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Abstract  Öz 

Drone swarm research has surged due to their superior task 

performance. This paper introduces Harmony DTA, an 

auction-based algorithm for task allocation in 

heterogeneous drone swarms. Prior research primarily 

focuses on minimizing overall costs associated with 

assignments. In contrast, Harmony DTA not only 

minimizes total costs through an enhanced cost calculation 

function, but also ensures equitable distribution of 

workload among drones. Additionally, the proposed two-

stage auction process reduces the total message size utilized 

during communication. Simulations and field tests were 

conducted to assess the effectiveness of the proposed 

algorithm. In addition, the performance of the algorithm 

was evaluated by comparing it with the CBBA (Consensus-

Based Bundle Algorithm) algorithm in cases where all 

messages are transmitted between agents and some 

messages are not transmitted due to communication 

problems. Based on the simulation findings, the suggested 

algorithm demonstrates an ability to address the assignment 

problem with a mean cost reduction of 20% and a mean 

reduction in message size of 50% compared to CBBA in 

scenarios without communication issues. However, in 

situations where communication obstacles lead to some 

messages being untransmitted between agents, Harmony 

DTA exhibits inferior performance to CBBA, attributed to 

conflicting assignments arising from the absence of a 

consensus phase. 

 Dron sürüleri üzerine yapılan araştırmalar, üstün görev 

performansları nedeniyle ivme kazanmıştır. Bu makale, 

heterojen drone sürülerinde görev dağılımı için açık 

artırmaya dayalı bir algoritma olan Harmony DTA'yı 

tanıtıyor. Literatürde var olan araştırmalar öncelikle 

görevlerle ilgili toplam maliyeti en aza indirmeye 

odaklanmaktadır. Harmony DTA ise gelişmiş maliyet 

hesaplama fonksiyonu aracılığıyla yalnızca toplam maliyeti 

en aza indirmekle kalmaz, aynı zamanda iş yükünün 

dronlar arasında adil bir şekilde dağıtılmasını da 

sağlamaktadır.  Ayrıca önerilen iki aşamalı açık artırma 

süreci, iletişim sırasında kullanılan toplam mesaj boyutunu 

da azaltmaktadır. Önerilen algoritmanın etkinliğini 

değerlendirmek için simülasyonlar ve saha testleri 

yapılmıştır. Ek olarak algoritmanın performansı CBBA 

(Konsensus Tabanlı Demet Algoritması) algoritmasıyla 

ajanlar arasında tüm mesajların iletildiği ve haberleşme 

sorunları nedeniyle bazı mesajların iletilmediği durumlar 

için de karşılaştırılarak değerlendirilmiştir. Elde edilen 

simülasyon sonuçlarına göre önerilen algoritma haberleşme 

sorunsuz ortamlarda CBBA’ya göre ortalama %20 daha 

düşük maliyet ve ortalama %50 daha az mesaj boyutu ile 

atama problemini çözebilmektedir. Haberleşme sorunu 

nedeniyle ajanlar arsında bazı mesajların iletilemediği 

ortamlarda ise Harmony DTA, fikir birliği aşamasına sahip 

olmaması nedeniyle çakışan atamalar yaparak CBBA’ya 

göre daha kötü performans sergilemektedir. 

Keywords: Drone swarm, Task allocation, Distributed 

computing,  Auction algorithm 

 Anahtar Kelimeler: Dron sürüsü, Görev Atama, Dağıtık 

hesaplama, Açık artırma algoritması 

1 Introduction 

With advancements in technology, drones have found 

applications in various fields including military, agriculture, 

transportation, security, damage assessment, and 

photography. A drone swarm refers to a network of multiple 

drones capable of autonomous collaboration to achieve a 

shared objective. Each individual drone within the swarm is 

referred to as an agent. The utilization of drone swarms is 

gaining attention due to their ability to perform tasks more 

effectively than a single drone, particularly in hazardous 

military operations [1]. 

A swarm is typically described as a cohesive assembly 

collaborating cohesively to accomplish a particular goal or 

behavior. Similarly, the concept of a drone swarm denotes a 

network composed of numerous drones equipped with 

communication abilities, autonomous functionality, and 

aligned towards a common aim.  

The agents within the swarm is equipped with sensors, 

tools, or weaponry tailored to its specific purpose. For 

instance, combat drones are outfitted with weapons, 

reconnaissance drones feature advanced sensors for threat 

detection, among other functionalities. These individual 

drones can collaborate within the swarm to undertake more 

complex tasks [2]. The fault tolerance of a drone swarm 

significantly surpasses that of a single drone, as the failure of 

one drone does not impede the overall task execution of the 

swarm. It is anticipated that in the near future, drone swarms 
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will supplant conventional unmanned aerial vehicles and 

other costly weapon systems [3]. 

The primary factor that impacts the success of a drone 

swarm in achieving its objectives is the efficiency of 

intercommunication and information sharing among its 

individual drones. The main limitation on the scale of a drone 

swarm is its ability to manage the flow of information 

effectively [4]. One of the primary drawbacks associated 

with drone swarms is the inherent difficulty in coordinating 

them effectively. Many coordination challenges such as task 

assignment entail solving NP-hard problems, rendering 

optimal solutions often elusive and exhibiting poor 

scalability [5]. 

Task assignment serves as the foundation of a drone 

swarm's operation. In a swarm system, task assignment 

essentially involves solving an optimization problem to 

ensure that tasks of varying positions and significance are 

effectively carried out by drones possessing diverse positions 

and capabilities. 

Algorithms employed to address the task assignment 

problem are generally categorized into two main groups: 

centralized and distributed algorithms. 

Centralized task assignment algorithms operate with a 

central coordinator agent responsible for communicating 

with all other agents. This coordinating agent facilitates 

negotiations among the other agents and makes decisions 

regarding task assignments. Typically, a utility function 

covering all considered agents is employed in this process. 

As task assignment occurs centrally, conflicts during 

assignment are avoided, and there is no need for a consensus 

stage, enabling the attainment of optimal solutions. 

However, drawbacks include the vulnerability of the entire 

system if the coordinator agent becomes damaged. 

Furthermore, centralized algorithms are better suited for 

systems with fewer agents due to the high computational 

costs involved [6]. 

Distributed task assignment algorithms operate without a 

coordinator agent, and tasks are distributed among agents 

through negotiations among themselves. Numerous 

distributed decision-making algorithms have been developed 

to address the limitations of centralized decision-making 

algorithms and mitigate the risk of single-point errors in the 

system. 

Market-based task allocation algorithms exemplify 

notable instances of distributed algorithms. Auctions form 

the cornerstone of these algorithms, where agents participate 

in bidding for tasks, and the highest bidder wins the task. 

The task assignment problem, being a combinatorial 

optimization issue, holds fundamental significance, with any 

linear optimization problem being potentially linked to it. 

Consequently, various approaches have been suggested in 

the literature to address this fundamental problem.  

Kuhn's Hungarian algorithm [7], introduced by the 

Hungarian mathematician Kuhn in 1955, represents the first 

approach to task assignment. This method, widely employed 

for solving assignment problems, is characterized by its 

simplicity and accessibility. In small systems operating 

within static environments, centralized methods are viable for 

identifying optimal task assignments. However, as the 

number of agents grows and problem complexity escalates, 

centralized approaches become impractical to scale 

effectively. 

An algorithm for the genetic algorithm-based solution of 

the task assignment problem is presented in [8]. Given the 

complexity where some tasks necessitate the involvement of 

more than one agent for completion, the algorithm 

accommodates this requirement. 

Freitas et al. [9] introduced an algorithm designed for the 

efficient and decentralized identification and allocation of 

tasks within UAV swarms. The primary focus of the research 

is on minimizing message size through the implementation of 

a low-level protocol for distributed task assignment in multi-

UAV networks. 

In [10], an auction-based algorithm tailored for task 

assignment is introduced, accounting for the diverse 

capacities of heterogeneous agents and the varied 

requirements of heterogeneous tasks. 

Exploration missions in unknown environments, as 

studied in [11] and [12], involve agents autonomously 

generating and selling missions through single-item auctions. 

However, managing rewards for agents necessitates a central 

decision maker. 

Effective bidding rules play a crucial role in achieving 

near-optimal solutions in task assignment. [13] and [14] 

specifically focus on devising bidding rules for navigation 

tasks. Their proposed method entails a multi-round auction 

process, where each agent bids on its most cost-effective task. 

In [15], two distinct greedy-based centralized auction 

algorithms are introduced for assigning heterogeneous tasks 

in heterogeneous multi-agent systems. The objective is to 

distribute tasks in a manner that minimizes energy 

consumption during task execution, while also considering 

the maximum completion time for the tasks. 

IDMB [16] represents a market-based task assignment 

algorithm. In this approach, each agent is initially assigned a 

task with a number identical to its ID. Subsequently, each 

agent serves as a negotiator for its respective task, while the 

remaining agents function as bidders for this task. 

In [17], two objective functions were delineated to 

address the MRGAP (Multi-Robot Generalized Assignment 

Problem), which includes fitness constraints signifying that 

not all tasks can be assigned to every agent. These objective 

functions were amalgamated using the weighted sum method. 

The primary objective function seeks to minimize the sum of 

squares of the agents workloads, while the secondary 

objective aims to minimize the total number of agents 

assigned tasks. A centralized solution approach is employed 

in this context. 

The CBBA (Consensus Based Bundle Algorithm) [18] is 

a widely utilized market-based multitask sharing algorithm, 

which is an expanded iteration of the CBAA (Consensus 

Based Auction Algorithm) designed for addressing the 

multiple assignment problem. In the CBBA framework, each 

agent maintains a list of tasks that could potentially be 

assigned to them. The auction process operates at the task 

level rather than the package level. CBBA comprises two 

primary stages: bundle construction and conflict resolution. 

During the bundle construction phase, each agent constructs 
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a bundle using a greedy approach and continually updates it 

throughout the assignment process, adding tasks until the 

bundle reaches its capacity. In the conflict resolution phase, 

agents exchange three datasets containing information on the 

winning agents, winning bids, and bid update time. Following 

predefined rules, agents update the winning bid and winning 

agent lists, ensuring consensus among all agents regarding the 

winning agent for the tasks. 

The majority of studies in the literature on task assignment 

in multi-agent systems accept that there is perfect 

communication between agents and that the communication 

channel has unlimited bandwidth [19]. However, in real life, 

drone swarms operate in environments where bandwidth is 

limited. Some studies developing algorithms for agent 

coordination in multi-agent systems under limited bandwidth 

are listed as follows. Otte and Correll [20], Kassir et al. [21], 

Guo et al. [22], Kantaros et al. [23], Best et al. [24], Williams 

et al. [25], Zhou et al. [26], Vander Hook et al. [27], Li et al. 

[28]. 

Lately, there has been a surge of interest in drone swarms, 

leading to increased focus on research into task allocation 

within unmanned aerial vehicle (UAV) swarms. The ideal 

task assignment algorithm for drone swarms can vary 

depending on specific application needs [29], swarm scale, 

communication capacities, and environmental conditions 

[30]. 

Afghah et al. [31] introduced a novel approach to fire 

surveillance utilizing a group of UAVs. The objective of this 

system is to offer rapid response times by employing a 

decentralized leader-follow coalition algorithm, which 

reduces the number of drones needed and minimizes energy 

usage while ensuring comprehensive area coverage within an 

efficient timeframe. 

Oberlin et al. [32] and Kim et al. [33] extend the multi-

traveling salesmen problem to encompass multi-UAV path 

planning tailored for reconnaissance and surveillance 

applications. 

Sujit et al. [34] introduce a team-based method enabling 

UAVs to make decisions autonomously in scenarios where 

communication among UAVs is unavailable. 

Heuristic algorithms have gained traction in drone task 

allocation. For instance, L. Huo et al. [35] introduced a 

simulated annealing algorithm with exchange and judgment 

mechanisms to enhance the generation of feasible adjacent 

solutions efficiently. Similarly, S. Gao et al. [36] 

incorporated a negative feedback mechanism into a group 

algorithm to accelerate convergence and achieve quicker 

results. 

Some recent studies explores task assignment within 

drone swarms by combining genetic algorithms and neural 

network logic. This approach is exemplified in studies such 

as Changliang et al. [37], Song et al. [38], Wang et al. [39]. 

Creating a truthful combinatorial auction mechanism is 

inherently challenging due to the multiple private parameters 

each UAV possesses. Wu et al. [40] addressed this issue by 

introducing an anti-strategy auction mechanism tailored for 

spectrum allocation, employing combinatorial auctions. 

This study introduces Harmony DTA, an auction-based 

distributed task assignment algorithm specifically designed 

for application in heterogeneous drone swarms. The primary 

contributions of Harmony DTA include: 

• Maximizing the overall system benefit and minimizing 

task assignment costs through the implementation of a two-

stage auction structure. 

• Thanks to the developed cost calculation function, it 

ensures almost equal sharing of the workload among drones. 

•  Due to the proposed communication protocol, the 

message sizes transmitted are minimized, consequently 

reducing the total number of bits utilized for task assignment. 

• The effectiveness of most task assignment algorithms 

in the literature hasn't been scrutinized in settings with 

communication obstacles. This study's contribution lies in 

assessing both the suggested algorithm and the CBBA 

algorithm, prevalent in existing literature, within 

environments hampered by communication issues. 

The structure of this article is as follows: Section Ⅱ 

elucidates the task assignment problem and introduces the 

case studies for task allocation within drone swarms. Section 

Ⅲ introduces the proposed distributed decision-making 

algorithm. Section Ⅳ details the simulation results of the 

proposed algorithm and presents data from performance 

comparisons with the CBBA algorithm. Section Ⅴ outlines 

the conducted field tests. Section Ⅵ is the conclusion. 

2 Task assignment problem description 

This section outlines fundamental definitions pertaining 

to the task assignment problem within drone swarms, along 

with the constraints and assumptions associated with it. The 

drone swarm comprises N drones, each possessing distinct 

capabilities. Denoted as D, the swarm consists of N 

heterogeneous drones and can be symbolized as articulated 

in Equation (1). 

 

 1,2,...,D N
 

(1) 

 

The system comprises M tasks, all of which are 

heterogeneous. Each task requires a drone with the 

appropriate capability to fulfill it. The set T, representing the 

collection of M tasks, is denoted as depicted in Equation (2). 

 

 1,2,...,T M
 

(2) 

 

The objective is to allocate assignments to drones in a 

manner that maximizes the overall benefit of the collective 

group. This scenario is represented through mathematical 

expression in Equation (3). 

 

1 1

max
N M

ijij
i j

x R
 

 
 

(3) 

 

If task j is assigned to agent i, then 𝑥𝑖𝑗=1; 

otherwise, 𝑥𝑖𝑗=0. 𝑅𝑖𝑗 denotes the utility value that agent i will 

attain if assigned task j. The constraints and assumptions 

specified for the problem are as follows: 
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A drone is capable of executing only one task at a time, 

and its velocity remains constant throughout the duration of 

the task. 

Each task necessitates the assignment of a single drone, 

as indicated in Equation (4). This condition ensures that the 

algorithm proposed is devoid of conflicts. 

 

1

1,
N

ij
i

x j T


 
 

(4) 

 

The task initiation must occur within the predefined 

timeframe as indicated in Equation (5). 

 

𝑡𝑠𝑡𝑎𝑟𝑡𝑗
≤ 𝑡𝑑𝑖𝑗

≤ 𝑡𝑓𝑖𝑛𝑖𝑠ℎ𝑗
 (5) 

 

where  [𝑡𝑠𝑡𝑎𝑟𝑡𝑗
, 𝑡𝑓𝑖𝑛𝑖𝑠ℎ𝑗

]  represents the time frame of task  j, 

and 
ijdt represents the commencement time for agent i to 

execute task j. 

The allocation of tasks to drones should be balanced, 

aiming to distribute the workload evenly among the drones. 

This constraint is articulated in Equation (6). 

 

,i ks s B i k  
 

(6) 

 

where is is the  number of tasks in the task list of drone i,

ks is the number of tasks in the task list of drone k, 𝐵 is the 

threshold value for the difference in the number of assigned 
tasks. 

2.1 Case studies for UAV task assignment problem 

This subsection presents two case studies for investigating 

the task assignment challenge within drone swarms. 

Within the case studies, drones and tasks were randomly 

dispersed across an area measuring 25×25 meters. The 

heterogeneous drone swarm consists of two different types of 

drones: reconnaissance and payload drones. Tasks are 

categorized into two types: intelligence gathering (IG) and 

delivery (DL), each with a defined time window. It's 

imperative that tasks commence within this time period; 

otherwise, the task cannot be executed. Reconnaissance 

drones are limited to performing intelligence gathering tasks, 

whereas payload drones are capable of executing delivery 

tasks. 

Drones possess comprehensive information about the 

tasks, and the tasks remain static, implying they do not change 

over time nor are new tasks added. A complete 

communication structure is established among drones, 

enabling all drones to communicate with each other 

effectively. 

In the first case study, where algorithm performances are 

compared, there are 3 drones and 9 tasks. Drone 1 is of 

reconnaissance type, while Drone 2 and Drone 3 are payload 

type drones. Tasks 1, 2, 3 and 4 are intelligence gathering type 

tasks, while Tasks 5, 6, 7, 8 and 9 are delivery type tasks. The 

drone parameters for the first case study are given in Table 1, 

and the task parameters are given in Table 2. 

 

In the Table 2, IG denotes the intelligence gathering task 

type, DL denotes the delivery task type, and t represents the 

duration of the task. 

 

Table 1. Drone parameters for first case study 

Parameter Value 

The number of drones 3 

Type of Drone 1 Reconnaissance 

Type of Drone 2 Payload 

Type of Drone 3 Payload 

Initial position of Drone 1 [-0.65,2.80,0] 

Initial position of Drone 2 [3.72,6.97,0] 

Initial position of Drone 3 [5.76,-6.33,0] 

 
Table 2. Task parameters for first case study 

ID 
The coordinates 

 of task (x,y,z) 
Type 

Time window  

of task validity (s) 
t(s) 

1 [7.25,5.99,1.07] IG [23.90,28.90] 5 

2 [-5.28,0.11,1.19] IG [69.04,74.04] 5 

3 [-2.66,2.05,1.19] IG [47.79,52.79] 5 

4 [2.38,2.85,1.97] IG [99.35,104.35] 5 

5 [6.92,4.75,1.95] DL [83.26,98.26] 15 

6 [-4.35,1.08,0.36] DL [10.22,25.22] 15 

7 [-2.48,0.16,1.71] DL [67.12,82.18] 15 

8 [5.21,1.73,1.18] DL [20.89,35.89] 15 

9 [-2.04,-2.73,0.59] DL [49.70,64.70] 15 

 
In the second case study, where algorithm performances 

are compared, there are 5 drones and 20 tasks. Drone 1 and 

Drone 2 are reconnaissance type drones, while Drone 3, 

Drone 4, and Drone 5 are payload type drones. Tasks 1 to 10 

are intelligence gathering type tasks, and Tasks 11 to 20 are 

delivery type tasks. The drone parameters for the second case 

study are given in Table 3, and the task parameters are given 

in Table 4. 

 

Table 3. Drone parameters for second case study 

Parameter Value 

The number of drones 5 

Type of Drone 1 Reconnaissance 

Type of Drone 2 Reconnaissance 

Type of Drone 3 Payload 

Type of Drone 4 Payload 

Type of Drone 5 Payload 

Initial coordinate of Drone 1 [-0.87,3.73,0] 

Initial coordinate of Drone 2 [4.96,9.30,0] 

Initial coordinate of Drone 3 [7.69,-8.44,0] 

Initial coordinate of Drone 4 [-5.21,9.66,0] 

Initial coordinate of Drone 5 [7.99,0.74,0] 
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Table 4. Task parameters for second case study 

ID 
The coordinates 

 of task [x,y,z] 
Type 

Time window  

of task validity 

(s) 

t(s) 

1 [-7.05,0.15,1.19] IG [69.04,74.04] 5 

2 [-3.55,2.74,1.19] IG [47.79,52.79] 5 

3 [3.18, 3.80, 1.97] IG [99.35,104.35] 5 

4 [9.22, 6.33, 1.95] IG [83.26,88.26] 5 

5 [-5.80,1.44,0.36] IG [10.22,15.22] 5 

6 [-3.30,0.21,1.72] IG [67.12,72.12] 5 

7 [6.95,2.31,1.18] IG [20.89,25.89] 5 

8 [-2.72,-3.65,0.59] IG [49.70,54.70] 5 

9 [1.60,-8.82,0.65] IG [15.12,20.12] 5 

10 [3.74,6.80,0.63] IG [45.50,50.50] 5 

11 [6.47,-3.67,1.86] DL [66.45,81.45] 15 

12 [-9.19,-8.67,1.85] DL [86.77,101.77] 15 

13 [-7.84,-4.44,0.43] DL [14.88,29.88] 15 

14 [-7.15,2.30,0.76] DL [75.51,90.51] 15 

15 [-9.56,3.09,1.39] DL [9.90,24.90] 15 

16 [-2.23,1.78,1.13] DL [81.27,96.27] 15 

17 [-8.90,-5.10,1.75] DL [33.27,48.27] 15 

18 [-7.89,6.74,0.03] DL [92.49,107.49] 15 

19 [8.49,1.13,0.02] DL [72.48,87.48] 15 

20 [-6.96,5.81,0.30] DL [90.87,105.87] 15 

3 Harmony Drone Task Allocation (DTA) algorithm 

The Harmony DTA algorithm is an auction-based 

approach for dynamic task assignment within heterogeneous 

drone swarms. 

The concept behind Harmony DTA draws from the 

management principle applied to large-scale projects, 

emphasizing the potential synergy between closely 

interrelated tasks within such projects. It suggests that by 

strategically designing or executing one task, it can 

positively influence the outcomes or processes of another, 

thus maximizing overall efficiency. In line with this 

principle, Harmony DTA offers a method to enhance the 

overall system benefits by leveraging the synergy between 

associated tasks, rather than assigning tasks individually to 

agents in each iteration. 

The Harmony approach employs a two-stage auction 

process. Notably, the algorithm's auction mechanism 

consists of two distinct stages. Here, agents aim not only to 

win the task offering the highest individual benefit but also 

strive to acquire the task providing the second-highest 

benefit, commonly referred to as the synergy task. This dual-

stage process distinguishes Harmony from existing task 

assignment algorithms found in the literature, where 

typically one stage involves an auction while the other entails 

reaching a consensus. 

 An example scenario where the proposed algorithm can 

be applied is shown in Figure 1. Here, there are 12 tasks 

categorized into 4 different types, alongside a total of 7 

drones, each belonging to one of 3 distinct types. Notably, 

the scout drone's role revolves around patrolling to identify 

new tasks; upon detection, it relays this information to other 

drones without executing tasks itself. At time t0, a predefined 

list of tasks necessitates assignment, with the potential for 

new tasks to emerge dynamically from either the Ground 

Control Unit (GCU) or the Scout drone. Drones of type 1 are 

capable of executing tasks categorized as types 1 and 2, 

whereas type 2 drones are suited for tasks classified as types 

3 and 4. Each task is associated with a defined timeframe and 

duration for completion. Additionally, should a drone's 

charge level fall below a critical threshold, it must promptly 

return to the nearest GCU for recharging. 

 

 

Figure 1. Sample scenario 

 

Harmony DTA comprises three main modules: States 

and Modes, Logic, and CLAW. These modules are 

illustrated in Figure 2. 

 

 

Figure 2. Modules of Harmony DTA 

 

The States and Modes submodule is responsible for 

several tasks including detecting traitor agents, interpreting 

received messages and directing them to relevant subsystems, 

managing communication links, and monitoring drone 

battery levels. In essence, this submodule handles 

fundamental level controls for both individual agents and the 

entire swarm. 

The Logic module acts as the central component where 

the task assignment algorithm functions. This section carries 

out various functions, including cost and reward calculations, 

auction processes, and task assignments. Task assignment 

takes place within the Logic module, utilizing a two-stage 
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auction process called pre-auction and synergy-auction. This 

iterative process continues until all tasks are assigned. 

Within the CLAW module, essential control loops and 

route planning operations are executed to enable the drone to 

fulfill its assigned task effectively. 

In this study, the evaluation of the proposed algorithm's 

assignment performance was limited to static tasks, and 

detailed discussions on all its modules were not included 

within the scope of the study. 

Table 5 presents the message package structure and 

corresponding values utilized by Harmony DTA for agent 

communication language. 

 

Table 5. Message package structure 

Agent Message Package Structure  

Package Description 

Receiving Address (8 Bit) 

Specifies the receiving agent ID 

number. For broadcast messages, this 

value is “0xFF”. 

Sender Adress (8 Bit) 

Specifies the ID number of the agent 

sending the message. The address of the 
central computer sharing the tasks is 

“0x00”. 

Message Type (8 Bit) 

Indicates the type of message sent. This 
field can take up to 8 different values. 

0x01: Sharing task locations 

0x02: Pre-Auction 
0x04: Pre-Auction Result 

0x08: Bidding 

0x10: Synergy-Auction Result 
0x20: Dron Trust Calculation 

0x04: Task completion notification 

0x80: Ping message 

Task Number (8 Bit) Indicates the number of the task. 

MaxReward (32 Bit) 
Indicates the reward value of the best  
task. 

MaxTaskInc (32 Bit) Indicates the δ value. 

SynergyTaskInc (32 Bit) Indicates the γ value. 

Auction (1 Bit) 
Indicates that the agent is in the process 
of auction for the task. 

longitude (64 Bit) 
Longitude value of location information 

from GPS. 

Latitude (64 Bit) 
Latitude value of location information 

from GPS. 

Agent Number (8 Bit) 

It is the area where the ID numbers of 
the relevant agent are kept in the 

message packets of the traitor and 

disabled agents. 

Time Information (64 

Bit) 

It is the field that is sent periodically to 

measure the quality of the 

communication channel and indicates 
the time elapsed since the start of the 

task. 

 

3.1 Cost function design 

The cost function is used to calculate the task costs of the 

drone, it consists of two components: balance cost and 

distance cost. The cost of task j for agent i, denoted as 𝐶𝑖𝑗, is 

computed using Equation (7). 𝑤1  and 𝑤2   are the distance and 

balance cost coefficients, respectively. 

 

1 2

D B

ij ij ijC w C w C 
 

(7) 

 

The balance cost (𝐶𝑖𝑗
𝐵) for drone i performing task j is 

determined using  Equation (8), which takes into account the 

task load of the drone. 

 

iB

ij

i

b
C

MT


 

(8) 

 

where |𝑏𝑖| represents the number of elements in the task list 

of drone i and 𝑀𝑇𝑖 denotes the maximum number of tasks that 

drone i can add to its task list. 

The distance cost (𝐶𝑖𝑗
𝐷)  of drone i for task j is determined 

by Equation (9), which considers the distance of the drone to 

the task location. 

 

ijD

ij

i

d
C

MFD


 

(9) 

where 𝑀𝐹𝐷𝑖  represents the distance of drone i to the farthest 

task, while 𝑑𝑖𝑗  denotes the distance between drone i and task 

j. The cost matrix for agent i is expressed as depicted in 

Equation (10). 

 

𝐶𝑖 = [𝐶𝑖1 𝐶𝑖2 … 𝐶𝑖𝑀] (10) 
 

Employing the defined cost function, the local utility 

value is computed according to Equation (11), where 𝑅𝑖𝑗 

represents the utility value for agent i of task j. 
 

𝑅𝑖𝑗 = 𝑉𝑗𝑒−𝜏∗(𝑡𝑐𝑠𝑡𝑎𝑟𝑡−(𝑡𝑝𝑠𝑡𝑎𝑟𝑡+𝑡𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) − 𝐶𝑖𝑗 (11) 

 

In this context, 𝑉𝑗 represents the initial reward value of 

task j, while τ denotes the time penalty coefficient. 

Additionally, 𝑡𝑐𝑠𝑡𝑎𝑟𝑡 refers to the earliest time at which agent 

i is able to commence task j, 𝑡𝑝𝑠𝑡𝑎𝑟𝑡  represents the time 

required for the agent to initiate the last task on the agent's 

path, and 𝑡𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  signifies the duration of the last task on 

the agent's path. 

Two different reward matrices are utilized in the 

algorithm: normal (𝑅𝑖𝑗
𝑁) and synergy (𝑅𝑖𝑗

𝑆 )  . The normal 

reward matrix is computed using the cost matrix acquired by 

the agent in the respective iteration for tasks that have not yet 

been assigned. 

In the calculation of the synergy reward matrix, the initial 

step involves the computation of a new synergy cost matrix, 

which is based on the assumption that the agent successfully 

completes the task with the highest reward in the normal 

reward matrix. Subsequently, the synergy reward matrix is 

determined based on this cost matrix using Equation (11). The 

utilization of the synergy income matrix aims to capture the 

synergy between tasks, particularly their proximity to one 

another. This approach facilitates the agent in receiving their 

next assignment with maximum income by leveraging task 

synergies.  

3.2 Pre-auction phase 

The first stage of the Harmony DTA algorithm. During 

this stage, the drone conducts an initial check to determine if 

its task list has reached maximum capacity. If the task list is 
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already full, the drone is excluded from the auction and 

subsequent task assignment processes. If there is available 

space for a new task in the task list, the drone identifies the 

highest value (𝑓𝑖)  task (𝑗𝑖) in the normal reward matrix and 

computes its bid (𝛿𝑖)  for 𝑓𝑖. Subsequently, the drone 

broadcasts an auction message for task  𝑗𝑖. The calculation of 

𝛿𝑖 is determined by Equation (12), where 𝑠𝑖 represents the 

utility value of the agent's second-best task. 

 

𝛿𝑖 = 𝑓𝑖 − 𝑠𝑖  

𝑗𝑖 = arg max
𝑗=1,…,𝑛

{𝑅𝑖𝑗
𝑁} 

𝑓𝑖 = max
𝑗

{𝑅𝑖𝑗
𝑁} 

𝑠𝑖 = max
𝑗≠𝑗𝑖

{𝑅𝑖𝑗
𝑁} 

(12) 

 

After receiving auction messages from all agents, the 

drone checks whether other drones have initiated an auction 

for the same task. If multiple drones have started an auction 

for a task, the drone with the highest reward value wins the 

task. In cases where income values are equal, the drone with 

the smaller ID wins the task. This process is referred to as the 

pre-auction. The winning drone announces its success to 

other agents in the swarm with a Pre-Auction Result message. 

 The winning drone in the pre-auction can also bid for the 

synergy task in the second stage. The drone that loses the 

preliminary auction cannot bid on the synergy task either. 

3.3 Synergy-auction phase 

This stage involves making bids for synergy tasks. If an 

agent wins a task during the pre-auction phase, synergy task 

bids are extended for synergy task during the synergy-auction 

phase. If the drone receives a Pre-Auction Result message 

from another drone regarding the task with the highest value 

in the synergy revenue matrix, it then forwards its bid for the 

relevant task to the winning drone. When computing the bid 

for the synergy task, the drone determines it using the synergy 

revenue matrix, as outlined in Equation (13). 

 

𝛾𝑖 = 𝑔𝑖 − ℎ𝑖 

𝑗𝑖 = arg max
𝑗=1,…,𝑛

{𝑅𝑖𝑗
𝑆 } 

𝑔𝑖 = max
𝑗

{𝑅𝑖𝑗
𝑆 } 

ℎ𝑖 = max
𝑗≠𝑗𝑖

{𝑅𝑖𝑗
𝑆 } 

(13) 

 

Upon receiving offer messages for synergy tasks, the 

agents winning the respective tasks are identified for the 

initial iteration. If  𝛿𝑖 > 𝛾𝑖  for the relevant task, the agent 

who broadcasts the auction message wins the task. 

Conversely, if a synergy offer results in𝛾𝑖 > 𝛿𝑖, the agent 

making the offer wins the task. Should the agent who 

initiated an auction for the most valuable task receive no 

bids, they emerge as the winner. 

At the conclusion of the synergy-auction phase, all agents 

announce the tasks they have won using the Synergy-

Auction Result message. Agents unable to win a task set the 

task ID to 0 and broadcast the message accordingly. Agents 

receiving the message then remove the corresponding task 

from the unassigned task list. This measure helps prevent 

disagreements between agents and maintains an accurate 

record of unassigned tasks. 

4 Simulation experiments 

In this section, simulation studies to evaluate the 

performance of Harmony DTA are presented first. 

Additionally, to compare the algorithm's performance with 

existing approaches, the CBBA algorithm proposed by Choi 

et al. [18] was also implemented, and the performance 

comparison results obtained were subsequently shared. 

The primary rationale behind selecting the CBBA 

algorithm for comparison with the proposed algorithm is its 

auction-based nature, which mirrors that of the proposed 

algorithm. This characteristic lends itself well to 

heterogeneous drone swarms operating in dynamic 

environments, making CBBA a suitable benchmark. 

Furthermore, the authors' familiarity and expertise with 

CBBA reinforced this decision. CBBA is recognized for its 

effectiveness in mitigating and streamlining the complexity 

of contemporary challenges, and its widespread use in 

various applications, including coordination and task 

allocation within UAV swarms, underscores its relevance 

and applicability. 

Numerous studies have investigated the effectiveness and 

efficiency of traditional CBBA and its enhanced iterations 

within the realm of drone swarms. This prevalence of 

research served as a key motivation for evaluating the 

proposed algorithm against CBBA. Chen et al. [41] present 

a variation of CBBA known as CBBA with local replanning 

(CBBA-LR), designed to swiftly generate dependable task 

replanning solutions in response to new tasks. CBBA-LR 

employs a capable matrix to signify the capable relationship 

between UAVs and tasks, ensuring that only capable UAVs 

for the new task are incorporated in the task replanning 

process. Choi et al. [42] propose an extension to the 

Consensus Based Bundle Algorithm (CBBA) in two notable 

ways. Firstly, CBBA has been enhanced to enable safe 

routing of UAVs around ground environment obstacles. 

Secondly, CBBA now addresses the issue of churning in 

UAV flight paths caused by uncertainty in target situational 

awareness. [43-45] have refined the traditional CBBA 

algorithm, focusing particularly on enhancing task bundle 

construction methodologies.  [46, 47] have enhanced the 

classical CBBA algorithm by addressing various aspects 

such as information interaction modes, efficiency, and task 

types. [48, 49] have advanced the classical CBBA algorithm 

by concentrating on enhancing its structural framework.  

Yan et al. [50] propose three enhancements to the classic 

CBBA algorithm. Firstly, they augment the information 

exchange between humans and machines. Secondly, they 

integrate task time windows to cater to the demands of close 

combat scenarios. Thirdly, they introduce task-time 

indicators to prioritize tasks that are geographically closer to 

the UAVs themselves. 

In simulation and field tests, 𝑤1= 0.7, 𝑤2= 0.3 and τ = 

0.1. These constants can be changed by the user depending 

on the task and swarm type. 

Matlab software was used for simulations. The personal 

computer utilized for these simulations features a 2.53GHz 
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Intel processor, 12GB of memory, and operates on the 

Windows 10 operating system. 

4.1 Assignment results for case studies 

The drone routes resulting from the assignment of 9 tasks 

to 3 drones using Harmony DTA for the first case study, as 

outlined in the third section, are illustrated in Figure 3. 

Within the figure, the x and y axes denote the longitudinal 

and lateral positions of the aircraft, respectively, while the z 

axis signifies the time constraints linked to the tasks. 

 

 

Figure 3. Agent routes for first case study 

 

As illustrated in Figure 3, Harmony DTA has effectively 

completed the task assignment process for the defined 

scenario without encountering any conflicts.  Tasks were 

assigned to appropriate drones based on their types and time 

frames and were integrated into their paths. Specifically, 

drone 1 will execute tasks 1, 3, 2, and 4 sequentially, drone 

2 will execute tasks 6 and 8, and drone 3 will undertake tasks 

9, 7, and 5 respectively. 

The drone routes resulting from the assignment of 20 

tasks to 5 drones using Harmony DTA for the second case 

study, as outlined in the third section, are illustrated in Figure 

4. Drone 1 will execute tasks 5, 9, 7, and 8 sequentially, 

drone 2 will execute tasks 10, 2, 6, 1, 4 and 3 sequentially, 

drone 3 will execute tasks 11 and 20 respectively, drone 4 

will execute tasks 15, 13, 17, 14, 16 and 18 respectively, 

drone 5 will execute tasks 19 and 12 respectively. 

 

 

Figure 4. Agent routes for second case study 

4.2 Comparison with CBBA 

The results and comparisons regarding the assignments 

obtained with Harmony DTA and CBBA for the first case 

study are provided in Table 6 and Table 7. In the comparison 

result tables, total travel distance represents the cumulative 

distance travelled by all agents upon completion of the 

assignment. Total message number indicates the overall 

count of messages exchanged between agents during 

problem-solving. Number of unassigned tasks signifies the 

quantity of tasks that the algorithm fails to assign to any 

agent. Total message size corresponds to the aggregate size, 

in bits, of all messages transmitted between agents during the 

problem-solving process. In the assignment result tables, 

"Harmony DTA path" denotes the route formulated for the 

respective agent when a task is assigned using Harmony, 

while "CBBA path" signifies the route devised for the 

relevant agent when a task is assigned using CBBA. 

"Harmony travel distance" represents the distance in meters 

that the relevant agent will traverse when a task is assigned 

using Harmony, while "CBBA travel distance" indicates the 

distance in meters that the relevant agent will cover when task 

assignment is made using CBBA. 

 

Table 6. Comparison results of case study 1 

Method 

Total  

Travel  

Distance 

(m) 

Total  

Message  

Number 

Number of  

unassigned  

tasks 

Total  

message  

size (bit) 

Harmony 16.35 27 0 585 

CBBA 17.11 15 1 6600 

 

Table 7. Assignment results of case study 1 

Agent 

ID 

Harmony 

DTA  

Path 

Harmony 

Travel  

Dist. (m) 

CBBA  

Path 

CBBA  

Travel 

Dist.(m) 

1 1,3,2,4 7,70 1,3,2 7,70 

2 6,8 4,03 6,5,4 9,41 

3 9,7,5 4,61 9,7 0 

 

In the first case study, Harmony DTA successfully solved 

the assignment problem with a lower total cost compared to 

CBBA. Furthermore, while CBBA failed to assign a task to 

any agent, Harmony DTA appropriately assigned all tasks to 

drones. In CBBA, agents employ a greedy strategy to form a 

route in each cycle, appending the task that yields the highest 

benefit to the route. However, this approach may result in the 

failure to assign certain tasks, as evidenced by the 

unassigned task in case study 1. Conversely, Harmony DTA 

achieves full task assignment by considering synergies, such 

as proximity relations among tasks, facilitated by its two-

stage auction process. When comparing the total message 

sizes, the CBBA algorithm requires larger message sizes due 

to its necessity for all agents to share the y, z, and s vectors 

in the conflict resolution phase, resulting in a solution using 

6600 bits. In contrast, Harmony DTA, thanks to its two-stage 

auction mechanism, achieved much smaller message sizes, 

solving the problem with only 585 bits. Although the total 
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number of messages transmitted between drones to solve the 

problem is higher for Harmony DTA due to its two-stage 

auction process.  

The results and comparisons regarding the assignments 

obtained with Harmony DTA and CBBA for the second case 

study are provided in Table 8 and Table 9. 
 

Table 8. Comparison results of case study 2 

Method 

Total  

Travel 

Dist.(m) 

Total  

Message 

Number 

Number of  

unassigned  

tasks 

Total  

message  

size (bit) 

Harmony  50.39 103 0 2273 

CBBA 53.79 40 1 57920 

 
Table 9. Assignment results of case study 2 

Agent 

ID 

Harmony DTA 

Path 

Harmony  

Travel  

Dist.(m) 

CBBA 

Path 

CBBA 

Travel 

Dist.(m) 

1 5,9,7,8 12.58 5,7,2,6,3 9.76 

2 10,2,6,1,4,3 11.32 9,10,8,1,4 21.93 

3 11,20 7.27 13,17,11,12 12.59 

4 15,13,17,14,16,18 13.46 15,14,18 5.46 

5 19,12 5.74 19,20 4.03 

 

In second case study, Harmony DTA outperforms CBBA 

in task assignment, achieving lower total travel distance and 

message size thanks to the proposed message structure and 

two-stage auction process. In addition, similar to the first 

case study, CBBA could not assign a task to any agent due 

to its greedy approach. 

In order to express the contribution of the proposed 

algorithm more clearly, in the subsequent phase of 

simulations, the performances of the proposed algorithm, as 

well as the CBBA algorithm, were evaluated through Monte 

Carlo simulations. The objective was to allocate 20 tasks to 

20 aircraft within a fully connected network structure, 

assuming no communication issues. Comparative analysis 

among the algorithms encompassed total mission cost 

(measured in meters) and total message size (measured in 

bits) parameters. Monte Carlo simulations were executed 

across 100 different scenarios, with aircraft and mission 

locations being randomly generated for each scenario. 

The total task cost cumulative probability density 

function (CDF) graph is provided in Figure 5. Total mission 

cost represents the collective distance traveled by each 

aircraft. The total task cost achieved by the proposed 

algorithm, due to its two-stage auction structure, outperforms 

CBBA. 

The CDF graph in Figure 6 illustrates the total number of 

bits, signifying the overall size of messages transmitted 

during task assignment. This comparison enables us to assess 

the efficiency of various methods in terms of resource 

utilization. By quantifying the amount of data exchanged 

throughout the task assignment process, we can gain insights 

into the feasibility and scalability of implementing the 

proposed algorithm in real-world communication networks 

with limited bandwidth. As depicted in the figure, the 

proposed algorithm demonstrates the capability to address 

the problem with significantly smaller message sizes, 

attributed to the developed cost function, auction structure, 

and message format enhancements. 

 

 

Figure 5. CDF of the total mission cost 

 

 

Figure 6. CDF graph of  total bits sent 

4.3 Comparison with CBBA under limited communication 

In this section, the proposed algorithm is evaluated 

against the CBBA under the scenario where some messages 

may not be transmitted, employing the Bernoulli 

communication model. Simulations were conducted with 

varying probabilities of message non-transmission (0%, 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%), and the 

algorithms were compared based on the number of 

unassigned tasks and conflicting tasks parameters. 

Figure 7 displays the outcomes of simulating the 

allocation of 10 tasks among 5 agents under conditions of 

limited communication. In CBBA, there is no notable change 

in the number of unassigned tasks even with heightened 

probabilities of communication error. Moreover, due to its 

consensus-based assignment approach, the fluctuation in the 

number of conflict tasks remains minimal even with elevated 

error rates. Although the proposed algorithm maintains a 

steady count of unassigned tasks within acceptable limits 

despite heightened communication error rates, its absence of 

a consensus stage results in an increase in conflict task 

assignments as the probability of communication errors 

rises. 

When communication issues arise and messages fail to 

transmit, the harmony DTA faces challenges. Even if the 

proposed algorithm manages to assign all tasks under such 

circumstances, conflicts may arise due to the absence of a 
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consensus stage. As the probability of communication errors 

increases, the incidence of conflict assignments also rises. 

 

 

Figure 7. Assigning 10 tasks to 5 agents under limited 

communication 

5 Field experiments 

To demonstrate the practical applicability of Harmony 

DTA in real-world scenarios, the algorithm was implemented 

on a swarm of two drones, and field tests were conducted at 

Ankara University Campus on 15.12.2023. 

The drones utilized for the field tests are the Ryze Tello 

models produced by DJI. A custom hardware setup has been 

designed for the drones to acquire location information and 

facilitate communication between them. This hardware 

primarily comprises a LoRa module, a GPS module, and a 

microcontroller. The developed system architecture is 

illustrated in Figure 8. 

 

 

Figure 8. System architecture 

A photo of the drone swarm used in field tests is given in 

Figure 9. 

 

Figure 9. Equipment used in the field experiment 

In the field test scenario, two heterogeneous drones and 

three tasks were defined. The location and other parameters 

of the drones and tasks are provided in Table 10 and Table 

11, respectively. The tasks were transmitted to the drones by 

the ground station, with a laptop serving as the ground 

station. Messages exchanged between the agents were 

monitored and recorded by the ground station to validate that 

the algorithm was functioning correctly. 

 

Table 10. Drone parameters used in field tests 

Drone ID 
The coordinates 

 of drone [x,y,z] 

Drone 

Type 

1 39.9628,32.78125 Reconnaissance 

2 39.96235,32.78115 Payload 

GS 39.96235,32.781414 Ground Station 

 
Table 11. Task parameters used in field tests 

Task 

No 

The coordinates 

 of task [x,y,z] 
Type 

Window of  

task validity 
t (s) 

1 39.96265,32.78115 IG [25.00,31.00] 5 

2 39.96269,32.78189 IG [34.00,40.00] 5 

3 39.9623,32.781 PL [10.00,20.00] 15 

 

In the field tests, tasks were efficiently distributed among 

the drones using Harmony DTA. Drone 1 was assigned 

routes for Tasks 1 and 2, while Drone 2 was designated 

routes for Task 3. The satellite image of the movement of 

drones is given in Figure 10. 

 

 

Figure 10. Satellite image for field test 
 

The field tests have concluded successfully, 
demonstrating the applicability of the proposed algorithm in 
real-world scenarios. This confirms the efficacy observed 
during simulation. 

6 Conclusion 

This study proposed the auction-based Harmony DTA 

algorithm developed for distributed task assignment in drone 

swarms. The findings underscore the superiority of the 

proposed algorithm in resolving assignment quandaries with 

reduced costs compared to CBBA, particularly evident in 

communication-unfettered environments. Furthermore, 
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owing to its innovative two-stage auction mechanism and 

streamlined message structure, the algorithm achieves 

problem resolution with minimal bit utilization, offering a 

distinct advantage in bandwidth-constrained settings. In 

environments conducive to reliable message transmission, 

the proposed algorithm exhibits superior performance. 

However, challenges emerge when communication issues 

disrupt message transmission, potentially leading to conflicts 

even if all tasks are successfully assigned. This underscores 

the necessity for a consensus stage, particularly in scenarios 

with heightened probabilities of communication errors. 

Future investigations will incorporate a consensus stage 

to bolster the algorithm's performance under limited 

communication conditions. Following this augmentation, the 

algorithm's resilience in communication-constrained 

environments will be evaluated across diverse 

communication network topologies. 
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