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VEVsuchthat W=< p,q> and VEV=< p,%, g > where
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1. Introduction

Numerical semigroups first appeared in problems in classical number theory posed by J. J. Syl-
vester and Ferdinand Georg Frobenius in the late 19th century. Numerical semigroups have re-mained
the focus of extensive study due to the abundance of open problems and applications in other fields
such as electrical engineering, differential equations, and algebraic geometry.

Let ¥=4{ul ¢:u> 0} and ¢ beintegerset. Wi ¥ is called a numerical semigroup if

(i) z,+z,1d,forz,z,I W

(i) ¥\W is finite

(iii) 0T W.
A numerical semigroup W can be written that

W=<12,2,,..2,>={zu+ z,U,+ .+ zu :ul ¥,1£i£ k }.

LI ¥ is minimal system of generators of W if < L>= W\ and there isn’t any subset T1 L
such that < T>=W. Also, | (W= min{zl W, z> 0} and d(W= k are called multiplicity

and embedding dimension of W, respectively. Itis know that d(W£ 1 (W .If dW=1 (W then

W is called maximal embedding dimension (MED) (See [1,5,6]). Also, m(\Wj = max (¢ \V\b is called

Frobenius number of W, g(W= Card ({0,1.2,....m(W}CW) is called as the determine number of

W. Here, we will indicate the number of elements of the set W by Card(W).

For W is a numerical semigroup such that W=< z,,7,,...,Z, >, then we write that

W=<2,2,,..,2,>= {,= 0, 1y g = MW+ 1L® ..}, where z,<z,,9=q(W and

the arrow means that every integer greater than m(\W+ 1 belongsto W for i=12,...,q=qW.
Let Whbe a numerical semigroup. If ul ¥ and ul W, then U iscalled gap of W. We de-
note the set of gaps of W, by Y(W , ie, Y(W=¥\W={ul ¥:ul W}. The number

P(W = Card(Y (W) is called the genus of W, and we note that P(Wy+ q(W= m(W+ 1 (see

[81).
W is called symmetric numerical semigroup if m(W)- mi W, for mi ¢ \W. Itis know

the numerical semigroup W=< q,,0,> is symmetric and mMW= g,0,- 0,- ¢, . Thus,
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aw = Py = T2

. W s called pseudo symmetric numerical semigroup if m(W) is even and
. m(W) - ‘ .
mW- fI W f= T,for f 1 ¢\W (For details see [2,3,4,9,10]).

Let W be a numerical semigroup and ul Wu> 0. The set Ap(Wu)= {z1 W:z- ul W} is

called the Apery set of W according U,and Ap(Wu)i W ([8]).

For  numerical semigroup let’s the set, for . If  thentheset is called the half of ([7]). We
note that while is symmetric (pseudo symmetric) numerical semigroup, need not be symmetric
(pseudo symmetric). For example is symmetric numerical semigroup but s not symmetric numerical
semigroup ( is pseudo symmetric but is not pseudo symmetric) .

In this article, it is examine some results on the symmetric numerical semigroup W but 7 is pseudo

+
symmetric numerical semigroup such that W=< p,q> and VEV=< p,%, g> where

p<q and p,qare odd natural numbers .

2. MAIN RESULTS

Proposition 1. ([8]) |If W=<12,2,,..,2,> is MED numerical semigroup then
APW2)= {0.2,....2,} .
Proposition 2. ([8]) If W=<172,2,,..,2,> is a numerical semigroup then

V) = max(Ap(Wz,))- 2.

Proposition 3. ([7]) W is pseudo symmetric numerical semigroup U q(W = @
Proposition 4. ([8]) W is pseudo symmetric numerical semigroup U P(W = w

Proposition 5. ([8]) If W=< z,,2,,...,Z,> isa MED numerical semigroup then m(W= z,- z,.

Proposition 6. ([8]) Let W=< z,,Z,,...,Z, > be a numerical semigroup. Then the following conditions

are equalities:

(1) W is MED
@ Pw=Lg 5- At
21%2 i 2
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Theorem 7. Let W=< p,q > be numerical semigroups , where p< g and p,( are odd integers.

P+q
2

Then, VEV=< p, ,q>

Proof. Let W=< p,q> be numerical semigroups , where p< gand p,(Qare odd integers.
Then, we write

P+aq

xE< p, g =< Twywy,wy E ML x = pwy

y T gwy

= 2x = p(2wy)) + (p+ @wy + g(2w;)

e 2x = p(2Zwy +w,) + g(w, + 2w;)

> 2x = pm+gn, €< p.g>=1{l

L
— X = —_

2

In this theorem, if we put p= 3 then we obtain followings:

Corollary 8. Let W=< 3,q > be numerical semigroups, where q> 3is odd integer. ~ Then, the

numerical semigroup VEV:< 3,3+Tq,q> is MED, and m(VEV)z q- 3.

Theorem 9. Let W=< 3,q > be numerical semigroups, where q > 3 is odd integer. ~ Then, the

. . w 3+q . .
numerical semigroup EY =< 3,T,q > is pseudo symmetric.

Proof. Let W=< 3,q > be numerical semigroups, where g > 3 isoddinteger. = We write the nu-

merical semigroups VEV: <3 3; g ,q> is MED from Corollary 8. Then, we obtain
+ + -
P(VEV) == %(3 5 +Q)- 1= ar- > ! - 1= qu from Proposition 6. So, we have the numerical semi-

q- 1 (q- 3)+2 m(V\3+2
2 2 2

group VEV: <3— 3 q ——,Q> is pseudo symmetric since P(2)—

and Proposition 4.

The following Corollary is clear since the numerical semigroup W=< 3,q > is symmetric.
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Corollary 10. Let’s W=< 3,gq> ,where > 3 isodd integer. Then,

1) mW=2q- 3
) aW=PW=g- 1.

Proposition 11. Let W=< 3,q> be numerical semigroups and its half numerical semigroup is

W__53+q
2

,q> ,where > 3 isoddinteger. Then, we have

@ MW= M)+ g
_ q+ 1
(b) gW = Q(%S"' >

(©) P(W= 2P(V§V).

Proof. Let W=<3,g> be numerical semigroups and its half numerical semigroup is
w 3+ q

E: < B,T,q> , Where > 3is odd integer. Then,

@ M)+ a= (@- 3+q=2q- 3= mW) .
2 2 2

g+1_g9-3,g+1
2 2 2

since VEV is pseudo symmetric from Proposition 3.

Thus, we obtain q(VEV)+ =qg- 1=qW.

-1
© 2P()= 21 = g- 1= PW.
Example 12. Lets W=< 3,7>= {3k + 7k, : k,k, I ¥ }= {0,3,6,7,9,10,12,® ..} Then
mW=11, q(W=6, YW= ¥W={,2,4,5811}and P(W= Card(Y (W)= 6. In this case,

we have VE\I: {ul ¥:2u1 W}={0,35® ..}=<3,57> is MED since d(VEV): I (VEV)= 3.
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Also, we write that q(VEV): 2, we find m(VEV): 7- 3= 4 from Proposition 5.  So, VEV is pseudo

W,
w_ MG 4
symmetric numerical semigroup since q(E) = > = > = 2 from Proposition 3.

On the other hand, we obtain

m(VE\S+ 7= 4+ 7=11= mW),
q(%6+ %1= 2+ 4=6=q(W and

2P(VEV): 2.3= 6= P(W from Proposition 11.
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