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Abstract  Öz 

In this study, a template is proposed for designing ordinary 

differential equation-based nonlinear oscillators. The 

template is a two-dimensional system with two control 

parameters and an energy function. By choosing the 

appropriate energy function, it is possible to obtain globally 

stable systems. These systems can be a gradient system, a 

Hamiltonian system, or a system with a stable limit cycle 

depending on the choice of control parameters. 

Hamiltonian and limit cycle cases can be used as a 

nonlinear oscillator for various applications. An example 

system is demonstrated by choosing a simple energy 

function and the obtained system is simulated to verify its 

dynamics. Hardware verification of the simulated system is 

performed with a field programmable gate array (FPGA) 

implementation. 

 Bu çalışmada adi diferansiyel denklem tabanlı lineer 

olmayan osilatörlerin tasarımı için bir şablon 

önerilmektedir. Önerilen şablon iki adet kontrol 

parametresine ve bir adet enerji fonksiyonuna sahip iki 

boyutlu bir sistemdir. Uygun enerji fonksiyonu seçimi ile 

global olarak kararlı sistemler elde etmek mümkün 

olmaktadır. Bu sistemler farklı kontrol parametreleri için 

gradyan sistem, Hamilton sistemi veya kararlı bir limit 

çevrime sahip bir sistem olabilmektedir. Hamilton sistemi 

ve limit çevrim durumlarında sistem farklı uygulamalar için 

lineer olmayan osilatör olarak kullanılabilir. Basit bir enerji 

fonksiyonu seçimiyle örnek bir sistem elde edilip sistemin 

dinamikleri simülasyonlarla doğrulanmıştır. Simülasyonu 

yapılan sistemin donanımsal doğrulaması ise alanda 

programlanabilir kapı dizisi (FPGA) kullanılarak 

gerçekleştirilmiştir. 

Keywords: Nonlinear oscillator, Gradient system, 

Hamiltonian system, Limit cycle, FPGA 

 Anahtar kelimeler: Lineer olmayan osilatör, Gradyan 

sistem, Hamilton sistemi, Limit çevrim, FPGA 

1 Introduction 

Nonlinear oscillators play a fundamental part in many 

research areas and disciplines including engineering, 

robotics, chemistry, biology, physics, and mechanics [1–8]. 

For example, the well-known Van der Pol oscillator is used 

in many electrical circuits as a self-excitatory or forced 

oscillator [9, 10]. Oscillators like Van der Pol fall into the 

category of oscillators having a stable limit cycle [11]. A 

stable limit cycle is a periodic orbit that attracts nearby orbits 

causing fixed amplitude oscillations immune to external 

perturbations. Oscillators with limit cycles are widely used 

to model biological neuron models and many neuromorphic 

applications rely on them [12–15]. Central pattern generators 

and spiking neural networks are such applications [16, 17]. 

Besides neuronal activity, limit cycle oscillators are also 

used to model other biological phenomena like heartbeat 

signals and glycolysis [11, 18]. 

However, the design and analysis of limit cycles are not 

often easy due to their nonlinear properties. For example, the 

set of initial conditions that are attracted to the limit cycle is 

called the basin of attraction, and it is not always possible to 

find the basin of attraction explicitly. Most of the time, 

numerical methods are utilized to approximate the basin of 

attraction [19]. Knowing the basin of attraction is crucial for 

applications relying on limit cycle oscillators because initial 

conditions outside the basin of attraction or excessive 

external perturbations cause unwanted behavior instead of 

stable oscillations. 

A limit cycle is called globally stable if its basin of 

attraction is the whole domain of the system (excluding 

isolated equilibria). Due to this property, globally stable limit 

cycles always produce stable oscillations regardless of the 

initial conditions or external perturbations. Therefore, 

globally stable limit cycle oscillators are more desirable for 

real-world applications. Again, it is not an easy task to design 

and analyze a globally stable limit cycle attractor. 

One other type of nonlinear oscillators falls into the 

category of Hamiltonian systems [20]. Unlike limit cycle 

oscillators having a single periodic orbit, the phase space of 

Hamiltonian systems is full of different periodic orbits. 

Moreover, unlike a limit cycle, Hamiltonian orbits do not 

attract nearby orbits. In practice, a limit cycle oscillator 

produces a fixed amplitude and fixed frequency oscillation 

regardless of the initial condition. On the other hand, a 

Hamiltonian oscillator produces oscillations with different 

amplitude and frequency depending on the initial conditions. 

https://orcid.org/0000-0001-9561-4651
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They can be used in applications or models where different 

oscillations are needed for different initial conditions. 

Simple harmonic oscillators are examples of Hamiltonian 

systems. 

Another type of nonlinear systems is called gradient 

systems [21]. Unlike limit cycle systems or Hamiltonian 

systems, such systems do not allow the existence of any 

periodic orbits within their domain. Instead, orbits settle into 

one of the equilibria. Even though the nature of these systems 

does not allow periodic orbits, such non-oscillatory behavior 

is still desired in applications like nonlinear control [22]. 

Due to the wide application areas of nonlinear oscillators, 

researchers from various backgrounds may want to utilize a 

limit cycle oscillator, a Hamiltonian system, or a gradient 

system depending on their needs. However, as mentioned 

before, it is hard to analyze these systems especially if the 

researcher is not specialized in the mathematical analysis of 

dynamical systems. Therefore, researchers from different 

backgrounds may not properly find and use the correct 

system. 

In this paper, a design template is presented to obtain 

two-dimensional ordinary differential equation-based 

systems that are capable of exhibiting all aforementioned 

behaviors. The obtained system can be a gradient system, a 

Hamiltonian system, or a system with a limit cycle by 

changing only two parameter values. Moreover, the single 

equilibrium of the gradient system and the limit cycle are 

globally stable, meaning that there is no need to calculate the 

basin of attractions. Using this template, researchers from 

different backgrounds may easily obtain gradient, 

Hamiltonian, and limit cycle behaviors on a single system 

without worrying about analytical details. Also, a field 

programmable gate array (FPGA) implementation is given to 

demonstrate the applicability of the obtained systems. 

The organization of the paper is as follows. In Section 2, 

the design template is introduced, and an example system is 

obtained using this template. Afterward, the numerical 

simulations for different behaviors of the obtained system 

are given. In Section 3, the FPGA implementation details of 

the obtained system are presented. Finally, the conclusions 

are given in Section 4. 

2 The design template and the numerical simulations 

The equations of the design template are given in 

Equation (1). 

 

�̇� = −𝐷1𝐸 + 𝜇(𝐷1𝐸 + 𝐷2𝐸) + 𝑎𝑦

�̇� = −𝐷2𝐸 + 𝜇(𝐷2𝐸 − 𝐷1𝐸) − 𝑎𝑥
 (1) 

 

Here, 𝜇 ∈ [0,1] and 𝑎 ∈ ℝ are the parameter values. 𝐷1 

represents partial derivative with respect to 𝑥; 𝐷2 represents 

partial derivative with respect to 𝑦. 𝐸 is the abbreviation for 

𝐸(𝑥, 𝑦) such that 𝐸:ℝ2 → ℝ is a function which represents 

the energy of the solutions. Even though this energy function 

may not have actual physical meaning with potential and 

kinetic parts, it is convenient for analyzing the global 

behavior of the solutions. If �̇� < 0, it means that the 

solutions lose energy. In other terms, solutions must settle 

into an equilibrium. If �̇� = 0, it means that the solutions 

preserve energy which indicates the existence of periodic 

solutions. 

The function 𝐸 must be chosen according to the 

following conditions. 

(1) 𝐸 should have continuous partial derivatives. 

(2) 𝐸 should be non-negative (𝐸 ≥ 0). 

(3) 𝐸 = 0 if and only if 𝑥 ∈ 𝐿 or 𝑥 is an equilibrium 

point. Here, 𝐿 is a closed curve and it should also 

depend on parameter 𝑎. 

(4) Closed curve 𝐿 should only exist for 𝑎 > 0. 

(5) 𝐷1𝐸. 𝑎𝑦 − 𝐷2𝐸. 𝑎𝑥 ≤ 0 for 𝑎 ∈ ℝ. 

As long as these conditions are satisfied, any function can 

be used to obtain a system with multiple dynamics. For the 

obtained systems, parameter µ introduces rotations to the 

phase plane as its value increases from zero. For 𝜇 = 1, the 

systems become Hamiltonian regardless of the value of 

parameter 𝑎. On the other hand, parameter 𝑎 introduces a 

limit cycle to the systems or makes the systems gradient. For 

𝑎 < 0, the systems are gradient, and the solutions settle into 

a globally stable equilibrium. For 𝑎 > 0, the systems have a 

globally stable limit cycle. For 𝑎 = 0, the system undergoes 

bifurcation for the appearance of the limit cycle. 

These statements can be proven mathematically by 

investigating the �̇� value in Equation (2). 

 
𝑑𝐸

𝑑𝑡
= 𝐷1𝐸. �̇� + 𝐷2𝐸. �̇� (2) 

 

For 0 ≤ 𝜇 < 1, placing �̇� and �̇� expressions of Equation 

(1) into the Equation (2) yields �̇� < 0. This means that the 

solutions should asymptotically converge to the equilibrium 

if 𝐿 does not exist (𝑎 < 0). If 𝐿 exists (𝑎 > 0), then the 

solutions asymptotically converge to the closed curve 𝐿. 

Since closed curve 𝐿 is not a set of equilibria of the system 

in Equation (1), the 𝐿 should act as a stable limit cycle. 

For 𝜇 = 1, placing �̇� and �̇� into the Equation (2) yields 

�̇� = 0 making the system Hamiltonian. As a special case, for 

𝜇 = 1 and 𝑎 = 0, the function 𝐸 is exactly the same with the 

Hamiltonian function. 

2.1 An example system 

The simplest choice of the function 𝐸 is given in 

Equation (3). 

 

𝐸(𝑥, 𝑦) = (𝑥2 + 𝑦2 − 𝑎)2 (3) 

 

It is trivial to show that this function satisfies conditions 

(1) and (2). Notice that 𝐸 = 0 if and only if 𝑥2 + 𝑦2 − 𝑎 =
0. This is the equation of a circle with radius a. Therefore, 

the closed curve 𝐿 of the function 𝐸 corresponds to a circle 

with radius 𝑎. Hence, the function satisfies conditions (3) 

and (4). The final condition can be checked by using 𝐷1𝐸 

and 𝐷2𝐸 values given in Equation (4) (constant coefficients 

are ignored since they only affect the speed of the solutions). 

 

𝐷1𝐸 = 𝑥(𝑥2 + 𝑦2 − 𝑎)

𝐷2𝐸 = 𝑦(𝑥2 + 𝑦2 − 𝑎)
 (4) 
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(a) (b) 

Figure 1. Gradient behavior for 𝑎 < 0 and 𝜇 = 0 (a) 𝑥(𝑡) graphs, (b) phase plane 

Placing these expressions into the template equations 

gives us the system in Equation (5). 

 

�̇� = −𝑥(𝑥2 + 𝑦2 − 𝑎) + 𝜇(𝑥 + 𝑦)(𝑥2 + 𝑦2 − 𝑎)
+𝑎𝑦

�̇� = −𝑦(𝑥2 + 𝑦2 − 𝑎) + 𝜇(𝑦 − 𝑥)(𝑥2 + 𝑦2 − 𝑎)
−𝑎𝑥

 (5) 

 

Since the shape of the curve 𝐿 is a circle, the limit cycle 

will be a circle in the phase plane. Therefore, the oscillations 

will be sinusoidal. By choosing another function with a 

different 𝐿, limit cycles with different shapes can be easily 

obtained. 

2.2 Gradient behavior 

The obtained system in Equation (5) should act as a 

gradient system for 𝑎 < 0 and 𝜇 ≠ 1. In this case, the origin 

is a globally stable equilibrium, and all solutions should 

asymptotically converge to the origin regardless of the initial 

conditions. 

The simulation results for the gradient behavior are given 

in Figures 1 and 2. Various solutions are depicted in these 

figures for the initial conditions (2, 0), (1.4, 1.4), (0, 2), (-1.4, 

1.4), (-2, 0), (-1.4, -1.4), (0, -2), and (1.4, -1.4). Figure 1 

shows the solutions for 𝑎 = −1 and 𝜇 = 0. The solutions 

quickly converge to the origin as expected. Figure 2 

demonstrates what happens if 𝜇 value is increased from zero. 

For 𝑎 = −1 and 𝜇 = 0.8 the phase plane in Figure 2b has 

more rotations than the phase plane in Figure 1b. Due to the 

increased rotations, the solutions converge to zero more 

slowly as seen in Figure 2a. 

2.3 Hamiltonian behavior 

The obtained system in Equation (5) should act as a 

Hamiltonian system for 𝜇 = 1 regardless of the value of 

parameter 𝑎. In this case, each initial condition should cause 

a separate periodic solution. Therefore, the phase plane of 

the system should be full of closed orbits. 

The simulation results for Hamiltonian behavior are 

given in Figure 3. The solutions are calculated for the initial 

conditions (0.5, 0), (1, 0), (1.5, 0), and (2, 0). As seen from 

Figure 3a each initial condition yields a different oscillation 

with different amplitude and frequency. Therefore, each 

initial condition has its own closed orbit in the phase plane. 

This can be seen in Figure 3b. 

Changing the parameter 𝑎 has no effect on the solutions 

as long as 𝜇 = 1. Hence, the same figures are obtained for 

different 𝑎 values. However, it must be noted that the 

parameter 𝑎 may change the shape of the closed orbits for 

other function 𝐸 choices.

 

  
(a) (b) 

Figure 2. Gradient behavior for 𝑎 < 0 and 𝜇 = 0.8 (a) 𝑥(𝑡) graphs, (b) phase plane 
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(a) (b) 

Figure 3. Hamiltonian behavior for 𝑎 = −1 and 𝜇 = 1 (a) 𝑥(𝑡) graphs, (b) phase plane 

2.4 Limit cycle behavior 

The obtained system in Equation (5) should act as a limit 

cycle system for 𝑎 > 0 and 𝜇 ≠ 1. In this case, a globally 

stable limit cycle appears causing stable oscillations with 

constant amplitude and frequency regardless of the initial 

conditions (except the origin which is an unstable 

equilibrium). Due to the particular choice of the function 𝐸 

in Equation (3), the amplitude of the oscillations should be 

√𝑎. This may not be the case for other energy functions. 

The simulation results for the limit cycle behavior are 

given in Figures 4 and 5. The simulations are performed for 

the initial conditions (2, 2), (-2, 2), (-2, -2), (2, -2), (0.2, 0.2), 

and (-0.2, -0.2). Figure 4 shows the solutions for 𝑎 = 1 and 

𝜇 = 0. As seen from Figure 4a, all initial conditions settle 

into the stable limit cycle after some time. This can be seen 

more clearly from the phase plot given in Figure 4b. 

Increasing the parameter 𝑎 increases the amplitude of the 

oscillations. Increasing the parameter 𝜇 increases the 

rotations in the phase plane. This just prolongs the settling 

time, but solutions eventually settle into the limit cycle. Both 

of these situations are demonstrated in Figure 5 for parameter 

values 𝑎 = 2 and 𝜇 = 0.8. 

 

  
(a) (b) 

Figure 4. Limit cycle behavior for 𝑎 = 1 and 𝜇 = 0 (a) 𝑥(𝑡) graphs, (b) phase plane 

 

  
(a) (b) 

Figure 5. Limit cycle behavior for 𝑎 = 2 and 𝜇 = 0.8 (a) 𝑥(𝑡) graphs, (b) phase plane 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1192-1200 

İ. Öztürk 

 

1196 

 

3 FPGA implementation 

Field programmable gate array (FPGA) is a 

reconfigurable digital integrated circuit. It can be 

reconfigured for different hardware designs, so it is very 

suitable for rapid prototyping. For this reason, the system in 

Equation (5) is implemented using an FPGA chip. 

Since FPGA is a digital hardware, the system in Equation 

(5) should be discretized using an integration method. 

Euler’s method is widely preferred for this purpose due to its 

implementation simplicity [23]. Even though this method is 

reliable for gradient and limit cycle systems, it is not suitable 

for Hamiltonian systems. Since each initial condition yields 

a different oscillation in Hamiltonian systems, integration 

errors cause a drift in the solutions. This drift constantly 

changes the amplitude of the oscillations resulting in a 

completely different behavior. The integration errors of 

Euler’s method are too high for Hamiltonian systems. 

Therefore, this method cannot be used for our purposes. 

Usually, symplectic integrators are preferred for the 

discretization of Hamiltonian systems [24]. However, these 

methods are either defined for separable Hamiltonian 

systems or they are implicit methods. The Hamiltonian case 

of the proposed template is not separable. Hence, easier and 

explicit separable symplectic methods cannot be used. On 

the other hand, other implicit symplectic methods involve 

finding roots in each calculation step. This is hard to 

implement on FPGA and calculations would consume many 

precious clock cycles. For these reasons, a non-symplectic 

but better integration method will be used for the 

discretization. 

Explicit midpoint is another discretization method that 

involves two steps for each calculation [25]. This method is 

slightly more complicated than Euler’s method, but it has far 

better performance with the Hamiltonian systems. As a 

matter of fact, all of the simulations in Section 2 are 

performed using the explicit midpoint method. However, it 

is still not a symplectic integrator, so its long-term stability 

is problematic with the Hamiltonian systems. To remedy 

this, additional hardware is designed to keep track of the 

integration errors when the parameter 𝜇 is set to 1. With this 

additional hardware, when the solutions come near the initial 

conditions, the difference from the initial conditions is 

calculated. When the difference is below some small 

threshold value, the next values of the solutions are reset to 

the initial conditions. This way, the oscillations do not drift 

away due to the accumulating integration errors, and long 

term stability is achieved. For all practical purposes, this is 

not different than using a symplectic integrator. 

The explicit midpoint method is described in Equation 

(6). 

 

𝑘1 = 𝑓(𝑡𝑛, 𝑢𝑛)

𝑘2 = 𝑓(𝑡𝑛 + 𝛥 𝑡 2⁄ , 𝑢𝑛 + (𝛥 𝑡 2⁄ )𝑘1)

𝑢𝑛+1 = 𝑢𝑛 + 𝛥𝑡𝑘2

 (6) 

 

Here, 𝑓:ℝ2 → ℝ2 represents the right-hand side of the 

system in Equation (5), and 𝑢 = (𝑥, 𝑦) represents points in 

ℝ2. As it is seen, it requires two steps for calculations. 

Instead of using similar hardware for each step, an integrator 

is designed which uses the same hardware for each step. This 

way, the area usage is reduced. The integrator design is given 

in Figure 6. This integrator uses two clock cycles for the 

calculations. The output is connected to D flip flops, which 

are enabled every two clock cycles with an activator. This 

allows outputs to be updated after the calculations finished. 

In the first clock cycle, 𝛥𝑡_in input takes 𝛥 𝑡 2⁄  value; 𝑓_in 

input takes 𝑢𝑛 value. In the second clock cycle, 𝛥𝑡_in input 

takes 𝛥𝑡 value; 𝑓_in input takes the output of the previous 

calculation stored in a separate register. This design reduces 

the area consumption, which is a very important design 

consideration for FPGAs. 

 

 

Figure 6. The integrator hardware 

 

The block diagram of the FPGA implementation is given 

in Figure 7. The implementation consists of three main 

blocks. The leftmost block is the PLL (Phase Locked Loop) 

for clock generation. It feeds 1 MHz digital clock signal to 

other blocks. The middle block is the VHDL (Very High-

Speed Integrated Circuit Hardware Description Language) 

implementation of the integrator in Figure 6. The integration 

is performed using 32-bit fixed-point arithmetic (Q7.24). 

Even though it seems that Equation (5) has many terms, the 

expression (𝑥2 + 𝑦2 − 𝑎) is repeated. So, only one hardware 

is used to calculate this value. The step size 𝛥𝑡 is chosen as 

0.01. 

 

 

Figure 7. The block diagram of the FPGA implementation 
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The integrator block has two outputs representing 𝑥 and 

𝑦 values of the Equation (5). These outputs are connected to 

the offset block for D/A (digital to analog) conversion. Since 

the D/A converters are 8-bit, 32-bit calculations are 

converted to 8-bit when sent to the offset block. The offset 

block simply adds an offset value to these 8-bit values. This 

offset causes generation of 2.5V DC offset voltage at the 

output of the D/A converters. This offset voltage is necessary 

because the D/A converters operate by a +5V single supply 

voltage. The offset voltage allows signals to swing around 

2.5V. 

The experimental setup is shown in Figure 8. The 

implementation is performed on Altera DE0 development 

board which contains Cyclone III FPGA chip 

(EP3C16F484C6). This FPGA has limited resources, but the 

design can easily fit inside such a low-cost FPGA. The PCB 

(printed circuit board) in the lower left corner of the figure 

contains two D/A converter chips. The outputs of the D/A 

convertors are observed with a two-channel oscilloscope. 

The implementation results are summarized in Table 1. Since 

the Hamiltonian case requires additional hardware for the 

reset operation, the results for the Hamiltonian case are given 

separately. 

 

 

Figure 8. The experimental setup 

Table 1. FPGA implementation results 

Parameters Hamiltonian Gradient / Limit Cycle 

Area Consumption 

(Logic Elements) 
2645 (17%) 2259 (15%) 

Memory Usage (Flip 
Flop) 179 (1%) 145 (1%) 

Multiplier Usage 64 (57%) 64 (57%) 

Maximum Frequency 11.75 MHz 12.27 MHz 

 

The oscilloscope views of the gradient case for the 

parameter values 𝜇 = 0 and 𝑎 = −1 are presented in Figure 

9. For all views, the upper signal is the channel 1 (CH1) of 

the oscilloscope and it corresponds to the 𝑥 values. The lower 

signal, on the other hand, is the channel 2 (CH2) of the 

oscilloscope and it corresponds to the 𝑦 values. 

The result for the initial condition (1.4, -1.4) is seen in 

Figure 9a. Similarly, the result for the initial condition (2, 

1.4) is seen in Figure 9b. Since convergence is too fast, it is 

not possible to observe the convergence from the initial 

conditions to zero using the oscilloscope. Therefore, the 

gradient case observation in both figures are straight lines. 

As predicted, the orbits settle into the equilibrium regardless 

of the initial conditions. 

The oscilloscope views of the Hamiltonian case are given 

in Figure 10 for the parameter values 𝜇 = 1 and 𝑎 = −1. In 

this figure results for different initial conditions are given. 

Figures 10a and 10b are the results for the initial condition 

(0.5, 0). On the other hand, Figures 10c and 10d are the 

results for the initial condition (1, 0). As it is seen from 

Figures 10a and 10c, the amplitude and the frequency of the 

oscillation are increased for the latter initial condition. The 

exact values of the frequency are written at the top right 

corner of Figures 10a and 10c. As expected, different initial 

conditions yield an oscillation with different frequency and 

amplitude. This is the expected behavior for the Hamiltonian 

case. Also, it should be noted that the oscillations are stable, 

and they do not drift away with time due to the integration 

errors. 

 

 

 

  
(a) (b) 

Figure 9. Oscilloscope view of the gradient behavior outputs: (a) for the initial condition (1.4, -1.4); (b) for the 

initial condition (2, 1.4) 
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(a) (b) 

  
(c) (d) 

Figure 10. Oscilloscope views of the Hamiltonian behavior outputs: (a) and (b) are for the initial condition (0.5, 

0); (c) and (d) are for the initial condition (1, 0) 

Finally, the oscilloscope views of the limit cycle case are 

given in Figure 11 and Figure 12. The results for the 

parameter values 𝜇 = 0, 𝑎 = 1, and the initial condition (2, 

-2) are presented in Figures 11a and 11b. The results for the 

initial condition (0.2, -0.2) under the same parameter values 

are shown in Figures 11c and 11d. As it is seen, different 

initial conditions yield the same oscillation and changing the 

initial conditions does not change the frequency or the 

amplitude of the oscillation. 

For the limit cycle case, oscillations with different 

amplitude and frequency can be obtained by changing the 

parameter 𝑎. Figure 12 demonstrates this case for the 

parameter values 𝜇 = 0.8, 𝑎 = 2 and the initial condition 

(0.2, 0.2). As it is seen, the amplitude and the frequency of 

the oscillation are different from the results in Figure 11. 

The FPGA implementation confirms the numerical 

simulations in Section 2. All behaviors of the obtained 

systems can be successfully used in practical applications.

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Oscilloscope views of the limit cycle behavior outputs: (a) and (b) are for the initial condition (2, -2); 

(c) and (d) are for the initial condition (0.2, -0.2) 
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(a) (b) 

Figure 12. Oscilloscope views of the limit cycle behavior outputs for the parameter values 𝜇 = 0.8 and 𝑎 = 2 

4 Conclusions 

The proposed design template can help researchers to 

design their own nonlinear oscillators without delving into 

the details of the dynamical system analysis. This is 

especially helpful because nonlinear oscillators are needed in 

many disciplines, but researchers may not be too familiar 

with dynamical systems. The obtained systems are globally 

stable, so they can be used without concerning about their 

basin of attractions. The obtained systems can exhibit three 

main behaviors of dynamical systems namely gradient, 

Hamiltonian, and limit cycle behavior. Therefore, rich 

dynamics are observed with the same system. Oscillators 

with different shapes can be obtained by choosing different 

energy functions. The amplitude and the frequency of the 

oscillations can be adjusted by changing the parameter 

values or the initial conditions depending on the chosen 

behavior. Also, the FPGA implementation shows that the 

obtained systems can be used in practical applications. 

Especially, the solution presented in Section 3 for the long-

term stability problem of the Hamiltonian systems can be 

helpful to the practical applications of Hamiltonian systems. 
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