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Abstract: In this article, it is examine some the numerical semigroups W and 

2

W
 such that  ,p qW= < >  and , ,

2 2

p q
p q

W +
= < >  where 

p q< and ,p q are odd natural numbers.  

 

Keywords: Pseudo symmetric; symmetric; numerical semigroup; maximal em-

bedding dimension 

   

Maksimal Gömme Boyutlu Sayısal Yarıgruplar Hakkında Bir Çalışma 

 

Özet: Bu makalede, p q< için ,p q tek doğal sayılar olmak üzere,   

,p qW= < >  ve , ,
2 2

p q
p q

W +
= < >  şeklindeki bazı sayısal yarıgru-

pları incelenmektedir. 
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boyut 
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1.  Introduction 

Numerical semigroups first appeared in problems in classical number theory posed by J. J. Syl-

vester and Ferdinand Georg Frobenius in the late 19th century. Numerical semigroups have re-mained 

the focus of extensive study due to the abundance of open problems and applications in other fields 

such as electrical engineering, differential equations, and algebraic geometry. 

Let  { }: 0u u= Î ³¥ ¢  and  ¢  be integer set. WÍ ¥ is called a numerical semigroup if  

(i) 1 2 ,z z d+ Î for 1 2,z z Î W  

    (ii) \W¥  is finite      

   (iii) 0 Î W. 

A numerical semigroup W can be written that 

    { }1 2 1 1 2 2, ,..., ... : , 1k k k iz z z z u z u z u u i kW=< >= + + + Î £ £¥ . 

L Ì ¥  is minimal system of generators of W if  L< > = W and there isn’t any subset T LÌ   

such that T< > = W. Also, { }( ) min : 0z zl W= Î W >  and ( )d kW =  are called multiplicity 

and embedding dimension of W, respectively. It is know that ( ) ( )d lW£ W . If  ( ) ( )d lW = W  then 

W is called maximal embedding dimension (MED) (See [1,5,6]). Also, ( )( ) max \m W = W¢  is called 

Frobenius number of W, { }( )( ) 0,1,2,..., ( )Cardq mW = W ÇW  is called as the determine number of 

W. Here, we will indicate the number of elements of the set W by ( )Card W . 

For W is a numerical semigroup such that 1 2, ,..., kz z zW= < > , then we write that 

{ }1 2 0 1 2 1, ,..., 0, , ,..., , ( ) 1, ...kz z z l l l l lq q m-W=< >= = = W+ ® , where 1, ( )i iz z q q+< = W  and 

the arrow means that every integer greater than ( ) 1m W +  belongs to W for 1,2,..., ( )i q q= = W . 

Let Wbe a numerical semigroup. If u Î ¥ and u Ï W, then u  is called gap of W. We de-

note the set of gaps of W , by ( )Y W , i.e, { }( ) \ :Y u uW= W= Î Ï W¥ ¥ . The number

( ) ( ( ))P Card YW = W  is called the genus of W, and we note that ( ) ( ) ( ) 1P q mW + W = W +  (see 

[8] ) .  

         W is called symmetric numerical semigroup if  ( ) mmW- Î W, for \m Î W¢ . It is know 

the numerical semigroup 1 2,q qW= < >  is symmetric and  1 2 1 2( ) q q q qm W = - -  . Thus,  
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( ) 1
( ) ( )

2
P

m
q

W +
W = W = . W is called pseudo symmetric numerical semigroup if ( )m W  is even and 

( )
( ) ,

2
f f

m
m

W
W- Ï W = , for \f Î W¢  (For details see [2,3,4,9,10]).  

Let W be a numerical semigroup and  , 0u uÎ W > . The set { }( , ) :Ap u z z uW = Î W - Ï W  is 

called the Apery set of W according u , and ( , )Ap uW Ì W ([8]). 

For   numerical semigroup let’s the set , for  . If   then the set   is called the half of ([7]). We 

note that while   is symmetric (pseudo symmetric) numerical semigroup, need not be symmetric 

(pseudo symmetric). For example is symmetric numerical semigroup but   is not symmetric numerical 

semigroup ( is pseudo symmetric but  is not pseudo symmetric) . 

In this article, it is examine some results on the symmetric numerical semigroup W but 
2

W
 is pseudo 

symmetric numerical semigroup such that  ,p qW= < >  and , ,
2 2

p q
p q

W +
= < >  where 

p q<  and ,p q are odd natural numbers .    

2. MAIN RESULTS 

Proposition 1. ([8]) If  1 2, ,..., kz z zW= < >  is MED numerical semigroup then 

{ }1 2( , ) 0, ,..., kAp z z zW =  . 

Proposition 2. ([8]) If  1 2, ,..., kz z zW= < >  is a numerical semigroup then 

1 1( ) max( ( , ))Ap z zm W = W - . 

Proposition 3. ([7]) W is pseudo symmetric numerical semigroup Û      
( )

( )
2

m
q

W
W = . 

Proposition 4. ([8])  W is pseudo symmetric numerical semigroup Û  
( ) 2

( )
2

P
m W +

W = . 

Proposition 5. ([8]) If  1 2, ,..., kz z zW= < >  is a MED numerical semigroup then 1( ) kz zm W = - . 

Proposition 6. ([8]) Let 1 2, ,..., kz z zW= < > be a numerical semigroup. Then the following conditions 

are equalities: 

(1) W is MED 

(2) 1

21

11
( )

2

k

i

i

z
P z

z =

-
W = -å .  
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Theorem 7. Let ,p qW= < >  be numerical semigroups , where p q< and ,p q are odd integers. 

Then, , ,
2 2

p q
p q

W +
= < >  . 

 

Proof. Let ,p qW= < >  be numerical semigroups , where p q< and ,p q are odd integers.    

Then, we write 

                             

In this theorem, if we put 3p =  then we obtain followings: 

 

Corollary 8. Let 3,qW= < >  be numerical semigroups, where 3q> is odd integer.   Then, the 

numerical semigroup 
3

3, ,
2 2

q
q

W +
= < >  is MED, and ( ) 3

2
qm

W
= - .  

 

Theorem 9. Let 3,qW= < >  be numerical semigroups, where 3q >  is odd integer.   Then, the 

numerical semigroup 
3

3, ,
2 2

q
q

W +
= < >  is pseudo symmetric. 

 

Proof. Let 3,qW= < >  be numerical semigroups, where 3q >  is odd integer.   We write the nu-

merical semigroups 
3

3, ,
2 2

q
q

W +
= < >  is MED from Corollary 8. Then, we obtain 

1 3 1 1
( ) ( ) 1 1

2 3 2 2 2

q q q
P q

W + + -
= = + - = - = from Proposition 6. So, we have the numerical semi-

group 
3

3, ,
2 2

q
q

W +
= < >  is pseudo symmetric since 

( ) 2
1 ( 3) 2 2( )

2 2 2 2

q q
P

m
W

+
W - - +

= = =

and Proposition 4. 

 

The following Corollary is clear since the numerical semigroup 3,qW= < >  is symmetric. 
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Corollary 10. Let’s 3,qW= < >  , where 3q >  is odd integer.  Then, 

 

(1) ( ) 2 3qm W = -  

(2) ( ) ( ) 1P qq W = W = - . 

 

Proposition 11.  Let 3,qW= < >  be numerical semigroups and its half numerical semigroup is 

3
3, ,

2 2

q
q

W +
= < >  , where 3q >  is odd integer.   Then, we have  

           (a) ( ) ( )
2

qm m
W

W = +   

 

           (b) 
1

( ) ( )
2 2

q
q q

W +
W = +   

 

           (c) ( ) 2 ( )
2

P P
W

W = .  

 

 

Proof.  Let 3,qW= < >  be numerical semigroups and its half numerical semigroup is 

3
3, ,

2 2

q
q

W +
= < >  , where 3q > is odd integer. Then,  

            (a) ( ) ( 3) 2 3 ( )
2

q q q qm m
W

+ = - + = - = W  . 

            (b) 

( )
32( )

2 2 2

q
m

q

W
W -

= =  since 
2

W
 is pseudo symmetric from Proposition 3. 

Thus, we obtain 
1 3 1

( ) 1 ( )
2 2 2 2

q q q
qq q

W + - +
+ = + = - = W . 

 

                (c) 
1

2 ( ) 2( ) 1 ( )
2 2

q
P q P

W -
= = - = W .   

Example 12. Let's  { } { }1 2 1 23,7 3 7 : , 0,3,6,7,9,10,12, ...k k k kW=< >= + Î = ®¥ . Then 

{ }( ) 11, ( ) 6, ( ) \ = 1,2,4,5,8,11Ym qW = W = W = W¥ and ( ) ( ( )) 6P Card YW = W = . In this case, 

we have { } { }:2 0,3,5, ... 3,5,7
2

u u
W
= Î Î W = ® = < >¥  is MED since ( ) ( ) 3

2 2
d l

W W
= = . 
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Also, we write that ( ) 2,
2

q
W

= we find ( ) 7 3 4
2

m
W

= - =  from Proposition 5.  So, 
2

W
 is pseudo 

symmetric numerical semigroup since 

( )
42( ) 2

2 2 2

m

q

W
W

= = =  from Proposition 3. 

   

 On the other hand, we obtain   

( ) 7 4 7 11 ( )
2

m m
W

+ = + = = W ,  

7 1
( ) 2 4 6 ( )

2 2
q q

W +
+ = + = = W  and  

2 ( ) 2.3 6 ( )
2

P P
W

= = = W  from Proposition 11. 
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