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Abstract: The elastic properties of cellular structures of sandwich panel cores depend on their 

density. Density depends on a number of geometric parameters of the core structure. Research is 

ongoing to find optimal cell sizes with high stiffness of cores and low relative density. The aim 

of the investigation was to develop mathematical models describing the relative density and 

elastic properties of periodic cells: hexagonal, auxetic and lattice. Relative density models are 

presented as functions of main structural dimensions that affect the shape and size of individual 

cells. The analysis of the calculation results revealed that the relative density of the core cell was 

determined by: the thickness of the cell wall, the thickness of the rib, the angle of inclination of 

the walls and ribs, the length of the walls and the height of the core. For each of the cell types, 

three models were selected, with different geometries but with equal relative density. 

Additionally, linear elastic modulus was calculated, as well as modulus of elasticity and Poisson's 

coefficients for selected structures. Based on the above assumptions, reference cells with the 

highest mechanical parameters were selected. 
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1. GİRİŞ (INTRODUCTION) 
 

Traditional honeycomb panels from wood-base materials are characterised by a relatively 

high strength and rigidity accompanied by small mass [1]. In particular, their high quality strength 

referred to their density is especially advantageous [2]. However, the main application problem is 

associated with the fact that wood-base honeycomb panels with paper cores cannot be used in 

elements less than 25 mm thick, the main reason being their low strength and stiffness in 

comparison with traditional panels [2-4]. However, the authors [5] quoted low production costs 

of panels more than 25 mm thick, which the furniture industry requires. In the paper [6], factors 

which need to be taken into consideration in production of honeycomb panels for furniture 

industry were discussed. These factors, for the hexagonal paper core, comprise: size of the mesh, 

height of filling, density of filling and cell orientation in relation to the panel sheet. In the case of 

facings, honeycomb panel rigidity depends on the stiffness along the longer axis of the element. 
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The performed experiments demonstrated that differences in panel rigidity and strength were due 

to variations in the relative density of cell cores. Moreover, it was confirmed [7] that property 

modification of these light structures can be achieved by interference in the shape of cell cores, 

their proportions, wall inclination angles as well as modification of the applied materials. The 

paper [2] indicates very limited availability of literature regarding modelling of mechanical 

properties associated with wood-base panel materials of honeycomb structure with cell cores. The 

author emphasises that panel material elasticity of honeycomb structure can be increased thanks 

to the auxetic nature of cell cores. 

First researchers who described materials characterised by negative Poisson’s coefficients 

were [8-10]. Multilayer composites having auxetic structures are characterised by increased: 

rigidity, elasticity [11, 12], buckling resistance [13], resistance to indentation and resistance to 

cracking [14-16] and ability to form synclastic shapes [2]. Value variations of Poisson’s 

coefficient for the honeycomb panel are associated with changes in the cell geometry, whereas 

bending rigidity depends on the property of the material from which the core was manufactured 

[18]. Literature sources quoted above indicate the need to widen the scope of investigations from 

the area of materials with a layered sandwich type structure of auxetic nature. Features of auxetic 

materials predispose them to be used for production of structures with synclastic surfaces. In this 

regard, considerable studies were carried out on plastic materials or metal intended for a wide 

range of elements. On the other hand, few experiments were conducted regarding cores and facing 

layers manufactured from wood-base materials. 

The objective of this study was to develop mathematical models describing relative 

density and elastic properties of the following periodic cells: hexagonal, auxetic, cylindrical and 

rib auxetic. Another cognitive objective of the performed experiments was to optimise the cell 

shape in the function of relative density minimization and maximization of linear elasticity 

moduli. 

 

2. YÖNTEM (METHOD) 

2.1. Mathematical models describing relative density and elastic properties of 

examined cells 

 
For structures presented in Figures 1-4, the authors determined moduli of linear elasticity 

Ex, Ey, Poisson’s coefficients υxy, υyx as well as the rigidity modulus Gxy. Calculation formulae were 
adopted after [19] and are presented in Tables 1-4. Cell relative density was determined as the 
ratio of the core density to the density of the substance constituting the skeleton of the structure. 
Below, mathematical models of the reference hexagonal cell as well as auxetic cells are presented. 

 

2.1.1. Hexagonal cell 

 
Figure 1 presents an elementary section of the honeycomb panel core with a hexagonally- 

shaped cell. The cell shape is determined by the following dimensions: l – length of the free side, 
h - length of the common side, t – wall thickness, Lx – cell length, Sy – cell width, f – wall 
inclination angle, e – inclination angle of the angle bisector between walls. 
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Figure 1. Elementary section of the core with hexagonal cells 

Table 1. Mathematical models describing relative density and elastic properties of a hexagonal 

cell 

Relative density 
𝑙𝑐𝑜𝑠(𝜑)(𝑠𝑖𝑛(𝜑)(2𝑙−𝑡𝑐𝑡𝑔(𝜀))+2ℎ−4𝑡𝑐𝑡𝑔(𝜀)) 

𝜌 =  1 − (1) 
2(𝑙𝑠𝑖𝑛(𝜑)+ℎ−𝑡𝑐𝑡𝑔(𝜀))(𝑡+𝑙𝑐𝑜𝑠(𝜑)) 

Modulus of linear elasticity 
Ex 

𝐸𝑠𝑡3(
ℎ
+sin(𝜑) 

𝐸𝑥  =
  𝑙  (2) 

𝑙3 cos3(𝜑) 

Modulus of linear elasticity 
Ey 

3 

𝐸   = 
𝐸𝑠𝑡   cos(𝜑) 

(3)
 

𝑦 
𝑙3(

ℎ
+sin(𝜑)) sin2(𝜑) 
𝑙 

Poisson’s coefficient 

υxy 

ℎ 
𝑠𝑖𝑛(𝜑)( +𝑠𝑖𝑛(𝜑)) 

𝜐 = 
𝑙 

(4) 
𝑥𝑦 cos2(𝜑) 

Poisson’s coefficient 
υyx 

2 

𝜐 = 
cos  (𝜑) 

(5)
 

𝑦𝑥 
(
ℎ
+𝑠𝑖𝑛(𝜑))𝑠𝑖𝑛(𝜑) 
𝑙 

Rigidity modulus 

Gxy 

𝐸𝑡3 ℎ 
𝑠𝑖𝑛(𝜑)) 

 (  + 
𝐺 = 

𝑙 
(6) 𝑥𝑦  ℎ  2  2ℎ 

𝑙3( ) (1+ )𝑐𝑜𝑠(𝜑) 
𝑙 𝑙 

 

2.1.2. Bow-shaped auxetic cell 

 
Figure 2 presents an elementary section of the honeycomb panel core with an auxetic 

bow-shaped cell. The cell shape is determined by the following dimensions: lA - length of the free 
side, hA – length of the common side, tA – wall thickness, Lx – cell length, Sy – cell width, fA - wall 
inclination angle, eA - inclination angle of the angle bisector between walls. 

 

Figure 2. Elementary section of the core with an auxetic cell 
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Table 2. Mathematical models describing relative density and elastic properties of an auxetic cell 

Relative density 
𝑙𝑐𝑜𝑠(𝜑)(𝑠𝑖𝑛(𝜑)(2𝑙−𝑡𝑐𝑡𝑔(𝜀))+2ℎ−4𝑡𝑐𝑡𝑔(𝜀)) 

𝜌 =  1 − (7) 
2(𝑙𝑠𝑖𝑛(𝜑)+ℎ−𝑡𝑐𝑡𝑔(𝜀))(𝑡+𝑙𝑐𝑜𝑠(𝜑)) 

Modulus of linear elasticity 
Ex 

  𝐾𝑓𝑐𝑜𝑠(𝜑𝐴)  
𝐸𝑥  = (8) 

𝑏(
ℎ𝐴+𝑠𝑖𝑛(𝜑 )) sin2(𝜑 ) 
𝑙𝐴 

𝐴 𝐴 

Modulus of linear elasticity 

Ey 

ℎ𝐴 
𝐾𝑓( 

𝑙𝐴 
+𝑠𝑖𝑛(𝜑𝐴)) 

𝐸𝑦  = 
𝐻𝑐𝑜𝑠3(𝜑   ) 

(9)
 

𝐴 

Poisson’s coefficient 
υxy 

ℎ𝐴 
𝑠𝑖𝑛𝜑( +𝑠𝑖𝑛(𝜑𝐴)) 

𝜐 = 
𝑙𝐴 (10) 

𝑥𝑦 cos2(𝜑𝐴) 

Poisson’s coefficient 
υyx 

2 

𝜐 = 
cos  (𝜑𝐴) 

(11) 
𝑦𝑥  

ℎ𝐴 ( ) ( ) 
( 
𝑙𝐴 

+𝑠𝑖𝑛 𝜑𝐴 )𝑠𝑖𝑛 𝜑𝐴 

Rigidity modulus 

Gxy 

ℎ𝐴 
𝐾𝑓( 

𝑙𝐴 
+𝑠𝑖𝑛(𝜑𝐴)) 

𝐺𝑥𝑦  = 2 (12) 
𝐻 

ℎ𝐴) (1 
2ℎ𝐴)𝑐𝑜𝑠(𝜑 ) 

( 
𝑙𝐴 

+ 
𝑙𝐴 

𝐴 

 

2.1.3. Cylindrical cell 

 
Analysing the geometry of the elementary section of the honeycomb panel core auxetic 

structure (Fig. 3), it should be noticed that it is made up of: cylindrical cells of R1 external radius, 
R2 internal radius and thickness of cell walls equalling d= R1 - R2. A ribbon of t thickness was 
placed between cylinders tangentially to their external surface. The shape of the applied ribbon 
made it possible to confer auxetic properties to the core structure. 

 

Figure 3. Elementary section of the auxetic core with cylindrical cells 

Table 3. Mathematical models describing relative density and elastic properties of a cylindrical 

cell 

Relative density 

1 2 2 2 2 
𝜋(𝑅 −𝑅 )+ 

𝜑𝜋 
((𝑅1+𝑡) −𝑅 )+2𝑡𝑓 

𝜌 = 2 2 1 180 1 
(13) 

(2𝑅2+𝑡−𝑚)(𝑅1+𝑛) 

Modulus of linear elasticity 
Ex 

3 

𝐸   =  
𝐸𝑠𝑡  (2𝑅1+𝑡−𝑚) 

(14)
 

𝑥 𝑓3(𝑅1+𝑛)cos2(𝜑) 

Modulus of linear elasticity 
Ey 

3 

𝐸   = 
𝐸𝑠𝑡  (𝑅1+𝑛) 

(15)
 

𝑦 𝑓3(2𝑅1+𝑡−𝑚)sin2(𝜑) 

Poisson’s coefficient 
υxy 

𝜐 = −
 𝑡𝑔(𝜑) (2𝑅1+𝑡−𝑚) 

(16)
 

𝑥𝑦 𝑅1+𝑛 

Poisson’s coefficient 
υyx 

𝜐 = −
 𝑐𝑡𝑔(𝜑) (𝑅1+𝑛) 

(17)
 

𝑦𝑥 2𝑅1+𝑡−𝑚 
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Rigidity modulus 
Gxy 

3 

𝐺 = 
𝐸𝑠𝑡  (2𝑅1+𝑡−𝑚) 

(18)
 

𝑥𝑦 2𝑓3(𝑅1+𝑛−𝑡𝑔(𝜑)(2𝑅1+𝑡−𝑚))𝑐𝑜𝑠2(𝜑) 

 

2.1.4. Auxetic rib cell 

 
It should be noticed in the geometry of the 3D elementary structural section of the rib 

honeycomb core (Fig. 4) that it is made up of twelve identical pairs of arms inclined at angle f, 

where: L – length of the elementary cell section, l’ – length of the projection of the cell arm, l – 

length of the cell arm, t – thickness of the node connecting the cell arms. In order to maintain 

technical feasibility of the cell, angle f should be contained within the interval 0˚<f<40˚. For 

reasons of symmetry, the auxetic cell of the 3D structure should exhibit identical elastic properties 

in all directions of the rectangular 3D coordinate system. 

 

Figure 4. Elementary section of the structure of the rib auxetic core of a honeycomb panel 

Table 4. Mathematical models describing relative density and elastic properties of an auxetic rib 
cell 

Relative density 
 𝑉𝑠(𝑍𝑋)+𝑉𝑠(𝑍𝑌) 

𝜌 = (19) 
𝐿𝑥𝐿𝑦ℎ 

Linear elasticity modulus 

E 

      𝐸 𝑡4𝑐𝑜𝑠6(𝜑)(1−𝑡𝑔(𝜑))
2

 

𝐸 = 𝑠  
(20) 

(𝐿𝑥−3𝑡)3(𝐿𝑥−𝑡)𝑡𝑔2(𝜑)𝑠𝑖𝑛(𝜑) 

Poisson’s coefficient 

υ 
𝜈 = −𝑐𝑜𝑠(𝜑) (21) 

Rigidity modulus 

G 
𝐺 = 

𝐸 
(22) 

2(1−𝑣) 

 

2.2. Properties of auxetic cells 

 
Bearing in mind the fact that cell density exerts a significant impact on the elastic 

properties of the core, the authors decided, in the further part of the study, to design the shape of 

an auxetic cell of relative density value similar to the density value of a reference hexagonal cell. 

For each of the type of cells, a reference hexagonal cell and three models of different geometry 

but identical relative density were collated. In addition, for selected structures, linear elasticity 

moduli as well as rigidity moduli and Poisson’s coefficients were calculated. On the basis of the 

above assumptions, reference cells were collected of the highest mechanical parameters. From 

among hexagonal cells, the H1 cell seemed most regular and due to its more advantageous 

(higher) elastic properties, appeared more universal for core construction. Moreover, it exhibited 

lower anisotropy in comparison with the reference cell of H0 type. The H2 cell revealed strong 

variability of constant elastic values Ex, Ey as well as Poisson’s coefficients uxy, uyx. The H3 cell 
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was characterised by the highest elasticity modulus Ex and the lowest modulus Ey, hence cell H3 
was characterised by exceptionally strong orthotropy. 

 

Figure 5. Geometry of selected core cells 

Table 5. Characteristic properties of selected hexagonal cells (H0 – reference cell) 
Cell 

type 

Es t h l f Lx Sy r Ex Ey uxy uyx Gxy 

MPa mm ˚ mm  MPa  MPa 

H0 6000 0.15 3.9 11.5 45 23.99 16.62 0.02493 0.0389 0.0178 0.1017 1.48 0.68 

H1 6000 0.15 8.0 10.2 30 25.99 17.91 0.02493 0.0381 0.0518 0.0179 0.86 1.17 

H2 6000 0.15 6.0 12.2 20 20.15 23.28 0.02493 0.0111 0.1068 0.0206 0.32 3.10 

H3 6000 0.15 12.0 13.0 60 46.48 13.33 0.02493 0.1308 0.0034 0.0136 6.19 0.16 

 
Among bow-shaped auxetic cells, A3 and A1 cells qualified for further analyses. The first 

of the two was characterised by a very small value of the Poisson’s coefficient uxy and a high value 
of the modulus Ey as well as a small value of modulus Ex. However, this cell was fairly slender 
and may lead to technological problems. The A1 cell, at relatively high values of Ey and Ex moduli, 
was also characterised by satisfactory Poisson’s coefficients in both directions and showed more 
regular geometry and side proportions along the X, Y axis and, consequently, exhibiting 
properties close to isotropic. 

 

Table 6. Characteristic properties of selected auxetic cells (H0 – reference cell) 
 

Cell 

type 

Es tA hA lA fA Lx Sy r Ex Ey uxy uyx Gxy 

MPa mm ˚ mm  MPa  MPa 

A0 6000 0.15 3.9 11.5 45 23.99 16.62 0.0249 0.038 0.017 0.11 1.48 0.680 

A1 6000 0.15 15.0 10.5 10 26.01 20.90 0.0249 0.023 0.458 -0.23 -4.43 0.002 

A2 6000 0.15 20.0 10.6 25 30.57 19.51 0.0249 0.033 0.058 -0.75 -1.32 0.002 

A3 6000 0.15 7.7 20.0 5 11.65 40.15 0.0249 0.000 1.109 -0.03 -38.0 0.003 
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Figure 6. Geometry of selected core cells 

In the case of cylindrical cells, increased dimensions of selected cells resulted in increased 
values of the inclination angle of the cell wall. It is also evident from Table 7, that increasing the 
value of the lineal dimension along axis X resulted in increased linear elasticity modulus Ex, 
whereas increasing the Sy dimension – caused an increase of the Ey modulus. C2 cell is 
characterised by the most regular shape geometry. It also exhibited orthotropic properties. Cells 
whose external radius was below 10 mm exhibited higher values of the linear elasticity modulus 
Ey in relation to Ex (Ey > Ex). At the length of the radius R1 exceeding 10 mm, cells exhibited 
reverse orthotropic properties Ey < Ex. Together with the increase of cell linear dimensions, the 
negative value of the Poisson’s coefficient vxy also declined, in contrast to the Poisson’s coefficient 
vyx. 

 

Table 7. Characteristic properties of selected cylindrical cells (H0 – reference cell) 
 

Cell 

type 

Es m n R1 f Lx Sy r Ex Ey uxy uyx 

MPa mm ˚ mm  MPa  

C0 6000 2.0 7.0 5.0 11.974 16.3 24 0.04604 0.103 4.98 -0.144 -6.943 

C1 6000 3.0 7.0 6.0 17.894 18.3 26 0.04585 0.117 2.26 -0.227 -4.400 

C2 6000 5.0 5.1 10.0 45.854 30.3 30.2 0.04614 0.907 0.85 -1.034 -0.967 

C3 6000 7.0 7.0 11.5 60.755 32.3 37 0.04662 1.078 0.44 -1.559 -0.641 

 

 

Figure 7. Geometry of selected core cells 
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Auxetic rib cells are characterised by a similar value of the Poisson’s coefficient. The Z1 
cell has the highest values of the moduli of linear elasticity E and rigidity Gxy. Also cell Z3 is 
characterised by advantageous elasticity properties. Cell Z2, whose elasticity moduli are close to 
0, is characterised by properties most similar to the reference cell Z0. 

 
Table 8. Characteristic properties of selected rib cells (Z0 – reference cell) 

Cell 

type 

Es t h f Lx r E u Gxy 

MPa mm º mm  MPa  MPa 

Z0 6000 0.50 12 45 6.3 0.02297 0.89 -0.906 0.23 

Z1 6000 0.70 12 65 6.3 0.02311 1747.64 -0.999 437.21 

Z2 6000 0.42 12 26 6.3 0.02165 0.03 -0.819 0.01 

Z3 6000 0.70 14 70 7.25 0.02244 30.04 -0.978 7.59 

 

 

Figure 8. Geometry of selected core cells 

 

2.3. Numerical optimisation of cell shape 

 
When performing engineer calculations, it is recommended to apply statistical methods 

which constitute part of numerical methods of static optimisation [20-25]. In this context, methods 

of systematic search, random walk and Monte Carlo deserve attention. They consist in a 

systematic or random combing of the admissible region and, on the basis of the obtained results, 

estimation of the optimal value can be obtained. The optimisation object comprised cells of 

multilayer furniture panels with shapes presented in Figures 1-4. In this case, the authors adopted, 

as a natural optimisation criterion, minimisation of relative density and value maximisation of 

linear elasticity moduli of the elaborated core cells. Therefore, as the objective function, they 

assumed external dimensions of these cells as well as dimensions of individual cell walls. It should 

be remembered that reaching optimal solution must be preceded by a conjunctive fulfilment of 

numerous limiting conditions associated with cell shapes. The way in which to carry out the 

optimisation process was presented taking as an example a hexagonal reference cell. 

The optimisation mathematical model of a polygonal auxetic cell comprised: 
a) decision variables for which cube of variables K2 assumes the following shape: 

𝐾𝑧 = {𝑥  = (𝑥1 … 𝑥4): 𝑥𝑖(𝑚𝑖𝑛) ≤ 𝑥𝑖 ≤ 𝑥𝑖(𝑚𝑎𝑥): 𝑖 = 1 … 4}. 
where: i – number of decision variables for the cell; x1 = t thickness of the cell wall; x2 = h length 

of the common cell wall; x3 = l length of the free cell wall; x4 = f inclination angle of the cell 

wall, 
b) parameter Es constituting the modulus of linear elasticity of the material from which cell walls 

were manufactured, 
c) the acceptable set Φ is formed from inequality limits Φi(x)>0 i.e.: 

Φ = {𝑥  = (𝑥1 … 𝑥4): Φ𝑖(𝑥 ) > 0: 𝑖 = 1 … 4}, 
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As the objective function, the authors adopted minimisation of the apparent cell density: 

𝜌  = 1 −
 𝐹𝑠 

 
𝐹∗ → 𝑚𝑖𝑛, 

and value maximisation of linear elasticity moduli in main directions of orthotropy: 
3  ℎ ( 

E = 
𝐸𝑠𝑡 (𝑙 +sin 𝜑) 

 
  

→ 𝑚𝑎𝑥, 

x 
𝑙3 cos3(𝜑) 

E = 
𝐸𝑠𝑡3 cos(𝜑) → 𝑚𝑎𝑥. 

y 
3 ℎ (   ) 2( ) 
𝑙  ( 

𝑙 
+sin  𝜑  ) sin 𝜑 

Before initiation of the optimisation process, geometric parameters discussed earlier and 

presented in Figure 5 were collated. It was necessary to provide minimal, intuitively estimated, 

values of cell dimensions tmin, hmin, lmin, fmin as well as their maximum values tmax, hmax, lmax, fmax, 
which the authors intended to optimise. In the cube of decision variables, these values are 

described by extreme points Dmin, Dmax. In the course of the optimisation process, the computer 

picks randomly from a given cube any Di (ti, hi, li, fi) points and remembers only these from among 
them which fulfil all limiting conditions. The point which describes the objective function best, 
represents the optimal (suboptimal) cell dimensions. Figure 9 presents the optimisation algorithm 
using the Monte-Carlo method. 
The input data of the optimisation process comprised: 

 tmin = 0.1 mm, 
 tmax = 3.0 mm, 
 hmin = 5 mm, 
 hmax = 20 mm, 
 lmin = 5 mm, 
 lmax = 20 mm, 
 fmin   = 1˚, 
 fmax   = 89˚, 
 Es = 6000 MPa. 

Setting the sampling number at No = 30000, which the computer should carry out in order to reach 

the optimal solution, random numbers are generated and selection of random points Di (ti, hi, li, fi) 
from the cube area of decision variables is performed. The point determining the lowest value of 
the objective function after performing No samplings presents the optimal cell properties 
characterised by the lowest density and the highest values of linear elasticity moduli. It is worth 
mentioning that the process is considered as finished when the result following a huge number of 
samplings does not improve. 
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E =E , E =E ,   

 

 

 

 
 

Figure 9. Optimisation algorithm of a hexagonal cell by the Monte-Carlo method 
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3. BULGULAR ((RESULTS) Research results and their analysis 

 
Optimal cell properties with the smallest relative densities collated below were designated 

using D (density) index, while cells with the highest values of the linear elasticity moduli were 

marked with M (modulus) index. 

 

3.1. Optimal cells 

 
Characteristic properties of optimal hexagonal cells are presented in Table 9 and their 

shapes can be found in Figure 10, whereas information about optimal bow-shaped auxetic cells is 

to be found in Table 10 and Figure 11. Table 11 and Figure 12 present properties characteristic 

for optimal cylindrical cells, while Table 12 and Figure 13 - of auxetic rib cells. 

 
Table 9. Characteristic properties of optimal hexagonal cells 

Cell 

type 

Es t h l f Lx Sy r Ex Ey uxy uyx Gxy 

MPa mm ˚ mm  MPa  MPa 

H_D 6000 0.10 14.9 19.6 33 51.01 33.01 0.00875 0.0017 0.0017 1.0133 0.99 0.00 

H_M 6000 0.30 16.2 6.04 80 44.15 2.68 0.22260 503.78 0.0348 120.19 0.008 0.33 

 

Figure 10. Geometry of core optimal hexagonal cells 

Table 10. Characteristic properties of optimal bow-shaped auxetic cells 
Cell 

type 

Es tA hA lA fA Lx Sy rA Ex Ey uxy uyx Gxy 

MPa mm ˚ mm  MPa  MPa 

A_D 6000 0.10 17.67 18.40 11.75 27.60 36.23 0.0116 0.0008 0.0329 -0.1608 -6.2206 0.0003 

A_M 6000 0.66 19.49 5.42 10.26 35.47 13.9 0.1452 38.32 97.07 -0.6284 -1.5914 0.3505 
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Figure 11. Geometry of core optimal auxetic cells 

 

Table 11. Characteristic properties of optimal cylindrical auxetic cells 
 

Cell 

type 

Es m n R1 f Lx Sy r Ex Ey uxy uyx Gxy 

MPa mm ˚ mm  MPa  MPa 

C_D 6000 2.1 6.6 12.0 7.68 44.1 37.3 0.01235 0.002 0.079 -0.159 -6.283 0.0012 

C_M 6000 2.0 5.9 10.1 12.98 38.3 32.0 0.06899 23.93 314.46 -0.276 -3,625 16.526 

 
 

Figure 12. Geometry of core optimal cylindrical cells 

Table 12. Characteristic properties of optimal rib auxetic cells 
 

Cell 

type 

Es t f Lx r E u 

MPa mm ˚ mm  MPa  

Z_D 6000 0.30 3.032 7.25 0.00129 7.501 -0.9986 

Z_M 6000 0.57 3.032 7.25 0.00843 81.36 -0.9986 
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Figure 13. Geometry of core optimal rib auxetic cells 

It is evident from the presented Figures and Tables that the H_M cell has three times 
thicker walls t=0.3 mm, three times shorter lengths of free walls l=5.42 mm, 2.44 times greater 
inclination angle of the cell wall f=80 and smaller overall dimensions (Lx=44.15 mm, Sy=2.68 
mm) in relation to the H_D cell type with Lx=51.01 mm, Sy=33.01 mm dimensions. On the other 
hand, it is evident from Table 10 and Figure 11 that the A_M cell is characterised by six times 
thicker walls tA=0.66 mm, three times shorter length of the free walls lA=5.42 mm, a similar 
inclination angle of the cell wall fA=10.3˚ and smaller overall dimensions (Lx=35.47 mm, Sy=13.9 
mm) in relation to the auxetic cell of type A_D with Lx=27.6 mm, Sy=36.23 mm dimensions. 
Furthermore, it is clear from Table 11 and Figure 12 that the C_D cell possesses more than 18 
times thinner walls and greater overall dimensions (R1=12 mm, Lx=44.1 mm, Sy=37.3 mm) in 
relation to the C_M cell. However, this cell has greater linear elasticity moduli (Ex=23.93 MPa 
and Ey=314.46 MPa). On the other hand, it can be seen from Table 12 and Figure 13 that the Z_M 
cell is characterised by 90% thicker ribs and over 10 times greater linear elasticity modulus at the 
identical value of the inclination angle f=3.032˚ and identical linear dimension Lx=7.25 mm as the 
Z_D cell. 

 

3.2. Coefficient of strength quality of optimal cells 
For optimal cells with the highest values of linear elasticity moduli designated with M 

index, the authors calculated their strength quality coefficient as a relationship of Ex and Ey moduli 
to cell density (Fig. 14). 
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Figure 14. Coefficient of strength quality of optimal cells 

The highest value of the strength quality coefficient was determined in the case of the rib 
auxetic cell (Z_M). This cell was characterised by isotropic properties. When analysing the 
relationship of the linear elasticity modulus Ex to relative density, the hexagonal cell H_M 
appeared advantageous. On the other hand, the cylindrical C_M cell seemed to be more 
advantageous from the point of view of the relationship of the linear elasticity modulus Ey to 
relative density. 

 

4. SONUÇ VE TARTIŞMA (CONCULUSION) 
 

On the basis of the performed analyses of results of analytical calculations, a number of 

conclusions were drawn and remarks made. Relative cell core density is determined by: the 

thickness of the cell wall, the inclination angle of walls and ribs, wall length and core height. It is 

not possible to obtain high cell linear elasticity moduli at a simultaneous lowest possible relative 

density. The Monte Carlo method of optimisation employed in this study made it possible to 

obtain optimal cell properties of possibly lowest density and maximum values of linear elasticity 

moduli. The highest values of strength quality were recorded in the case of rib auxetic cells. 

The study was carried out within the framework of a research grant NCN OPUS 11 

“Modelling of the properties of new lightweight wood-based honeycomb panels with auxetic 

cores”. 
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