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Abstract

Tuberculosis (TB) remains a formidable global health challenge, demanding effective control strategies
to alleviate its burden. In this study, we introduce a comprehensive mathematical model to unravel
the intricate dynamics of TB transmission and assess the efficacy and cost-effectiveness of diverse
intervention strategies. Our model meticulously categorizes the total population into seven distinct
compartments, encompassing susceptibility, vaccination, diagnosed infectious, undiagnosed infectious,
hospitalized, and recovered individuals. Factors such as susceptible individual recruitment, the impact
of vaccination, immunity loss, and the nuanced dynamics of transmission between compartments are
considered. Notably, we compute the basic reproduction number, providing a quantitative measure
of TB transmission potential. Through this comprehensive model, our study aims to offer valuable
insights into optimal control measures for TB prevention and control, contributing to the ongoing
global efforts to combat this pressing health challenge.
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1 Introduction

Tuberculosis (TB) is a highly infectious disease caused by the bacterium Mycobacterium tubercu-
losis. It primarily affects the lungs but can also target other organs such as the kidneys, spine, and
brain. TB is a significant global health concern, with a long history of affecting humanity. Despite
the advances in healthcare, it remains a major cause of morbidity and mortality worldwide. In
this introduction, we will provide an overview of the epidemiology of tuberculosis, including
disease burden, transmission, symptoms, and control measures [1, 2].
Tuberculosis is one of the top 10 causes of death worldwide, accounting for significant morbidity
and mortality. According to the World Health Organization (WHO), in 2020, an estimated 10
million people fell ill with TB, and 1.5 million died from the disease. Approximately 95% of TB
deaths occur in low- and middle-income countries, with sub-Saharan Africa and Asia bearing
the highest burden. The disease disproportionately affects vulnerable populations, such as those
living with HIV, malnourished individuals, and those with compromised immune systems. TB is
primarily transmitted through the air when an infected individual coughs, sneezes, speaks, or
sings, releasing droplets containing the bacteria. People in close contact with an active TB patient,
especially in crowded and poorly ventilated settings, are at higher risk of contracting the infection.
It is worth noting that not everyone exposed to the bacteria becomes infected. Factors such as
the infectiousness of the source case, duration of exposure, proximity, and individual immunity
contribute to the likelihood of transmission [3, 4].
The clinical presentation of TB can vary depending on the site of infection and the individual’s
immune response. Pulmonary tuberculosis, the most common form, often presents with symptoms
such as persistent cough, chest pain, weight loss, fatigue, night sweats, and hemoptysis (coughing
up blood). Extra-pulmonary TB can affect various organs, leading to symptoms specific to those
sites. However, some individuals may remain asymptomatic, referred to as latent TB infection,
with no signs of active disease but carrying the bacteria and being at risk of developing active TB in
the future [5, 6]. The control of TB relies on a comprehensive approach that includes early detection,
prompt treatment, and preventive interventions. Key strategies involve active case finding
through targeted screening and improved diagnostic techniques. The introduction of GeneXpert
and other rapid molecular tests has greatly enhanced the detection of TB and drug-resistant
strains. Treatment primarily consists of a combination of antibiotics administered over a specified
duration to ensure a cure and prevent the emergence of drug resistance. Furthermore, preventive
measures such as isoniazid preventive therapy (IPT) for individuals with latent TB infection and
Bacillus Calmette-Guérin (BCG) vaccination in certain populations have demonstrated efficacy in
reducing the risk of TB transmission and progression. Strengthening health systems, ensuring
access to quality healthcare services, and addressing social determinants of TB are critical for
effective control and elimination efforts [7, 8]. Mathematical models have become valuable tools
in understanding the dynamics and control of tuberculosis (TB) epidemics. These models provide
insights into the complex interactions between various factors involved in TB transmission,
the impact of control measures, and the potential outcomes of different interventions. This
introduction discusses the existing mathematical models used to study TB, highlighting their
contributions and key findings. In recent years, numerous studies have utilized mathematical
models to explore effective strategies for disease control within populations [9–23]. Within the
realm of tuberculosis, several models have been developed and investigated to enhance our
understanding of transmission dynamics and control measures [24–28]. For instance, Yang et
al. [24] explored the role of partial therapy in tuberculosis transmission, shedding light on its
implications. Zhang et al. [25] studied a dynamical tuberculosis model that considered both
infected and non-infected compartments. Egonmwan and Daniel developed a model to determine
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the rate of treatment and its impact on infected individuals, [26]. Investigations into the stability
of tuberculosis with partial treatment were conducted by Ullah et al. [27]. Additionally, Intan
et al. [28] investigated tuberculosis transmission by incorporating a latent group and assessing
the effects of vaccine administration. While these deterministic models have provided valuable
insights, there remains a gap in understanding the role of vaccination, contact rates, vaccine
efficacy, and coverage rates in disease control. Vaccination has long been recognized as a highly
effective preventive strategy against various diseases, including tuberculosis. It plays a crucial
role in protecting populations from infection and reducing the potential for community-wide
transmission. Therefore, considering these factors in disease modelling is essential for developing
robust control strategies. Further contributions to the dynamics of tuberculosis models can
be found in studies such as [29–37]. These investigations have expanded our knowledge of TB
dynamics, including the disease’s global stability and the impact of heterogeneity on its dispersion.
In this study, we aim to address the aforementioned research gap by developing a mathemat-
ical model for tuberculosis that incorporates vaccination, contact rates, vaccine efficiency, and
coverage rates. By considering these factors, we can gain a more comprehensive understanding
of the dynamics and control of tuberculosis in the population and ultimately contribute to the
development of effective strategies for disease prevention and control. The novelty of this study
lies in the comprehensive integration of various epidemiological factors within a structured com-
partmental model for Tuberculosis (TB) transmission. Specifically, the model incorporates detailed
compartments representing vaccinated individuals, diagnosed and undiagnosed infectious cases,
exposed individuals, hospitalizations, and recovered individuals. This granularity allows for
a nuanced analysis of TB dynamics, considering the different states of infection and treatment.
Additionally, the study introduces the concept of immunity loss in vaccinated individuals over
time, providing a realistic perspective on the long-term efficacy of TB vaccination programs. The
differentiation between diagnosed and undiagnosed cases, along with the varying progression
rates between these states and the hospitalization phase, adds complexity to the model, making
it more reflective of real-world scenarios. Furthermore, the consideration of distinct death rates
for diagnosed and undiagnosed infectious individuals, along with additional disease-induced
mortality in the hospitalized class, adds a layer of realism to the outcomes of the model. Overall,
the study’s novelty lies in its detailed and multifaceted approach, capturing the complexities of TB
transmission, vaccination dynamics, and disease progression, which provides a robust foundation
for understanding and potentially optimizing TB control strategies.

2 Model formulation

In this section, we develop a new model that describes the disease transmission between each com-
partment based on the health status of individuals in the population under consideration. In the
present work, we consider seven distinct populations. S(t) represents susceptible individuals not
exposed to TB infection, V(t) represents vaccinated individuals against TB infection, E(t) exposed
individuals to TB infection but not infectious, ID represents diagnosed infectious individuals,
those in this category have been infected with TB and diagnosed in the hospital. IU undiagnosed
infectious, those in this class have been infected with TB but not diagnosed in the hospital. H(t)
represent the hospitalised class and R(t) represents recovered individuals. The susceptible popula-
tion is increased due to the daily recruitment rate Π, susceptible individuals received vaccination
against TB infection at a constant rate ρ, and lose immunity at a rate τ. We assume that individuals
vaccinated against TB infection lose immunity after a period of time and can be infected after
effective contact with diagnosed and undiagnosed infectious individuals at a reduced rate of 1-ε
so that the force of infection for the vaccinated individuals is at the rate β(1 − ε)(zID + IU + zH)V
where z represent the reduction in the infection rate in undiagnosed infectious individuals. We
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Figure 1. Schematic illustration of the TB model. For illustration suitability, we defined λ1 = β(zID + IU + zH)
and λ2 = β(1 − ε)(zID + IU + zH)

also assume that only diagnosed, undiagnosed and hospitalised individuals can transfer the
infection, thus, the force of infection is given as β(1 − ε)(zID + IU + zH)S. There is a fraction k of
individuals who are diagnosed with TB and 1 − k undiagnosed, where ϕ is the progression rate to
infectious, θ represent progression rate from undiagnosed class to diagnosed infectious class, η the
progression rate from diagnosed infectious to hospitalised class. Individuals in the hospitalised
class recover through hospital treatment at a rate γ1 and γ2 represent the natural recovery rate of
individuals in the undiagnosed class. The parameter µ represents the natural death rate in all the
compartments, we assume that the disease-induced death rates in IU and ID occur at equal rates
δ1, while additional death due to the disease occurs in H at a rate δ2 with δ1 > δ2.
The above illustration gives a clear picture of the disease dynamics and this can also be represented
in a system differential equations in (1), while the model’s compartmental flow diagram is shown
in Figure 1. Moreover, the description of model variables (compartments) are given in Table 1.

dS
dt

= Π + τV − βS(zID + IU + zH)− (µ + ρ)S,

dV
dt

= ρS − β(1 − ε)(zID + IU + zH)− (µ + τ)V,

dE
dt

= βS(zID + IU + zH) + β(1 − ε)(zID + IU + zH)V − (ϕ + µ)E,

dID
dt

= kϕE + θ IU − (µ + δ1 + η)ID,

dIU
dt

= (1 − k)ϕE − (θ + µ + δ1 + γ2)IU ,

dH
dt

= η ID − (µ + δ2 + γ1)H,

dR
dt

= γ2 IU + γ1H − µR.

(1)
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Table 1. Description of the model variables

Variable Description
S Susceptible class
V Vaccinated class
E Exposed humans
ID Diagnosed infectious class
IU Undiagnosed infectious class
H Hospitalised class
R Recovered class

3 Model analysis

Fundamental properties of the TB model

It should be noted that all the parameters used for the TB model are non-negative since the model
depicts human population dynamics. On this note, it is called to show that all the seven state
variables of the proposed model are non-negative at all times.

Positivity and boundedness of solutions
It is easy to show that, from the first differential equation of model (1), the differential inequality
in (2) is satisfied

dS
dt

+ [β(zID + IU + zH) + (ρ + µ)]S > 0. (2)

The integrating factor related to the differential inequality (2) is

exp
{
(ρ + µ)t +

∫ t

0
(β(ID(w̃) + zIU(w̃) + H(w̃))dw̃)

}
.

The use of this integrating factor in (2) leads to

d
dt

[
S(t) exp

{
−[(ρ + µ)t +

∫ t

0
(β(zID(w̃) + IU(w̃) + zH(w̃))dw̃)]

}]
> 0,

so that

S(t) ≥ S(0) exp
{
−[(ρ + µ)t +

∫ t

0
(β(zID(w̃) + IU(w̃) + zH(w̃))dw̃)]

}
> 0,

for all time time t > 0. The other six state variables V, E, ID, IU, H and R can be shown using a
similar approach. Thus, the solution set {S, V, E, ID, IU , H, R} is non-negative for all time t. This
leads to claiming the following result:

Theorem 1 Every solutions of the TB model (1), expressed by the set {S, V, E, ID, IU , H, R}, with non-
negative initial conditions S(0), V(0), E(0), ID(0), IU(0), H(0), R(0), remain non-negative for all time
t > 0.

Moreover, it is sufficient to analyze the transmission dynamics of TB described by model (1) in a
biologically feasible region defined by

Ψ =

{
(S, V, E, ID, IU , H, R) ∈ R7

+ : S + V + E + ID + IU + H + R ≤ Π
µ

}
. (3)
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Following the ideas of the authors in [38–45], we can demonstrate that the region Ψ in (3) is
non-negative invariant. Thus, the solution of the model is contained in the region Ψ meaning that
the proposed TB model is well-posed.

Existence and stability analysis of equilibria

TB model (1) is rigorously analyzed with respect to the equilibrium points in this part. At steady
state, the TB model (1) becomes

Π + τV − βS(zID + IU + zH)− m1S = 0,

ρS − m2V − β(1 − ε)(zID + IU + zH)V = 0,

βS(zID + IU + zH) + β(1 − ε)(zID + IU + zH)V − m3E = 0,

kϕE + θ IU − m4 ID = 0,

(1 − k)ϕE − m5 IU = 0,

η ID − m6H = 0,

γ2 IU + γ1H − µR = 0,

(4)

where m1 = (µ + ρ), m2 = (µ + τ), m3 = (ϕ + µ), m4 = (µ + δ1 + η), m5 = (θ + µ + δ1 + γ2),
and m6 = (µ + δ2 + γ1).

Disease-free equilibrium

The disease-free equilibrium (DFE) of the TB model (1) is obtained by setting E = ID = IU = H = 0
in system (4). Thus, DFE, denoted by Ω1, of model (1) is given by

Ω1 = (S∗, V∗, E∗, I∗D, I∗U , H∗, R∗) =

(
m2Π

µ(ρ + τ + µ)
,

ρΠ
µ(ρ + τ + µ)

, 0, 0, 0, 0, 0
)

. (5)

Effective reproduction number

To calculate the effective (or control) reproduction number of model (1), the popular next-
generation operator method and notation studied in depth by [46] is employed. Assume that
x = {E, ID, IU , H} is the set of infected compartments. Then, the subsystem describing the dynam-
ics of these compartments is extracted from the TB model (1), and is given by

dE
dt

= βS(zID + IU + zH) + β(1 − ε)(zID + IU + zH)V − (ϕ + µ)E,

dID
dt

= kϕE + θ IU − (µ + δ1 + η)ID,

dIU
dt

= (1 − k)ϕE − (θ + µ + δ1 + γ2)IU ,

dH
dt

= η ID − (µ + δ2 + γ1)H.

(6)

It follows from (6) that

dx
dt

= F − V ,
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where

F =


βS(zID + IU + zH) + β(1 − ε)V(zID + IU + zH)

0
0
0

 , (7)

and

V =


m3E

m4 ID − κϕE − θ IU
m5 IU − (1 − κ)ϕE

m6H − η ID

 . (8)

From (7), the matrix F of new infection terms is derived as

F =


0 β[m2+(1−ε)ρ]Π

µ(ρ+τ+µ)
zβ[m2+(1−ε)ρ]Π

µ(ρ+τ+µ)
β[m2+(1−ε)ρ]Π

µ(ρ+τ+µ)

0 0 0 0
0 0 0 0
0 0 0 0

 .

Similarly, the matrix V of the transition terms and its inverse V−1 are obtained from (8) as

V =


m3 0 0 0
−κϕ m4 −θ 0

−(1 − κ)ϕ 0 m5 0
0 −η 0 m6

 ,

V−1 =


1

m3
0 0 0

ϕ(m5κ+θ(1−κ))
m3m4m5

1
m4

θ
m4m5

0
(1−κ)ϕ
m3m5

0 1
m5

0
ηϕ(m5κ+θ(1−κ))

m3m4m5m6

η
m4m6

ηθ
m4m5m6

1
m6

 .

Thus,

Re = G
(

FV−1
)
=

βϕΠ[m2 + (1 − ε)ρ]{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]}

m3m4m5m6µ(ρ + τ + µ)
, (9)

where G represents the spectral radius of the next generation matrix FV−1. Following Theorem 2
in [46], the result in Lemma 1 holds which states that: The disease-free equilibrium, Ω1, of the TB
model (1) is locally asymptotically stable (LAS) in Ψ if Re < 1 and unstable if Re > 1.

Endemic equilibrium

Let the endemic equilibrium (EE) of the TB model (1) be defined by

Ω2 = (S∗∗, V∗∗, E∗∗, I∗∗D , I∗∗U , H∗∗, R∗∗) . (10)
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Assume further that, in the steady state system (4), the force of infection at the endemic state is
defined by

λ∗∗ = β (zI∗∗D + I∗∗U + zH∗∗) . (11)

Then, solving the steady state system (4) with the hypothesis that E ̸= 0, ID ̸= 0, IU ̸= 0, and
H ̸= 0, we obtain

S∗∗ =
Π[m2 + (1 − ε)λ∗∗]

{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

V∗∗ =
ρΠ

{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

E∗∗ =
Π{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

I∗∗D =
Πϕ[m5κ + θ(1 − κ)]{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m4m5{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

I∗∗U =
Π(1 − κ)ϕ{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m5{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

H∗∗ =
Πϕη[m5κ + θ(1 − κ)]{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m4m5m6{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

R∗∗ =
Πϕ[m4m6(1 − κ)γ2 + ηγ1[m5κ + θ(1 − κ)]]{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m4m5m6µ{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
.

(12)

Now, using the results of I∗∗D , I∗∗U , and H∗∗ from (12) in the force of infection (11) and simplifying
yields the quadratic equation satisfied by the endemic equilibria of the TB model (1), and is given
by

n1 (λ
∗∗)2 + n2λ∗∗ + n3 = 0, (13)

where

n1 = (1 − ε)m3m4m5m6,

n2 = m3m4m5m6[m2 + (1 − ε)m1]

−β(1 − ε)Πϕ{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]},

n3 = m3m4m5m6µ(ρ + τ + µ) (1 −Re) .

Thus, the endemic equilibrium Ω2 of the TB model (1) is derived from (13) for a non-negative
values of λ∗∗ and substituting back into the components of Ω2 in (12). Thus, to obtain the required
solutions of (13), we arrive at the following assumptions: n1 is always positive, while n2 and n3
may be positive or negative depending on the signs of Re. That is,

n1 > 0, n2 =

{
> 0,

< 0,
and n3 =

{
> 0 if Re < 1,

< 0 if Re > 1.
(14)

From (14), the five cases below are obtained:

Case I: If Re < 1, then n3 > 0 so that (13) has two non-negative roots when n2 < 0.
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Case II: If Re < 1, then n3 > 0 so that (13) has no non-negative roots (2 negative roots) when
n2 < 0.

Case III: If Re > 1, then n3 < 0 so that (13) has one non-negative root when n2 > 0.
Case IV: If Re > 1, then n3 < 0 so that (13) also has one non-negative root when n2 < 0.
Case V: When Re = 1, Eq. (13) reduces to (n1λ∗∗ + n2) λ∗∗ = 0. The trivial solution λ∗∗ = 0

coincides with the disease-free equilibrium Ω1, while the non-trivial solution λ∗∗ = −n2
n1

is a
non-negative root when n2 < 0 and negative root (which is meaningless in the biological sense)
when n2 > 0.

Consequently, the existence of the endemic equilibrium of model (1) is summarized as follows:

Theorem 2 The TB model has:

i. an endemic equilibrium provided that if n2 > 0 or n2 < 0 and Re > 1,
ii. double endemic equilibria provided that if n2 < 0 and Re < 1,

iii. no endemic equilibrium otherwise whenever Re < 1.

The backward bifurcation has been studied subject to some TB models and those of other infectious
diseases’ dynamics (For more details, see [47–49]). It points to a possible coexistence of equilibria
when the effective reproduction number is less than unity, in which case conditions of a backward
bifurcation at a disease-free and endemic equilibrium condition are satisfied. To rule out this
possibility and ensure the existence of a unique endemic equilibrium point for TB model (1), let
the vaccine efficacy, denoted by ε, be set to 1. Hence, the quadratic equation (13) becomes

n2λ∗∗ + n3 = 0, (15)

so that n2 = m2m3m4m5m6, and n3 = m3m4m5m6µ(ρ + τ + µ) (1 −Re|ε=1), where

Re|ε=1 =
βΠϕm2{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]}

m3m4m5m6µ(ρ + τ + µ)
. (16)

It can be seen that n2 > 0 and n3 ≥ 0 whenever Re|ε=1 ≤ 1. It follows from (15) that λ∗∗ = −n3
n2

≤
0 at Re|ε=1 ≤ 1. Therefore, the TB model (1), with ε = 1, has no positive (endemic) equilibrium
at Re|ε=1 ≤ 1. On the other hand, n3 < 0 at Re|ε=1 > 1, so that λ∗∗ = −n3

n2
> 0. Thus, the TB

model (1), with ε = 1, has a unique positive (endemic) equilibrium when Re|ε=1 > 1. This result
is summarized as follows:

Theorem 3 The TB model (1) in the absence of imperfect vaccine (ε = 1) has no endemic equilibrium
whenever Re|ε=1 ≤ 1, and a unique endemic equilibrium exists if Re|ε=1 > 1.

Global asymptotic dynamics of equilibria

Global stability of Ω1

Theorem 4 The given disease-free equilibrium Ω1 in (5) of TB model (1) in the absence of imperfect vaccine
(ε = 1) is globally asymptotically stable in the feasible region Ψ if Re|ε=1 < 1.

Proof Consider the following Lyapunov functional U(E(t), ID(t), IU(t), H(t)) for TB model (1)
with ε = 1 defined by

U = b1E + b2 ID + b3 IU + b4H, (17)
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where

b1 = 1,

b2 =
βm2Π(m6 + η)

m4m6µ(ρ + τ + µ)
,

b3 =
m3

(1 − κ)ϕ
−

βm2Πϕκ(m6 + η)

m4m6µ(ρ + τ + µ)(1 − κ)ϕ
,

b4 =
βm2Π

m6µ(ρ + τ + µ)
.

Obviously, U(0) = 0, and U(E(t), ID(t), IU(t), H(t)) > 0, ∀ (E(t), ID(t), IU(t), H(t)) ̸= 0, imply-
ing that U is positive definite. Furthermore, the time derivative of the Lyapunov functional (17)
along the solution path of the TB model (1) is obtained as

dU

dt
=

dE
dt

+
βm2Π(m6 + η)

m4m6µ(ρ + τ + µ)

dID
dt

+

[
m3

(1 − κ)ϕ
−

βm2Πϕκ(m6 + η)

m4m6µ(ρ + τ + µ)(1 − κ)ϕ

]
dIU
dt

+
βm2Π

m6µ(ρ + τ + µ)

dH
dt

= [βS(ID + zIU + H)− m3E] +
βm2Π(m6 + η)

m4m6µ(ρ + τ + µ)
[κϕ + θ IU − m4 ID]

+

[
m3

(1 − κ)ϕ
−

βm2Πϕκ(m6 + η)

m4m6µ(ρ + τ + µ)(1 − κ)ϕ

]
[(1 − κ)ϕE − m5 IU ] +

βm2Π
m6µ(ρ + τ + µ)

[η ID − m6H] .

(18)

Since S ≤ S∗ = m2Π
µ(ρ+τ+µ)

in the positively-invariant region Ψ, then by further simplification of
(18), we get

dU

dt
≤

[
βzS∗ +

βS∗(m6 + η)θ

m4m6
+

βS∗κϕ(m6 + η)m5

m4m6(1 − κ)ϕ
−

m3m5

(1 − κ)ϕ

]
IU

=

[
βS∗{zm4m6(1 − κ)ϕ + θ(m6 + η)(1 − κ)ϕ + κϕ(m6 + η)m5}

m4m6(1 − κ)ϕ
−

m3m5

(1 − κ)ϕ

]
IU

=
m3m5

(1 − κ)ϕ

[
βm2Πϕ{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]}

m3m4m5m6µ(ρ + τ + µ)
− 1

]
IU

=
m3m5

(1 − κ)ϕ
(Re|ε=1 − 1) IU .

Since the variables and parameters of the TB model (1) are non-negative, it implies that dU
dt ≤ 0 if

and only if Re|ε=1 ≤ 1, and E = ID = IU = H = 0. Thus, by LaSalle’s invariance principle [50],

(E, ID, IU , H) → (0, 0, 0, 0) as t → ∞. (19)

It therefore follows from the first and second equations of TB model (1) that lim
t→∞ (S(t), V(t)) =(

m2Π
µ(ρ+τ+µ)

, ρΠ
µ(ρ+τ+µ)

)
, while lim

t→∞ R(t) = 0 from the last equation of the model. Therefore, every

solution that starts in Ψ converges to Ω1 as t → ∞ whenever Re|ε=1 ≤ 1.

4 Numerical simulation

In this section, we run a numerical simulation using the formulated model described in system (1)
to examine TB dynamics under different control interventions. We first investigate the impact of
vaccination as a preventive intervention in mitigating the burden of TB in the human population.
This was achieved by simulating the impact of the vaccination rate of TB-susceptible individuals
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with different levels of vaccine efficacy. Following this, the impact of the detection rate of TB
infection, the hospitalization rate of diagnosed TB-infectious individuals, and the recovery rate of
hospitalized individuals were examined to understand the impact of these control interventions
on mitigating TB burden in the populace. The combination of all aforementioned interventions
was then simulated to explore the optimum impact on the control of tuberculosis in the human
population. The values of parameters used for simulation are given in Table 2.

Table 2. Model parameter values and description

Parameter Description Value Source
Π Recruitment rate 5 [51]
ρ Vaccination rate 0.1 - 0.98 [51]
τ Vaccine wane rate 0.067 [51]
ε Vaccine efficacy rate 0 - 1 [51]
β Effective contact rate 0.6501 [51]
µ Natural death rate 0.0148 [51]
η Progression rate from diagnosed infectious to hospitalised class 0.60 Assumed
δ1 TB induced death rate 0.10 [51]
δ2 TB induced death rate 0.05 Assumed
θ Progression rate from undiagnosed to diagnosed infectious class 0.45 Assumed

γ1 Rate of recovery after hospital treatment 0.01 [51]
γ2 Natural recovery rate of undiagnosed infectious 0.005 Assumed
z Reduction in infectious rate for diagnosed and hospitalized infectious 0.5 Assumed
k fraction of individuals who are diagnosed of TB 0.40 Assumed
ϕ Progression rate to infectious 0.00375 [51]

The total TB infected population in Figure 2, Figure 3, and Figure 4 are in thousand. It is observed
that the variation in parameters remains around the mean level. We assume a decrease of 50%
from the baseline value for parameters with variation. Important Notice: If the value of the
associated variable is smaller or larger than the parameter value at the lower boundary (0 or 1),
then no significant perturbation in vaccination rates has been associated with higher relative and
absolute autism rates. The high point of the associated variable exceeds approximately 100% more
than the parameter value at the lower boundary of the variable. Therefore, in Figure 2, vaccination
policymakers are depicted assuming vaccination rates should be set at low (ρ = 0.25), medium (ρ
= 0.50), or high (ρ = 1.00), while vaccine efficacy remains either low (ε The rates of detection of TB
infection, hospitalization of an infectious individual after diagnosis, recovery, and case fatality
among diagnosed TB infectious individuals were varied at three levels of scenarios—low, medium,
and high. The detection rate of TB-infection was varied at levels: θ = low = 0.225, θ = medium
= 0.45, Aggregate simulated active TB infectious population consists of undiagnosed infectious
population and diagnosed infectious population in addition to hospitalized infectious population
in this simulation. Throughout the simulation, we defined the total TB infectious population as the
sum of both the undiagnosed infectious population, the diagnosed infectious population, and the
hospitalized infectious population. This is justified because both undiagnosed infectious humans,
diagnosed infectious humans, and hospitalized infectious humans can transmit the disease as
presented in the force of infection of the developed model (1).

In Figure 2, we simulate the impact of vaccination as a preventive intervention in mitigating the
burden of TB in the human population. This was carried out by examining different levels of
vaccination rates of TB-susceptible humans and TB vaccine efficacy simultaneously. The result
shows that a high level of vaccination rate with a corresponding high vaccine efficacy leads
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to a higher reduction in the total TB-infectious human population. This result implies that, to
effectively reduce the tuberculosis burden in the human population, a higher vaccine efficacy with
a higher rate of vaccination against the disease is required. Furthermore, this result suggests that
while vaccine development is contingent on different factors, efforts should be made to ensure
the development of vaccines with higher efficacy is highly prioritized to obtain optimum results
in preventing disease spread. Also, to attain a high vaccination rate against tuberculosis, efforts
should be made towards awareness and educational campaigns to ensure people are educated on
the need for vaccination against the deadly disease especially in the developing regions.

While vaccination is a preventive intervention against tuberculosis, several control intervention
strategies are also used in mitigating the spread of tuberculosis including but not limited to
hospitalization of infected individuals for treatment. Based on this fact, in Figure 3 we examine
the impact of the detection rate of TB infection, hospitalization rate of diagnosed TB-infectious
individuals, and recovery rate of hospitalized individuals to understand the impact of these control
interventions on mitigating TB burden in the populace. As expected, the result shows that a high
level of detection rate of TB infection, a high level of hospitalization rate of diagnosed TB-infectious
individuals, and a high level of recovery rate of hospitalized individuals due to treatment resulted
in a higher reduction in the total TB-infectious human in the populace. The result suggests
that efforts should be made to facilitate the resources in detecting TB-infectious individuals
and the hospitalization of diagnosed humans for effective treatment. This will contribute to
the reduction of tuberculosis transmission in the human population. In Figure 4, we combined
different interventions (vaccination rate of TB-susceptible humans, TB vaccine efficacy, detection
rate of TB infection, hospitalization rate of diagnosed TB-infectious individuals, and recovery
rate of hospitalized individuals) to examine the optimum impact they have on the control of
tuberculosis in the human population. The result shows that a high level of vaccination rate of
TB-susceptible humans, a high level of TB vaccine efficacy, a high level of detection rate of TB
infection, a high level of hospitalization rate of diagnosed TB-infectious individuals, and a high
level of recovery rate of hospitalized individuals due to treatment resulted into a huge reduction
in the total TB-infectious human in the populace when compared with a single intervention usage.
The overall result suggests that, by combining several intervention strategies, the TB burden can
be reduced faster and more effectively when compared to a single usage of intervention.
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Figure 2. Numerical simulation of TB model (1), illustrating the impact of varying vaccination rates ρ and
vaccine efficacy ε on the dynamics and final sizes of the total TB infectious human population. Baseline
parameter values are set as follows: ρ=Low=0.25, ρ=Medium=0.50, and ρ=High=1.00; and ε=Low=0.245,
ε=Medium=0.490, and ε=High=0.980
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Figure 3. Numerical simulations of the TB model illustrate the impact of varying levels of the detection
rate of TB infection, θ, the hospitalization rate of diagnosed TB-infected individuals, η, and the recovery
rate of hospitalized individuals, γ1, on the dynamics and final sizes of the total TB infectious human popu-
lation. Baseline parameter values are set as follows: θ=Low=0.225, θ=Medium=0.450, and θ=High=0.900;
η=Low=0.30, η=Medium=0.60, and η=High=1.20; and γ1=Low=0.005, γ1=Medium=0.01, and γ1=High=0.02
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Figure 4. Numerical simulation of TB model, illustrating the impact of varying vaccination rates ρ, vaccine
efficacy ε, TB infection detection rate θ, hospitalization rate of diagnosed TB-infected individuals η, and
recovery rate of hospitalized individuals γ1 on the dynamics and final sizes of the total TB infectious
human population. Baseline parameter values are set as follows: ρ=Low=0.25, ρ=Medium=0.50, and
ρ=High=1.00; ε=Low=0.245, ε=Medium=0.490, and ε=High=0.980; θ=Low=0.225, θ=Medium=0.450, and
θ=High=0.900; η=Low=0.30, η=Medium=0.60, and η=High=1.20; and γ1=Low=0.005, γ1=Medium=0.01,
and γ1=High=0.02

5 Conclusion

The mathematical model presented in this study investigates the dynamics of tuberculosis (TB),
considering detected, undetected, and hospitalized individuals. The numerical simulations
focus on the impact of diverse control interventions. The study evaluates the effectiveness of
vaccination as a preventive measure, highlighting the crucial role of high vaccine efficacy and
the need for increased vaccination rates, especially in developing regions. Additionally, the
investigation explores the influence of detecting infections, hospitalizing diagnosed individuals,
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and promoting recovery in the hospitalized population. The results demonstrate that higher rates
of detection, hospitalization, and recovery significantly reduce the total TB-infectious human
population. Importantly, combining multiple interventions, including vaccination, yields a more
substantial reduction compared to individual measures. The study underscores the importance of
a comprehensive strategy involving various control measures for efficient and rapid TB burden
reduction, providing valuable insights for healthcare practitioners and policymakers.
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