 

 

 

0 < m               , if  b ³ 0  

0 < m <
3a 2

16 b
 , if  b < 0

  (26) 

given that α is non-zero. If  a = 0, β and μ must be positive. For convenience, the coefficients of the exponential 

terms in Eq. (22) can be set equal to each other: 

 

  

1

2
C =

a 2

32m2
+

b

6m

æ

è
ç

ö

ø
÷C-1 .  (27) 

Solving for   yields 

 

  

C =

a 2 +
16

3
bm

4m
 .  (28) 

Note that this choice of   is compatible with Eq. (23) and (24). Substituting Eq. (28) in Eq. (22) yields 

 

   

f =
1

1

4m
a 2 +

16

3
bm

e±2 mx
+ e∓2 mx

2

æ

è
ç

ö

ø
÷ +

a

4m

 =
2 m

a + a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx)

 .  (29) 

Hence, an exact solution of Eq. (1) is 

 

  

u(x,z) =
2 m

a + a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx)

 eimz
  (30) 

(cf. Yang (2010)).   

 

As it can be seen from Eq. (29), the existence of a real soliton solution depends on the values of the coefficient 

of the cubic nonlinearty α, the coefficient of the quintic nonlinearty β and the propagation constant µ. Is the 

coefficient of nonlinearty positive, then there is a so-called focusing nonlinearity. Is the coefficient of 

nonlinearty negative, then there is a so-called defocusing nonlinearity. The coefficients α and β may be negative, 
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zero or positive; so there are 9 different cases to investigate (cf. Göksel (2017)). The propagation constant µ will 

be considered positive as set up in Eq. (2).  

1) Self-defocusing cubic, self-defocusing quintic case: 

In this case, α<0 and β<0. The condition in Eq. (24) becomes 
 
a 2 -

16

3
b m > 0  and holds true if

 

m <
3a 2

16 b
 .

However, since β<0 and 
  
cosh(2 mx) ³1, 

  

a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx) < a  for small values of  . For instance 

for    , 

  

a + a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx) = - a + a 2 +

16

3
bm < 0 . That is, there exists no real soliton solution 

for positive µ values. 

 

2) Self-defocusing cubic case: 

In this case, α<0 and β=0. So, Eq. (29) becomes 

 

  

f =
2 m

- a + a cosh(2 mx)

= 
2 m

a cosh(2 mx) -1( )
. (31) 

Since α≠0 and 
  
cosh(2 mx) ³1,   looks like a soliton except at     where it tends to infinity. Hence, no real 

soliton solution exists in this case. 

 

3) Self-defocusing cubic, self-focusing quintic case: 

In this case, α<0 and β>0. Since β>0, the condition in Eq. (24) holds true. Moreover, since β>0 and 

  
cosh(2 mx) ³1, 

  

a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx) > a .   That is, there exist real soliton solutions for all positive µ 

values. 

 

4) Self-defocusing quintic case: 

In this case, α=0 and β<0. Since β<0, the condition in Eq. (24) never holds true.  That is, there exists no real 

soliton solution for positive µ values. 

 

5) Linear case: 

In this case, α=0 and β=0. So, Eq. (7) becomes 

 
  
( f ')2 = m f 2  .  (32) 

After taking the square root of both sides, the following linear ODE of first order is obtained 

 
  
f ' = ± m f  ,  (33) 

whose solutions are  

   (34) 

The localization condition  requires the integration constant  to be zero. So, the linear 

case has the trivial zero solution, which is obviously not a soliton. 

 

6) Self-focusing quintic case: 

In this case, α=0 and β>0. So, Eq. (29) becomes 

 

  

f =
3m

b cosh(2 mx)
 .  (35) 

Since β>0 and 
  
cosh(2 mx) ³1, there exist real soliton solutions for all positive µ values. 

 

7) Self-focusing cubic, self-defocusing quintic case: 
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In this case, α>0 and β<0. As in the self-defocusing cubic, self-defocusing quintic case, the condition in Eq. (24) 

holds true if 

 

m <
3a 2

16 b
 . Given this and since α>0 and 

  
cosh(2 mx) ³1, 

  

a + a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx) > 0. 

That is, there exist real soliton solutions for 

 

0 < m <
3a 2

16 b
 .

 
 

8) Self-focusing cubic case: 

In this case, α>0 and β=0. So, Eq. (29) becomes 

 

  

f =
2 m

a + a cosh(2 mx)

= 
2 m

a cosh(2 mx) +1( )
.  (36) 

Since α≠0 and 
  
cosh(2 mx) ³1, there exist real soliton solutions for all positive µ values. 

 

9) Self-focusing cubic, self-focusing quintic case: 

In this case, α>0 and β>0. Since β>0, the condition in Eq. (24) holds true. Moreover, since α>0 and 

  
cosh(2 mx) ³1, 

  

a + a 2 +
16

3
bm

æ

è
ç

ö

ø
÷ cosh(2 mx) > 0. That is, there exist real soliton solutions for all positive µ 

values. 

The results of these 9 cases are summarized in Figure 1. 

 

 
Figure 1. Existence of analytical solutions of the (1+1)D CQNLS equation 
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Figure 2. Numerical solutions (fnumerical) of the (1+1)D CQNLS equation in comparison with the corresponding 

analytical solutions (fanalytical) in different media: (a) α=-1, β=1, (b) α=0, β=1, (c) α=4, β=-1, (d) α=1, β=0, (e) 

α=1, β=1 

 

 
Numerical Solutions  

  

Solutions are also obtained numerically using Spectral Renormalization Method by Ablowitz et al. (2005). 

Figure 2 represents selected solitons in different media, namely in:  

a) self-defocusing cubic, self-focusing quintic  

b) self-focusing quintic  

c) self-focusing cubic, self-defocusing quintic  

d) self-focusing cubic  

e) self-focusing cubic, self-focusing quintic   

media. No soliton could be obtained for the other cases, as expected. The red numbers by the peak of solitons in 

Figure 2 mark their maximum amplitudes. 

 

 

Conclusion  
 

In this work, soliton solutions of the (1+1) CQNLS equation are obtained analytically and numerically for 

different media.  It is seen that the numerical solutions are in perfect agreement with the analytical ones. This 

validates the numerical method and is very important for the cases where an analytical solution does not exist.  
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