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ABSTRACT

In this study, we discuss metallic structures on product manifolds and derive the Chen-Ricci
inequalities for remarkable submanifolds determined by the behaviour of their tangent bundles
with regard to the action of the metallic structure in a locally decomposable metallic Riemannian
manifold whose components are spaces of constant curvature. Moreover, the equality cases are
considered in order to characterize these submanifolds.
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1. Introduction

The (p, q)-metallic number [10, 11, 12, 13], also called the metallic ratio, is a special number being the positive
solution of the equation of degree 2

x2 − px− q = 0,

where p, q ∈ Z+. It is denoted by σp,q, that is, σp,q =
p+

√
p2+4q

2 . By extending the (p, q)-metallic number σp,q to
tensor fields of type (1, 1) on differentiable manifolds, the concept of a metallic structure [27] was defined by
Crâşmăreanu and Hreţcanu in order to realize the idea of investigating its effect on differential geometry.

Recently, metallic structures on Riemannian manifolds have attracted great attention and been intensively
analyzed. Gezer and Karaman examined metallic Riemannian manifolds by means of a particular operator
in [16]. Some different types of submanifolds of metallic Riemannian manifolds, such as invariant, anti-
invariant, slant, semi-slant, hemi-slant, bi-slant submanifolds were introduced and studied by Hreţcanu and
Blaga in [3, 22, 23, 24]. In [5], the metallic structure on the product of two metallic Riemannian manifolds
was characterized based on metallic maps and an equivalent condition was given for the warped product of
two locally decomposable metallic Riemannian manifolds to be a locally decomposable metallic Riemannian
manifold. In addition, a necessary and sufficient condition was obtained for the warped product of two metallic
Riemannian manifolds to have the invariant Ricci tensor with respect to the metallic structure. The authors also
investigated metallic conjugate connections with regard to the structural and virtual tensors of the metallic
structure and their action on invariant distributions in [4]. Özgür and Özgür studied the full classification of
metallic shaped hypersurfaces in real space forms [33] and Lorentzian space forms [34]. In [8], Choudhary and
Blaga established two sharp inequalities including the normalized scalar curvature and the Casorati curvature
for invariant, anti-invariant and slant submanifolds in metallic Riemannian real space forms and showed that
the equality case holds in both inequalities if and only if these submanifolds are invariantly quasi-umbilical,
that is, the equality case at every point is a characterization for such types of submanifolds to be invariantly
quasi-umbilical. Additionally, golden manifolds being the best known subclass of metallic manifolds were
explored in [2, 9, 15, 17, 18, 25, 26].
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On the other hand, inspired by Chen’s inequality [7, Theorem 4] between the shape operator and the mean
curvature of any isometric immersion in a real space form, Hong and Tripathi established a basic inequality,
which is called the Chen-Ricci inequality, comprising the Ricci curvature and the squared mean curvature
of any submanifold of a Riemannian manifold in [21]. The Chen-Ricci inequalities were created for some
submanifolds of different kinds of ambient manifolds [14, 19, 20, 28, 29, 30, 31, 32, 35, 36, 38].

The essential target of this paper is to search the construction of a locally decomposable metallic Riemannian
manifold and determine the Chen-Ricci inequalities for its invariant, anti-invariant, semi-invariant, slant, semi-
slant, hemi-slant and bi-slant submanifolds. Also, we show that the Chen-Ricci inequality is a useful tool to
obtain some geometric characterizations for each of the above mentioned submanifolds satisfying its equality
case.

The preparation of this paper is the following: Section 1 is devoted to introduction. In section 2, we
review some basic facts from Riemannian geometry, in particular metallic Riemannian manifolds and their
submanifolds. Section 3 is related to metallic structures on product manifolds. We give an equivalent condition
for metallic Riemannian manifolds to be a locally decomposable metallic Riemannian manifold. We obtain
a necessary and sufficient condition for both components of locally decomposable metallic Riemannian
manifolds to be an Einstein manifold or a space of constant curvature. We also get some results regarding
invariant and anti-invariant submanifolds in locally decomposable metallic Riemannian manifolds. In section
4, we establish the Chen-Ricci inequalities for well known submanifolds defined by the behaviour of their
tangent bundles in terms of the metallic structure in a locally decomposable metallic Riemannian manifold
under the assumption that the components of the ambient manifold are spaces of constant curvature. In
addition, we analyze the equality cases.

2. Preliminaries

This section contains some fundamental definitions, concepts, formulas, notations and results regarding
metallic Riemannian manifolds and their submanifolds which are needed for the paper.

A non-zero tensor field F̂ of type (1, 1) on a differentiable manifold M̂ is named a metallic structure if it yields
the equation

F̂ 2 = pF̂ + qI (2.1)

for p, q ∈ Z+, where I is the identity operator on TM̂ . In this case, the pair
(
M̂, F̂

)
is said to be a metallic

manifold. If any Riemannian manifold
(
M̂, ĝ

)
admits a metallic structure F̂ such that

ĝ
(
F̂X, Y

)
= ĝ

(
X, F̂Y

)
, (2.2)

or equivalenty

ĝ
(
F̂X, F̂Y

)
= pĝ

(
F̂X, Y

)
+ qĝ (X,Y ) (2.3)

for all X,Y ∈ Γ(TM), then the pair
(
ĝ, F̂

)
and the triple

(
M̂, ĝ, F̂

)
are called a metallic Riemannian structure and

a metallic Riemannian manifold, respectively [27]. Particulary, the triple
(
M̂, ĝ, F̂

)
is termed a locally decomposable

metallic Riemannian manifold if ∇̂ F̂ = 0, where ∇̂ stands for the Riemannian connection on M̂ [22].
Any metallic structure F̂ on a differentiable manifold M̂ defines two almost product structures on the same

manifold as follows [27]:

Φ̂1 =
2F̂ − pI

2σp,q − p
and Φ̂2 = − 2F̂ − pI

2σp,q − p
.

Conversely, if there exists an almost product structure Φ̂ on M̂ , then it induces two metallic structures on M̂
given by the following rules [27]:

F̂1 =
p

2
I +

2σp,q − p

2
Φ̂ and F̂2 =

p

2
I − 2σp,q − p

2
Φ̂.
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We consider any m-dimensional isometrically immersed submanifold M of an m̂-dimensional metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
. Then the tangent space TP M̂ at a point P ∈ M is decomposed as follows:

TP M̂ = TPM ⊕ TPM
⊥,

where TPM and TPM
⊥ are its tangent and normal spaces at P ∈ M , respectively. Hereafter for simplicity,

unless otherwise stated, we denote by the same notation ĝ the Riemannian metric induced on M .
For any X ∈ Γ (TM), we write

F̂X = TX +NX , (2.4)

where TX ∈ Γ (TM) and NX ∈ Γ
(
TM⊥). Hence, T is an endomorphism on TM and N is a normal bundle-

valued 1-form. Similarly, for any U ∈ Γ
(
TM⊥), we put

F̂U = tU + nU , (2.5)

where tU ∈ Γ (TM) and nU ∈ Γ
(
TM⊥). We also have [3]

ĝ (TX, Y ) = ĝ (X,TY ) (2.6)

and
ĝ (nU, V ) = ĝ (U, nV ) (2.7)

for all X,Y ∈ Γ (TM) and U, V ∈ Γ
(
TM⊥), i.e., T and n are ĝ-symmetric operators. It can be also shown that

the following relations hold [24]:
pT + qI = T 2 + tN , (2.8)

pN = NT + nN , (2.9)

pt = Tt+ tn (2.10)

and
pn+ qI = n2 +Nt. (2.11)

Let ∇ be the Riemannian connection on M . Then the Gauss and Weingarten formulas of M in M̂ are given,
respectively, by

∇̂XY = ∇XY + h (X,Y ) (2.12)

and
∇̂XU = −AUX +∇⊥

XU (2.13)

for all X,Y ∈ Γ(TM) and U ∈ Γ(TM⊥), where h is the second fundamental form, AU is the Weingarten map
with respect to U and ∇⊥ is the normal connection on M . Also, there exists a relation between h and A such
that

ĝ (h (X,Y ) , U) = ĝ (AUX,Y ) (2.14)

for all X,Y ∈ Γ(TM) and U ∈ Γ(TM⊥). The covariant derivative of h is defined by

(∇Xh) (Y,Z) = ∇⊥
Xh (Y,Z)− h (∇XY,Z)− h (Y,∇XZ) (2.15)

for all X,Y, Z ∈ Γ (TM), where ∇⊥ denotes the normal connection on M [1]. The squared norm of h is given by

∥h∥2 =

m∑
i=1

m∑
j=1

ĝ (h (Bi, Bj) , h (Bi, Bj)) , (2.16)

where {B1, . . . , Bm} is a local orthonormal frame for TM . The relative null space of M at a point P ∈ M is defined
by

NP = {XP ∈ TPM : h (XP , YP ) = 0 for all YP ∈ TPM} ,

which is also called the kernel of h at P ∈ M [6, 7]. The mean curvature vector H of M is given by

H =
1

m
trh, (2.17)
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where trh =
m∑
i=1

h (Bi, Bi). If h is identically zero, then M is called a totally geodesic manifold. If H = 0, we say that

then M is a minimal submanifold. Furthermore, M is named a totally umbilical submanifold if h (X,Y ) = ĝ (X,Y )H
for all X,Y ∈ Γ(TM) [37].

Let us denote by R̂ and R the Riemannian curvature tensors of M̂ and M , respectively. Then the Gauss,
Codazzi and Ricci equations are given, respectively, as follows:

ĝ
(
R̂ (X,Y )Z,W

)
= ĝ (R (X,Y )Z,W )− ĝ (h (X,W ) , h (Y,Z)) + ĝ (h (Y,W ) , h (X,Z)) , (2.18)

(
R̂ (X,Y )Z

)⊥
= (∇Xh) (Y,Z)− (∇Y h) (X,Z) (2.19)

and
ĝ
(
R̂ (X,Y )U, V

)
= ĝ

(
R⊥ (X,Y )U, V

)
+ ĝ ([AU , AV ]X,Y ) (2.20)

for all X,Y, Z,W ∈ Γ (TM) and U, V ∈ Γ
(
TM⊥), where R⊥ is the Riemannian curvature tensor of ∇⊥.

Moreover, if R̂ (X,Y )Z belongs to Γ (TM) for all X,Y, Z ∈ Γ (TM), then M is termed a curvature invariant
submanifold [37].

The Ricci tensor Ric of M is given by

Ric (X,Y ) =

m∑
i=1

ĝ (R (Bi, X)Y,Bi) (2.21)

for all X,Y ∈ Γ (TM), so the scalar curvature ρ of M is defined by

ρ =

m∑
i=1

Ric (Bi, Bi) , (2.22)

where {B1, . . . , Bm} is a local orthonormal frame for TM [1].
If M is a space of constant curvature c, then R is written in the following form:

R (X,Y )Z = c {ĝ (Y,Z)X − ĝ (X,Z)Y } (2.23)

for all X,Y, Z ∈ Γ (TM) [37].
We denote by T 1

PM the set of unit tangent vectors at a point P ∈ M in TPM , that is, T 1
PM =

{XP ∈ TPM : ĝ (XP , XP ) = 1}. If {b1, . . . , bm} is an orthonormal basis of TPM , then for a fixed index i ∈
{1, . . . ,m}, the Ricci curvature of the basis element bi, denoted by Ric (bi), is given by

Ric (bi) =

m∑
j ̸=i

Kij ,

where Kij stands for the sectional curvature of the 2-plane section Π2 spanned by the basis elements bi and bj
at P ∈ M for any i, j ∈ {1, . . . ,m} [20].

Let Πk be a k-plane section of TPM at a point P ∈ M . The k-th Ricci curvature of Πk at a unit tangent vector
XP is defined by

RicΠk
(XP ) = K12 +K13 + · · ·+K1k,

where XP is determined by a chosen orthonormal basis {b1, . . . , bm} of TPM such that b1 = XP [7]. We note that
if k = m, then Πm = TPM and RicΠm (XP ) is the usual Ricci curvature of XP ∈ T 1

PM , denoted by Ric (XP ).
Finally, we recall the concept of a bi-slant submanifold in metallic Riemannian manifolds.
Any isometrically immersed submanifold M of a metallic Riemannian manifold

(
M̂, ĝ, F̂

)
is called bi-slant

[23, 24] if there is a pair of orthogonal differentiable distributions Dθ1 and Dθ2 on M such that TM = Dθ1 ⊕Dθ2

and Dθ1 , Dθ2 are slant distributions with the Wirtinger angles θ1, θ2, respectively.
A bi-slant submanifold M of a metallic Riemannian manifold

(
M̂, ĝ, F̂

)
is called proper if its Wirtinger angles

θ1, θ2 ̸= 0, π
2 . Otherwise,

(a) If θ1 = θ2 = 0, then M is an invariant submanifold [3, 23, 24, 27],
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(b) If θ1 = θ2 = π
2 , then M is an anti-invariant submanifold [3, 23, 24],

(c) If θ1 = 0 and θ2 = π
2 , then M is a semi-invariant submanifold [23, 24],

(d) If θ1 = θ2 = θ and ĝ
(
F̂X, Y

)
= 0 for all X ∈ Γ

(
Dθ1

)
and Y ∈ Γ

(
Dθ2

)
, then M is a slant submanifold with

the Wirtinger angle θ [23, 24],
(e) If θ1 = 0 and θ2 ̸= 0, then M is a semi-slant submanifold [23, 24],
(f) If θ1 = π

2 and θ2 ̸= π
2 , then M is a hemi-slant submanifold [24].

We consider a bi-slant submanifold M of a metallic Riemannian manifold
(
M̂, ĝ, F̂

)
. Let π1 and π2 be

orthogonal projection operators on the slant distributions Dθ1and Dθ2 with the Wirtinger angles θ1, θ2,
respectively. For any X ∈ Γ (TM), we get

X = π1X + π2X .

Thus, (2.4) turns into

F̂X = π1TX + π2TX +NX = Tπ1X + Tπ2X +Nπ1X +Nπ2X

for any X ∈ Γ (TM). Furthermore, taking account of [23, Proposition 22], we have

(πAT )
2
πAX = cos2 θA(pπATπAX + qπAX), A = 1, 2 (2.24)

for any X ∈ Γ (TM).
Now, we present some non-trivial examples of bi-slant submanifolds in metallic Riemannian manifolds.

Example 2.1. We consider 10-dimensional Euclidean space R10 equipped with the usual inner product ⟨, ⟩. Let
i : M → R10 be the immersion by

i (u1, u2, u3, v1, v2) = (u1 cos t, u2 cos t, u3 cos t, u1 sin t, u2 sin t, u3 sin t, v1 − v2, v1 + v2, v1, v2) ,

where M =
{
(u1, u2, u3, v1, v2) : u1, u2, u3, v1, v2 ∈ R, t ∈

[
0, π

2

]}
. Thus, we find a local orthonormal frame

{B1, B2, B3, B4} for TM such that

B1 = cos t
∂

∂x1
+ sin t

∂

∂x4
, B2 = cos t

∂

∂x2
+ sin t

∂

∂x5
, B3 = cos t

∂

∂x3
+ sin t

∂

∂x6
,

B4 =
1√
3

(
∂

∂x7
+

∂

∂x8
+

∂

∂x9

)
, B5 =

1√
3

(
− ∂

∂x7
+

∂

∂x8
+

∂

∂x10

)
.

Let us define a tensor field F̂ of type (1, 1) on R10 by

F̂ (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (σx1, σx2, σx3, σ̂x4, σ̂x5, σ̂x6, σx7, σx8, σ̂x9, σ̂x10) ,

where σ is the (p, q)-metallic number and σ̂ = p− σ. In this situation, it is clear that the triple (R10, ⟨, ⟩ , F̂ ) is a
metallic Riemannian manifold.

If we take D1 = Span {B1, B2, B3} and D2 = Span {B4, B5}, then D1 and D2 are slant distributions with the
Wirtinger angles θ1 and θ2, respectively, where cos θ1 = σ cos2 t+σ̂ sin2 t√

σ2 cos2 t+σ̂2 sin2 t
and cos θ2 = p+σ√

3(2σ2+σ̂2)
. Hence, M is

a 5-dimensional bi-slant submanifold. Furthermore, it is obvious to verify that if we take t = 1
2 arccos

1
3 , then

the Wirtinger angles of D1 and D2 are both equal, i.e., θ1 = θ2, so M is a slant submanifold with the Wirtinger

angle θ1 = θ2 = arccos

(
p+σ√

3(2σ2+σ̂2)

)
.

Remark 2.1. Like in Example 2.1, we note that if the Wirtinger angles of the slant distributions are equal in any
bi-slant submanifold of a metallic Riemannian manifold, then it may be a slant submanifold; however, this fact
isn’t always true.

Example 2.2. Let F̂ be a tensor field of type (1, 1) on 8-dimensional Euclidean space
(
R8, ⟨, ⟩

)
by

F̂ (x1, x2, x3, x4, x5, x6, x7, x8) =

(
p

2
x1 +

√
∆

2
x6,

p

2
x2 +

√
∆

2
x5,

p

2
x3 +

√
∆

2
x8,

p

2
x4 +

√
∆

2
x7,

p

2
x5 +

√
∆

2
x2,

p

2
x6 +

√
∆

2
x1,

p

2
x7 +

√
∆

2
x4,

p

2
x8 +

√
∆

2
x3

)
,

dergipark.org.tr/en/pub/iejg 664

https://dergipark.org.tr/en/pub/iejg


M. Gök

where ⟨, ⟩ is the dot product on R8, ∆ = p2 + 4q and p, q ∈ Z+. It is explicit to check that the triple (R8, ⟨, ⟩ , F̂ ) is
a metallic Riemannian manifold.

We consider the immersion i from M into R8 given by

i (u1, u2, v1, v2) = (u1 cos t1 − u2 sin t1, u1 sin t1 + u2 cos t1, u1 cos t2 − u2 sin t2, u1 sin t2 + u2 cos t2,

v1 cos t2 − v2 sin t2, v1 sin t2 + v2 cos t2, v1 cos t1 − v2 sin t1, v1 sin t1 + v2 cos t1) ,

where M =
{
(u1, u2, v1, v2) : u1, u2, v1, v2 ∈ R, t1, t2 ∈

(
0, π

2

]}
. In this case, we find a local orthonormal frame

{B1, B2, B3, B4} for TM such that

B1 =
1√
2

(
cos t1

∂

∂x1
+ sin t1

∂

∂x2
+ cos t2

∂

∂x3
+ sin t2

∂

∂x4

)
,

B2 =
1√
2

(
− sin t1

∂

∂x1
+ cos t1

∂

∂x2
− sin t2

∂

∂x3
+ cos t2

∂

∂x4

)
,

B3 =
1√
2

(
cos t2

∂

∂x5
+ sin t2

∂

∂x6
+ cos t1

∂

∂x7
+ sin t1

∂

∂x8

)
,

B4 =
1√
2

(
− sin t2

∂

∂x5
+ cos t2

∂

∂x6
− sin t1

∂

∂x7
+ cos t1

∂

∂x8

)
.

If we take D1 = Span {B1, B4} and D2 = Span {B2, B3}, then D1 and D2 are slant distributions with the
same Wirtinger angle θ, where cos θ =

√
∆

∆+p2 cos (t1 + t2). Thus, M is a 4-dimensional bi-slant submanifold;
howewer, it isn’t a slant submanifold.

Example 2.3. Let R8 be 8-dimensional Euclidean space equipped with the usual inner product ⟨, ⟩. We define a
tensor field F̂ of type (1, 1) on R8 by

F̂ (x1, x2, x3, x4, x5, x6, x7, x8) =

(
p

2
x1 +

√
∆

2
x5,

p

2
x2 +

√
∆

2
x6,

p

2
x3 +

√
∆

2
x7,

p

2
x4 +

√
∆

2
x8,

p

2
x5 +

√
∆

2
x1,

p

2
x6 +

√
∆

2
x2,

p

2
x7 +

√
∆

2
x3,

p

2
x8 +

√
∆

2
x4

)
,

where ∆ = p2 + 4q and p, q ∈ Z+. In this case, the triple (R8, ⟨, ⟩ , F̂ ) is a metallic Riemannian manifold.
We consider a submanifold M of (R8, ⟨, ⟩ , F̂ ) determined by the following immersion i : M → R8:

i (u1, u2, v1, v2) = (u1, v1, v1, u1, u2 cos t1, u2 sin t1, v2 cos t2, v2 sin t2) ,

where M =
{
(u1, u2, v1, v2) : u1, u2, v1, v2 ∈ R, t1, t2 ∈

(
0, π

2

]}
. Hence, TM has a local orthonormal frame

{B1, B2, B3, B4} such that

B1 =
1√
2

(
∂

∂x1
+

∂

∂x4

)
, B2 =

(
cos t1

∂

∂x5
+ sin t1

∂

∂x6

)
,

B3 =
1√
2

(
∂

∂x2
+

∂

∂x3

)
, B4 =

(
cos t2

∂

∂x7
+ sin t2

∂

∂x8

)
.

If we put D1 = Span {B1, B2} and D2 = Span {B3, B4}, then D1 and D2 are slant distributions with the

Wirtinger angles θ1 and θ2, respectively, where cos θ1 =
√

∆
2(∆+p2) cos t1 and cos θ2 =

√
∆

2(∆+p2) cos t2. Thus, M
is a 4-dimensional bi-slant submanifold. In particular, if we take θ1 = θ2, then it is seen that M isn’t a slant
submanifold.

Remark 2.2. As it is understood from the above two examples, it is worth noting that if both distributions are
slant ones with the same Wirtinger angle in any bi-slant submanifold of a metallic Riemannian manifold, then
it isn’t necessarily a slant submanifold.

665 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Metallic Structures on Product Manifolds and Chen-Ricci Inequalities

3. Metallic structures on product manifolds

In this section, we examine locally decomposable metallic Riemannian manifolds. We also obtain some
important results on their invariant and anti-invariant submanifolds.

A metallic structure F̂ on a differentiable manifold M̂ induces two maps denoted by r̂1 and r̂2, respectively,
as follows:

r̂1 = − 1

2σp,q − p

(
(p− σp,q) I − F̂

)
(3.1)

and
r̂2 =

1

2σp,q − p

(
σp,qI − F̂

)
, (3.2)

where σp,q is the (p, q)-metallic number and I is the identity operator on TM̂ . Hence, the maps r̂1 and r̂2 verify
that the following relations:

r̂1 + r̂2 = I , r̂1
2 = r̂1, r̂2

2 = r̂2, r̂1 r̂2 = r̂2 r̂1 = 0. (3.3)

That is, r̂1 and r̂2 are projection operators. Moreover, F̂ is stated in the following form:

F̂ = σp,q r̂1 + (p− σp,q) r̂2, (3.4)

from which we have
F̂ r̂1 = r̂1 F̂ = σp,q r̂1 (3.5)

and
F̂ r̂2 = r̂2 F̂ = (p− σp,q) r̂2. (3.6)

We denote by D̂1 and D̂2 the distributions associated with r̂1 and r̂2, respectively. That is, we have

D̂1 =
⋃

P̂∈M̂

D̂1
P̂ , D̂1

P̂ =
{
XP̂ ∈ TP̂ M̂ : F̂XP̂ = σp,qXP̂

}
(3.7)

and
D̂2 =

⋃
P̂∈M̂

D̂2
P̂ , D̂2

P̂ =
{
XP̂ ∈ TP̂ M̂ : F̂XP̂ = (p− σp,q)XP̂

}
. (3.8)

Theorem 3.1. Let
(
M̂, ĝ, F̂

)
be a metallic Riemannian manifold. Then M̂ is a locally decomposable metallic Riemannian

manifold such that M̂ = M̂1 × M̂2 if and only if the distributions D̂1 and D̂2 are parallel with respect to the Riemannian
connection ∇̂, where M̂1 and M̂2 are integral manifolds of D̂1 and D̂2, respectively.

Proof. We assume that M̂ is a locally decomposable metallic Riemannian manifold. Let Y ∈ Γ
(
D̂1
)

. Because of

the fact that ∇̂ F̂ = 0, we obtain from (3.7) that

F̂ ∇̂XY = ∇̂X F̂ Y = σp,q∇̂XY ,

or equivalently

∇̂XY ∈ Γ
(
D̂1
)

(3.9)

for all X ∈ Γ
(
TM̂

)
. In other words, D̂1 is parallel with respect to ∇̂. Similarly, it can be proven that D̂2 is so.

The converse can be easily shown by use of (3.4). Consequently, the proof has been obtained.

Let
(
M̂, ĝ, F̂

)
be a locally decomposable metallic Riemannian manifold such that M̂ = M̂1 × M̂2. In this case,

the Riemannian metric ĝ can be expressed by

ĝ (X,Y ) = ĝ1 (r̂1X, r̂1Y ) + ĝ2 (r̂2X, r̂2Y )
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for all X,Y ∈ Γ
(
TM̂

)
, where ĝ1 and ĝ2 are the Riemannian metrics of M̂1 and M̂2, respectively. As well, it is

readily concluded from (3.5) and (3.6) that

ĝ
(
F̂X, Y

)
= σp,q ĝ1 (r̂1X, r̂1Y ) + (p− σp,q) ĝ2 (r̂2X, r̂2Y )

and
ĝ
(
F̂X, F̂Y

)
= σ2

p,q ĝ1 (r̂1X, r̂1Y ) + (p− σp,q)
2
ĝ2 (r̂2X, r̂2Y )

for all X,Y ∈ Γ
(
TM̂

)
. We also put dim M̂1 = m̂1 and dim M̂2 = m̂2.

Theorem 3.2. Let
(
M̂, ĝ, F̂

)
be a locally decomposable metallic Riemannian manifold, where M̂ = M̂1 × M̂2 and

m̂1, m̂2 > 2. Then
(
M̂1, ĝ1

)
and

(
M̂2, ĝ2

)
are Einstein manifolds with the Ricci curvatures k̂1 and k̂2, respectively,

if and only if the Ricci tensor R̂ic of M̂ has the form

R̂ic (X,Y ) = λĝ (X,Y ) + µĝ
(
F̂X, Y

)
(3.10)

for all X,Y ∈ Γ
(
TM̂

)
, where λ =

−(p−σp,q)k̂1+σp,q k̂2

2σp,q−p and µ = k̂1−k̂2

2σp,q−p .

Proof. If M̂1 and M̂2 are Einstein manifolds with the Ricci curvatures k̂1 and k̂2, respectively, then we have

R̂ic
M̂1

= k̂1 ĝ1 (3.11)

and
R̂ic

M̂2

= k̂2 ĝ2, (3.12)

where R̂ic
M̂1

and R̂ic
M̂2

are the Ricci tensors of M̂1 and M̂2, respectively. In this case, it is laborless to deduce
from (3.5) and (3.6) that the relations in (3.11) and (3.12) can be expressed in the above form (3.10).

The converse follows directly from (3.5) and (3.6) by a simple computation. Consequently, the proof has been
completed.

Theorem 3.3. Let
(
M̂, ĝ, F̂

)
be a locally decomposable metallic Riemannian manifold, where M̂ = M̂1 × M̂2 and

m̂1, m̂2 > 2. Then
(
M̂1, ĝ1

)
and

(
M̂2, ĝ2

)
are spaces of constant curvatures ĉ1 and ĉ2, respectively, if and only if the

Riemannian curvature tensor R̂ of M̂ has the form

R̂ (X,Y )Z = a
{
ĝ (Y,Z)X − ĝ (X,Z)Y + ĝ

(
F̂ Y, Z

)
F̂X − ĝ

(
F̂X,Z

)
F̂ Y
}

(3.13)

+b
{
ĝ
(
F̂ Y, Z

)
X − ĝ

(
F̂X,Z

)
Y + ĝ (Y,Z) F̂X − ĝ (X,Z) F̂ Y

}
for all X,Y, Z ∈ Γ

(
TM̂

)
, where a =

−(p−σp,q)ĉ1+σp,q ĉ2
(q+1)(2σp,q−p) and b =

(1+(p−σp,q)
2)ĉ1−(1+σ2

p,q)ĉ2
2(q+1)(2σp,q−p) .

Proof. If M̂1 and M̂2 are spaces of constant curvatures ĉ1 and ĉ2, respectively, then we have

R̂M̂1 (r̂1X, r̂1Y ) r̂1Z = ĉ1 {ĝ1 (r̂1Y, r̂1Z) r̂1X − ĝ1 (r̂1X, r̂1Z) r̂1Y } (3.14)

and
R̂M̂2 (r̂2X, r̂2Y ) r̂2Z = ĉ2 {ĝ2 (r̂2Y, r̂2Z) r̂2X − ĝ2 (r̂2X, r̂2Z) r̂2Y } (3.15)

for all X,Y, Z ∈ Γ
(
TM̂

)
, where R̂M̂1 and R̂M̂2 are the Riemannian curvature tensors of M̂1 and M̂2, respectively.

By a direct computation, it seems from (3.5) and (3.6) that the relations in (3.14) and (3.15) can be worded in the
above form (3.13).

Conversely, if (3.13) holds, then we conclude from (3.5) and (3.6) that M̂1 and M̂2 are spaces of constant
curvatures ĉ1 and ĉ2, respectively. Therefore, the proof has been shown.
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Theorem 3.4. Let M be any invariant submanifold of a locally decomposable metallic Riemannian manifold
(
M̂, ĝ, F̂

)
,

where M̂ = M̂1 × M̂2. Then there exist two submanifolds M1 and M2 being totally geodesic in M such that M =

M1 ×M2 is a locally decomposable metallic Riemannian manifold, where M1 and M2 are submanifolds of M̂1 and M̂2,
respectively.

Proof. We define two subspaces of TPM at each point P ∈ M as follows:

D1
P = {XP ∈ TPM : JXP = σp,qXP } (3.16)

and
D2

P = {XP ∈ TPM : JXP = (p− σp,q)XP } , (3.17)

where J denotes the metallic structure on M . Then the subspaces given in (3.16) and (3.17) define two
distributions D1 =

⋃
P∈M

D1
P and D2 =

⋃
P∈M

D2
P , respectively. Considering the fact that ∇J = 0 for invariant

submanifolds of locally decomposable metallic Riemannian manifolds [3, Corollary 3.13], the parallelism of
D1 and D2 can be shown in similar way to the proof of Theorem 3.1. Let us denote by M1 and M2 the integral
manifolds of D1 and D2, respectively. Hence, from [1, Theorem 4.4], M1 and M2 are totally geodesic in M . Now,
we show that M1 and M2 are submanifolds of M̂1 and M̂2, respectively. If X ∈ Γ

(
D1
)
, then we infer from (3.1)

and (3.2) that r̂1X = X and r̂2X = 0. Thus, we get that X pertains to Γ
(
TM̂1

)
, i.e., M1 is a submanifold of M̂1.

By a similar argument as above, it can be demonstrated that M2 is a submanifold of M̂2. Therefore, the proof
has been completed.

From now on unless otherwise stated, we suppose that M̂1 and M̂2 are spaces of constant curvatures ĉ1 and
ĉ2, respectively, with m̂1, m̂2 > 2.

Theorem 3.5. Any invariant submanifold M of a locally decomposable metallic Riemannian manifold
(
M̂, ĝ, F̂

)
is

curvature invariant, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2).

Proof. In the light of that M is invariant, it follows from (3.13) that the Codazzi equation takes the form(
R̂ (X,Y )Z

)⊥
= 0

for all X,Y, Z ∈ Γ (TM), which refers that R̂ (X,Y )Z ∈ Γ (TM), i.e., M is a curvature invariant submanifold.

Lemma 3.1. Let M be an arbitrary m-dimensional submanifold of a locally decomposable metallic Riemannian manifold(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then the Ricci tensor Ric of M is given by

Ric (X,Y ) = a
{
(m− 1− q) ĝ (X,Y ) +

(
trF̂ − p

)
ĝ
(
F̂X, Y

)}
(3.18)

+b
{
trF̂ ĝ (X,Y ) + (m− 2) ĝ

(
F̂X, Y

)}
+mĝ (h (X,Y ) , H)−

m∑
i=1

ĝ (h (X,Bi) , h (Y,Bi))

for all X,Y ∈ Γ (TM), where {B1, . . . , Bm} is a local orthonormal frame for TM . Also, it concludes that the scalar
curvature ρ of M is given by

ρ = a
(
m (m− 1− q) +

(
trF̂ − p

)
trF̂
)
+ 2b (m− 1) trF̂ +m2 ∥H∥2 − ∥h∥2 . (3.19)

Proof. It follows from (3.13) that the Gauss equation for M in M̂ is given by

R (X,Y )Z = a
{
ĝ (Y,Z)X − ĝ (X,Z)Y + ĝ

(
F̂ Y, Z

)
F̂X − ĝ

(
F̂X,Z

)
F̂ Y
}

(3.20)

+b
{
ĝ
(
F̂ Y, Z

)
X − ĝ

(
F̂X,Z

)
Y + ĝ (Y,Z) F̂X − ĝ (X,Z) F̂ Y

}
+Ah(Y,Z)X −Ah(X,Z)Y
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for all X,Y, Z ∈ Γ (TM). Hence, using (2.2), (2.3), (2.14), (2.17) and (3.20), a direct computation shows us that
the Ricci tensor Ric defined by (2.21) is equal to (3.18). Besides, taking account of the expression of the scalar
curvature ρ in (2.22), we obtain from (2.16), (2.17) and (3.18) that (3.19) holds.

Lemma 3.2. Let M be any m-dimensional anti-invariant submanifold of an m̂-dimensional locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
. Then we have AF̂XY = 0 for all X,Y ∈ Γ (TM). Additionally, if m̂ = 2m, then M is

totally geodesic.

Proof. Using the fact that ∇̂ F̂ = 0, we obtain from the Gauss and Weingarten formulas that

−AF̂Y X +∇⊥
X F̂ Y = F̂∇XY + F̂ h (X,Y )

for all X,Y ∈ Γ (TM), from which we have

ĝ
(
AF̂Y X,Z

)
= −ĝ

(
F̂ h (X,Y ) , Z

)
(3.21)

for all Z ∈ Γ (TM). Since h is symmetric, we get from (3.21) that

AF̂Y X = AF̂XY (3.22)

for all X,Y ∈ Γ (TM). If (3.21) is used again, then the self adjointness of A states that

AF̂Y X = −AF̂XY (3.23)

for all X,Y ∈ Γ (TM). Therefore, it results from (3.22) and (3.23) that

AF̂Y X = 0. (3.24)

Besides, if m̂ = 2m, then
{
F̂X : X ∈ Γ (TM)

}
is a local frame for TM⊥. Hence, we obtain

ĝ
(
h (X,Z) , F̂ Y

)
= ĝ

(
AF̂Y X,Z

)
= 0,

which implies from (3.24) that h = 0, in other words, M is totally geodesic.

Theorem 3.6. Let M be any m-dimensional anti-invariant submanifold of a 2m-dimensional locally decomposable
metallic Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then M is a space of constant curvature a.

Proof. By means of the anti-invariance of M , Lemma 3.2 tells us that the Gauss equation given in (2.18) is
reduced to the form

R (X,Y )Z = a {ĝ (Y, Z)X − ĝ (X,Z)Y }

for all X,Y, Z ∈ Γ (TM), which implies from (2.23) that M is a space of constant curvature a.

Theorem 3.7. Let M be any m-dimensional anti-invariant submanifold of a 2m-dimensional locally decomposable
metallic Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then the Ricci tensor Ric and the scalar

curvature ρ of M are given by
Ric = a (m− 1− q) ĝ

and
ρ = am (m− 1− q) ,

respectively.

Proof. Using Lemmas 3.1 and 3.2, the proof can be easily obtained.
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4. Chen-Ricci inequalities for submanifolds of metallic Riemannian manifolds

In this section, we give the Chen-Ricci inequalities for invariant, anti-invariant, semi-invariant, slant, semi-
slant, hemi-slant and bi-slant submanifolds of a locally decomposable metallic Riemannian manifold whose
components are spaces of constant curvature.

We start by recalling the main theorem for Riemannian manifolds regarding the Chen-Ricci inequalities given
by Hong and Tripathi in [21].

Theorem 4.1. Let M be any m-dimensional submanifold of a Riemannian manifold
(
M̂, ĝ

)
. Then for any point P ∈ M ,

the following assertions hold:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤
1

4
m2 ∥HP ∥2 + R̂ic(TPM) (XP ) , (4.1)

where R̂ic(TPM) (XP ) is the m-th Ricci curvature of TPM at XP ∈ T 1
PM with respect to M̂ .

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.1) is valid if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0.

(c) The equality case in (4.1) is satisfied if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Let {b1, . . . , bm} be an orthonormal basis for TPM at a point P . We denote by K̂ij the sectional curvature of
the 2-plane section spanned by the basis elements bi and bj at P in M̂ for any i, j ∈ {1, . . . ,m}. Then by the help
of (3.13), a direct computation gives us that

K̂ij = K̂(bi ∧ bj) = a
{
1 + ĝ (Tbi, bi) ĝ (Tbj , bj)− ĝ2 (Tbi, bj)

}
+ b {ĝ (Tbi, bi) + ĝ (Tbj , bj)} (4.2)

for any i, j ∈ {1, . . . ,m}. Also, the squared norm of T at P is given by

∥Tbi∥2 =

m∑
j=1

ĝ2 (Tbi, bj) . (4.3)

Using (4.2) and (4.3), we get

R̂ic(TPM) (bi) =

m∑
j=1, j ̸=i

K̂ij

= a

{
m− 1 + ĝ (Tbi, bi)

m∑
j=1

ĝ (Tbj , bj)− ĝ2 (Tbi, bi)−
m∑
j=1

ĝ2 (Tbi, bj)

+ĝ2 (Tbi, bi)
}
+ b

{
(m− 1) ĝ (Tbi, bi) +

m∑
j=1

ĝ (Tbj , bj)− ĝ (Tbi, bi)

}
= a

{
m− 1 + ĝ (Tbi, bi) trT − ∥Tbi∥2

}
+ b {(m− 2) ĝ (Tbi, bi) + trT} .

Hence, we obtain that R̂ic(TPM) (XP ) is written in the following form:

R̂ic(TPM) (XP ) = a
{
m− 1 + ĝ (TXP , XP ) trT − ∥TXP ∥2

}
+ b {(m− 2) ĝ (TXP , XP ) + trT} (4.4)

for all XP ∈ T 1
PM .

Hereafter we denote by {b1, . . . , bm} the orthonormal basis of TPM corresponding to a local orthonormal
frame {B1, . . . , Bm} of TM at a point P .

Theorem 4.2. Let M be any m-dimensional submanifold of a locally decomposable metallic Riemannian manifold(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions are correct:

dergipark.org.tr/en/pub/iejg 670

https://dergipark.org.tr/en/pub/iejg


M. Gök

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1 + ĝ (TXP , XP ) trT − ∥TXP ∥2

}
(4.5)

+b {(m− 2) ĝ (TXP , XP ) + trT} .

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.5) holds if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Furthermore, provided that HP = 0, then XP ∈ T 1
PM satisfies the

equality case in (4.5) if and only if it belongs to NP .

(c) The equality case in (4.5) is valid if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Proof. Using the expression of R̂ic(TPM) (XP ) in (4.4), it can be easily obtained from Theorem 4.1 that the
assertions (a), (b) and (c) are correct.

Theorem 4.3. Let M be any m-dimensional bi-slant submanifold of a locally decomposable metallic Riemannian manifold(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions are valid:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− q

2∑
A=1

cos2 θA + 2ĝ (π1Tπ2XP , π1XP ) trT (4.6)

+

2∑
A=1

(
ĝ (πATπAXP , πAXP )

(
trT − p cos2 θA

)
+ q cos2 θA ∥π3−AXP ∥2

−2ĝ (πATπAXP , πATπ3−AXP )− ∥πATπ3−AXP ∥2
)}

+b

{
(m− 2)

(
2∑

A=1

ĝ (πATπAXP , πAXP ) + 2ĝ (π1Tπ2XP , π1XP )

)
+ trT

}
,

where π1 and π2 are the projection operators of TM onto the slant distributions Dθ1 and Dθ2 with the Wirtinger
angles θ1 and θ2, respectively.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.6) holds if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Furthermore, provided that HP = 0, then XP ∈ T 1
PM yields the

equality case in (4.6) if and only if it belongs to NP .

(c) The equality case in (4.6) is satisfied if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Proof. Using the main characterizations of the slant distributions Dθ1 and Dθ2 given in (2.24), we deduce from
(4.4) that R̂ic(TPM) (XP ) has the following form:

R̂ic(TPM) (XP ) = a

{
m− 1− q

2∑
A=1

cos2 θA + 2ĝ (π1Tπ2XP , π1XP ) trT

+

2∑
A=1

(
ĝ (πATπAXP , πAXP )

(
trT − p cos2 θA

)
+ q cos2 θA ∥π3−AXP ∥2

−2ĝ (πATπAXP , πATπ3−AXP )− ∥πATπ3−AXP ∥2
)}

+b

{
(m− 2)

(
2∑

A=1

ĝ (πATπAXP , πAXP ) + 2ĝ (π1Tπ2XP , π1XP )

)
+ trT

}

for all XP ∈ T 1
PM , where π1 and π2 are the projection operators of TM onto the slant distributions Dθ1 and Dθ2 ,

respectively. Thus, the proof follows immediately from Theorem 4.2.
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Theorem 4.4. Let M be any m-dimensional bi-slant submanifold of a locally decomposable metallic Riemannian manifold(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). If we establish a local orthonormal frame {B1, . . . , Bm} at a point P ∈ M for

TM such that

Dθ1 = Span

Bα = ± sec θ1π1TBα∥∥∥F̂Bα

∥∥∥


1≤α≤k

and Dθ2 = Span

Bk+β = ± sec θ2π2TBk+β∥∥∥F̂Bk+β

∥∥∥


1≤β≤l

,

where TM = Dθ1 ⊕Dθ2 and Dθ1 , Dθ2 are the slant distributions with the Wirtinger angles θ1, θ2, respectively, then the
following assertions hold:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− 1

2

2∑
A=1

(
pσθA cos2 θA + q cos2 θA (4.7)

+4ĝ (πATπAXP , πATπ3−AXP ) + 2 ∥πATπ3−AXP ∥2
)

+
1

2

(
2∑

A=1

σθA + 4ĝ (π1Tπ2XP , π1XP )

) k∑
α=1

σθ1
α +

l∑
β=1

σθ2
k+β


+b

1

2
(m− 2)

(
2∑

A=1

σθA + 4ĝ (π1Tπ2XP , π1XP )

)
+

k∑
α=1

σθ1
α +

l∑
β=1

σθ2
k+β

 ,

where σθ1 , σθ1
α ∈

{
p−

√
p2+4q sec2 θ1
2 sec2 θ1

,
p+

√
p2+4q sec2 θ1
2 sec2 θ1

}
and σθ2 , σθ2

k+β ∈
{

p−
√

p2+4q sec2 θ2
2 sec2 θ2

,
p+

√
p2+4q sec2 θ2
2 sec2 θ2

}
.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.7) is satisfied if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) =

0 for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Moreover, provided that HP = 0, then XP ∈ T 1
PM verifies the

equality case in (4.7) if and only if it belongs to NP .

(c) The equality case in (4.7) is valid if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Proof. Taking account of the chosen of local orthonormal frames of the slant distributions Dθ1 and Dθ2 ,

a direct computation gives us that ĝ (Tbα, bα) =
p±

√
p2+4q sec2 θ1
2 sec2 θ1

for any α ∈ {1, . . . , k} and ĝ (Tbk+β , bk+β) =

p±
√

p2+4q sec2 θ2
2 sec2 θ2

for any β ∈ {1, . . . , l}. Hence, putting XP = 1√
2
(b1 + bk+1) in (4.6), Theorem 4.4 tells us that the

assertions (a), (b) and (c) are true.

Remark 4.1. Taking into consideration that invariant, anti-invariant, semi-invariant, slant, semi-slant and hemi-
slant submanifolds are a non-proper bi-slant submanifold in terms of the Wirtinger angles of the distributions
involved in its definition, with the help of Theorem 4.3, we can obtain the Chen-Ricci inequalities for such
types of submanifolds of metallic Riemannian manifolds whose components are spaces of constant curvature.

Choosing θ1 = θ2 = 0 in Theorem 4.3, we have the following two results for invariant submanifolds:

Theorem 4.5. Let M be any m-dimensional invariant submanifold of a locally decomposable metallic Riemannian
manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions hold:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤
1

4
m2 ∥HP ∥2 + a {m− 1− q + ĝ (TXP , XP ) (trT − p)}+ b {(m− 2) ĝ (TXP , XP ) + trT} . (4.8)

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.8) is valid if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Moreover, provided that HP = 0, then XP ∈ T 1
PM yields the

equality case in (4.8) if and only if it belongs to NP .
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(c) The equality case in (4.8) is verified if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Theorem 4.6. Let M be any m-dimensional invariant submanifold of a locally decomposable metallic Riemannian
manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). If we constitute a local orthonormal frame {B1, . . . , Bm} at a point

P ∈ M for TM such that Bi = ± F̂Bi∥∥∥F̂Bi

∥∥∥


1≤i≤m

,

then the following assertions are true:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤
1

4
m2 ∥HP ∥2 + a

{
m− 1− q + σ

(
m∑
i=1

σi − p

)}
+ b

{
σ (m− 2) +

m∑
i=1

σi

}
, (4.9)

where σ, σi ∈ {p− σp,q, σp,q}.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.9) is verified if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Additionally, provided that HP = 0, then XP ∈ T 1
PM satisfies the

equality case in (4.9) if and only if it belongs to NP .

(c) The equality case in (4.9) is verified if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Taking θ1 = θ2 = π
2 in Theorem 4.3, then the following result holds for anti-invariant submanifolds:

Theorem 4.7. Let M be any m-dimensional anti-invariant submanifold of a locally decomposable metallic Riemannian
manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions are valid:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤
1

4
m2 ∥HP ∥2 + a (m− 1) . (4.10)

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.10) holds if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Furthermore, provided that HP = 0, then XP ∈ T 1
PM verifies the

equality case in (4.10) if and only if it belongs to NP .

(c) The equality case in (4.10) is satisfied if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Corollary 4.1. Let M be any m-dimensional anti-invariant submanifold of a 2m-dimensional locally decomposable
metallic Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following

assertions are verified:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) = a (m− 1) . (4.11)

(b) P is a totally geodesic point.

Proof. The proof is a direct consequence of Lemma 3.2 and Theorem 4.7.

Putting θ1 = 0 and θ2 = π
2 in Theorem 4.3, we get the following two results for semi-invariant submanifolds:

Theorem 4.8. Let M be any m-dimensional proper semi-invariant submanifold of a locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions

are true:
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(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− q + ĝ (TXP , XP ) (trT − p) + q ∥π2XP ∥2

}
(4.12)

+b {(m− 2) ĝ (TXP , XP ) + trT} ,

where π2 denotes the projection operator of TM onto the anti-invariant distribution D⊥.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.12) is valid if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Moreover, provided that HP = 0, then XP ∈ T 1
PM satisfies the

equality case in (4.12) if and only if it belongs to NP .

(c) The equality case in (4.12) is verified if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Theorem 4.9. Let M be any m-dimensional proper semi-invariant submanifold of a locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). If we found a local orthonormal frame {B1, . . . , Bm}

at a point P ∈ M for TM such that

D = Span

Bα = ± F̂Bα∥∥∥F̂Bα

∥∥∥


1≤α≤k

and D⊥ = Span {Bk+β}1≤β≤l ,

where D and D⊥ are the invariant and anti-invariant distributions, respectively, then the following assertions are
satisfied:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤
1

4
m2 ∥HP ∥2 + a

{
m− 1− q

2
+

1

2
σ

(
k∑

α=1

σα − p

)}
+ b

{
1

2
σ (m− 2) +

k∑
α=1

σα

}
, (4.13)

where σ, σα ∈ {p− σp,q, σp,q}.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.13) is valid if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Additionally, provided that HP = 0, then XP ∈ T 1
PM yields the

equality case in (4.13) if and only if it belongs to NP .

(c) The equality case in (4.13) holds if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

If we take θ1 = θ2 = θ and ĝ
(
F̂X, Y

)
= 0 for all X ∈ Γ

(
Dθ1

)
and Y ∈ Γ

(
Dθ2

)
in Theorem 4.3, then the

following two results are derived for slant submanifolds:

Theorem 4.10. Let M be any m-dimensional proper slant submanifold with the Wirtinger angle θ of a locally
decomposable metallic Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M ,

the following assertions are correct:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− q cos2 θ + ĝ (TXP , XP )

(
trT − p cos2 θ

)}
(4.14)

+b {(m− 2) ĝ (TXP , XP ) + trT} .

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.14) holds if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Furthermore, provided that HP = 0, then XP ∈ T 1
PM verifies the

equality case in (4.14) if and only if it belongs to NP .

(c) The equality case in (4.14) is valid if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.
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Theorem 4.11. Let M be any m-dimensional proper slant submanifold with the Wirtinger angle θ of a locally
decomposable metallic Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). If we create a local orthonormal

frame {B1, . . . , Bm} at a point P ∈ M for TM such thatBi = ± sec θTBi∥∥∥F̂Bi

∥∥∥


1≤i≤m

,

then the following assertions hold:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− q cos2 θ + σθ

(
m∑
i=1

σθ
i − p cos2 θ

)}
(4.15)

+b

{
σθ (m− 2) +

m∑
i=1

σθ
i

}
,

where σθ, σθ
i ∈

{
p−

√
p2+4q sec2 θ

2 sec2 θ ,
p+

√
p2+4q sec2 θ

2 sec2 θ

}
.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.15) is verified if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) =

0 for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Moreover, provided that HP = 0, then XP ∈ T 1
PM yields the

equality case in (4.15) if and only if it belongs to NP .

(c) The equality case in (4.15) is satisfied if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

If we put θ1 = 0 and θ2 = θ ̸= 0 in Theorem 4.3, then the following two results are obtained for semi-slant
submanifolds:

Theorem 4.12. Let M be any m-dimensional proper semi-slant submanifold of a locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions

are verified:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− q

(
1 + cos2 θ

)
+ ĝ (Tπ1XP , XP ) (trT − p) (4.16)

+ĝ (Tπ2XP , XP )
(
trT − p cos2 θ

)
+ q

(
∥π2XP ∥2 + cos2 θ ∥π1XP ∥2

)}
+b

{
(m− 2)

2∑
A=1

ĝ (TπAXP , XP ) + trT

}
,

where π1 and π2 are the projection operators of TM onto the invariant distribution D and the slant distribution Dθ

with the Wirtinger angle θ ̸= 0, respectively.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.16) holds if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Additionally, provided that HP = 0, then XP ∈ T 1
PM verifies the

equality case in (4.16) if and only if it belongs to NP .

(c) The equality case in (4.16) is valid if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Theorem 4.13. Let M be any m-dimensional proper semi-slant submanifold of a locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). If we form a local orthonormal frame {B1, . . . , Bm}

at a point P ∈ M for TM such that

D = Span

Bα = ± F̂Bα∥∥∥F̂Bα

∥∥∥


1≤α≤k

and Dθ =

Bk+β = ± sec θTBk+β∥∥∥F̂Bk+β

∥∥∥


1≤β≤l

,
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where D and Dθ are the invariant distribution and the slant distribution with the Wirtinger angle θ ̸= 0, respectively,
then the following assertions are correct:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

m− 1− q

2

(
1 + cos2 θ

)
+

1

2

(
σ + σθ

) k∑
α=1

σα +

l∑
β=1

σθ
k+β

 (4.17)

−p

2

(
σ + σθ cos2 θ

)}
+ b

1

2
(m− 2)

(
σ + σθ

)
+

k∑
α=1

σα +

l∑
β=1

σθ
k+β

 ,

where σ, σα ∈ {p− σp,q, σp,q} and σθ, σθ
k+β ∈

{
p−

√
p2+4q sec2 θ

2 sec2 θ ,
p+

√
p2+4q sec2 θ

2 sec2 θ

}
.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.17) is valid if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Furthermore, provided that HP = 0, then XP ∈ T 1
PM yields the

equality case in (4.17) if and only if it belongs to NP .

(c) The equality case in (4.17) holds if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

If we choose θ1 = π
2 and θ2 = θ ̸= π

2 in Theorem 4.3, then the following two results are deduced for hemi-slant
submanifolds.

Theorem 4.14. Let M be any m-dimensional proper hemi-slant submanifold of a locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). Then for any point P ∈ M , the following assertions

are satisfied:

(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

{
m− 1− q cos2 θ + ĝ (Tπ2XP , XP )

(
trT − p cos2 θ

)
(4.18)

+q cos2 θ ∥π1XP ∥2
}
+ b {(m− 2) ĝ (Tπ2XP , XP ) + trT} ,

where π1 and π2 are the projection operators of TM onto the anti-invariant distribution D⊥ and the slant
distribution Dθ with the Wirtinger angle θ, respectively.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.18) holds if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) = 0

for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Moreover, provided that HP = 0, then XP ∈ T 1
PM verifies the

equality case in (4.18) if and only if it belongs to NP .

(c) The equality case in (4.18) is verified if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.

Theorem 4.15. Let M be any m-dimensional proper hemi-slant submanifold of a locally decomposable metallic
Riemannian manifold

(
M̂, ĝ, F̂

)
, where M̂ = M̂1 (ĉ1)× M̂2 (ĉ2). If we select a local orthonormal frame {B1, . . . , Bm}

at a point P ∈ M for TM such that

D⊥ = Span {Bα}1≤α≤k and Dθ = Span

Bk+β = ± sec θTBk+β∥∥∥F̂Bk+β

∥∥∥


1≤β≤l

,

where D⊥ and Dθ are the anti-invariant distribution and the slant distribution with the Wirtinger angle θ, respectively,
then the following assertions hold:
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(a) For all XP ∈ T 1
PM , we have

Ric (XP ) ≤ 1

4
m2 ∥HP ∥2 + a

m− 1− q

2
cos2 θ +

1

2
σθ

 l∑
β=1

σθ
k+β − p

 (4.19)

+b

1

2
(m− 2)σθ +

l∑
β=1

σθ
k+β

 ,

where σθ, σθ
k+β ∈

{
p−

√
p2+4q sec2 θ

2 sec2 θ ,
p+

√
p2+4q sec2 θ

2 sec2 θ

}
.

(b) For a fixed XP ∈ T 1
PM , the equality case in (4.19) is verified if and only if h (XP , XP ) =

1
2mHP and h (XP , YP ) =

0 for every YP ∈ TPM such that ĝ (XP , YP ) = 0. Additionally, provided that HP = 0, then XP ∈ T 1
PM yields the

equality case in (4.19) if and only if it belongs to NP .

(c) The equality case in (4.19) is valid if and only if either P is a totally geodesic point or m = 2 and P is a totally
umbilical point.
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[9] Crâşmăreanu, M. C., Hreţcanu, C. E.: Golden differential geometry. Chaos Soliton. Fract. 38 (5), 1229-1238 (2008).

[10] de Spinadel, V. W.: The family of metallic means. Vis. Math. 1 (3), (1999).
[11] de Spinadel, V. W.: The metallic means family and multifractal spectra. Nonlinear Anal. 36 (6), 721-745 (1999).
[12] de Spinadel, V. W.: The metallic means family and renormalization group techniques. Proc. Steklov Inst. Math. (suppl. 1), 194-209 (2000).
[13] de Spinadel, V. W.: The metallic means family and forbidden symmetries. Int. Math. J. 2 (3), 279-288 (2002).
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