
Acta Infologica
acin 2024, 8 (2), 176–187

DOI: 10.26650/acin.1462076

Research Article

Comparative Analysis of Transaction Performance in Different
Virtualization Environments

Ali İhsan Candemir1 , Nilgün İncereis2

1İstanbul Okan University, Computer Engineering,
İstanbul, Türkiye
2Bartın University, Distance Education Application
and Research Center, Bartın, Türkiye

Corresponding author : Ali İhsan Candemir
E-mail : alcandemir@stu.okan.edu.tr

Submitted : 01.04.2024
Revision Requested : 31.05.2024
Last Revision Received : 25.09.2024
Accepted : 04.11.2024
Published Online : 26.11.2024

This article is licensed un-
der a Creative Commons Attribution-
NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0)

ABSTRACT
Virtualization technologies are increasing in importance day by day. The selection
of virtualization software is an important factor to realize efficient use of physical
hardware. In this study, the Ubuntu 22.04 LTS operating system was run on Virtu-
alBox, VMware, and Docker, which are widely used virtualization software. Then,
the Tiobench, Compress-7zip, C-ray, Smallpt, Tachyon, and OSBench tests were per-
formed on the Ubuntu operating system with the Phoronix Test Suite software, and
the test results were analyzed and compared. The results demonstrate that Docker out-
performed the other virtualization technologies, although not in every test. Owing to
its rapid deployment and efficient use of resources, Docker is suitable for applications
that require agility and scalability. However, traditional virtualization technologies,
such as VMware, may be more suitable for applications that require high security and
extensive resource management. In addition, this study provides information that can
guide users in selecting virtualization software.

Keywords: Virtualization, VirtualBox, VMware, Docker, Virtualization Technolo-
gies.

176

http://orcid.org/0009-0001-0167-7879
http://orcid.org/0000-0001-5508-8159

Candemir, A. İ., İncereis, N. , Comparative Analysis of Transaction Performance in Different Virtualization Environments

1. INTRODUCTION
Virtualization technologies include a set of technologies and methods that offer the ability to run multiple operating

systems simultaneously by creating virtual environments on physical hardware. These technologies offer advantages
such as using resources more efficiently, providing flexibility, and isolating workloads (Schlosser et al., 2011). Vir-
tualization is widely used in many fields, such as cloud computing, server consolidation, application testing, and
development (Wei et al., 2019). Virtualization technologies enable more efficient use of physical hardware resources by
dynamically sharing them between virtual machines. These technologies are hardware independent and therefore easily
portable between different physical environments. They offer security advantages by isolating different virtual machines
from each other. Due to these advantages, virtualization technologies continue to be widely used today (Robbi et al.,
2019). Processing performance is a critical measure of the speed and efficiency of a system or application’s operations.
Accurately measuring process performance is important for system optimization, resource allocation, and user expe-
rience. Fast processing improves user experience and increases user satisfaction. A good process performance leads
to more efficient use of resources. Efficient processes can reduce costs by reducing energy and resource consumption.
These items emphasize the importance of processing performance (Mongia et al., 2020).

This study describes virtualization environments at hardware, OS, and application level in section 2, and describes
the performance metrics and evaluation criteria in section 3. Then, section 4 describes the materials and methods of
this study, and section 5 describes the findings. Finally, section 6 presents the discussion and conclusions of this study.

2. VIRTUALIZATION ENVIRONMENTS
Virtualization environments use various technologies and configurations to support diverse workloads and distribute

computing resources efficiently. The three levels of virtualization environments are described below.

2.1. Hardware Level Virtualization
Hardware level virtualization is a type of virtualization that enables the creation of virtual machines on physical

hardware. This is implemented using a hypervisor or virtualization manager. Hardware-level virtualization allows each
virtual machine to behave as if it had an independent operating system. Each virtual machine can run its own operating
system and applications; thus, multiple virtual environments can be achieved on a single physical server. This method
offers the advantages of effectively optimizing resource usage and providing isolation (Natawiguna et al., 2016; Perez
et al., 2008).

2.2. Operating System Level Virtualization
An operating system-level virtualization scheme allows an operating system instance to host multiple isolated

environments. In this type of virtualization, virtual environments (e.g., containers) running on a host operating system
are run in isolation. Each container can host its own applications and dependencies. OS-level virtualization is known
for its lightweight and fast startup/shutdown processes. Containers share the same core operating system but offer an
isolated environment (Perez et al., 2008) (Natawiguna et al., 2016; Patil, 2021).

Containers encompass only the instructions and code required for the application to run; thus, they are lightweight
compared to alternative approaches, such as virtual machines (VMs) (Brady et al., 2020).

You can find detailed information about why Docker, which makes container technology useful, is preferred in the
study of Ayaz et al., 2016. In addition, Docker is widely used in web applications. (Yılmaz et al., 2016)

2.3. Application-Level Virtualization
Application-level virtualization is a form of virtualization that enables an application to run in an isolated environment

within itself. This is typically implemented by running an application in a standalone container or running it isolated
in a virtual environment. Application-level virtualization allows applications to run in their own independent operating
environments, which offers the advantages of effectively using system resources and ensuring application independence
(Perez et al., 2008; Natawiguna et al., 2016).

3. PERFORMANCE METRICS AND EVALUATION CRITERIA
To effectively evaluate virtualization environments, it is important to measure and analyze performance metrics.

These metrics are used to evaluate different aspects of virtual infrastructure and the impact of virtual machines on
physical resources. The most important performance metrics are CPU utilization, memory management, input/output
operations, and network performance.

177

Acta Infologica

3.1. CPU use
CPU use refers to the system or application load placed on the processor. Performance metrics were used to determine

the length of intensive CPU running. These metrics are used to evaluate the overall effectiveness of CPU utilization,
identify performance bottlenecks, and determine whether resources are being used efficiently (Ferrari et al., 1972;
Syauqi et al., 2023).

CPU-intensive tests such as c-ray and small, performed using the Phoronix test suite are important for evaluating
processor use in a system. The overall efficiency of the CPU was evaluated by measuring the effectiveness of the
processor performance in terms of computational tasks.

3.2. Memory Management
Memory management is a critical performance metric that evaluates how an application or system uses and manages

memory resources. In this section, we focus on memory utilization, memory leaks, cache memory activity, and memory
cleaning strategies. Good memory management can improve system stability and performance (Ferrari, 1972; Syauqi
et al., 2023; Sudha, 2013).

Memory intensive operations such as Tiobench and compress7-zip, provide important data for memory management.
These tests evaluate the efficiency of memory usage and are particularly useful for studying memory management
during on-disk compression and decompression operations.

3.3. Input/Output Operations
Input/output (I/O) operations refer to the ability of an application to interact with a disk, network, or other external

resources. Factors such as database access, file read/write speed, and asynchrony of I/O operations were evaluated.
bench testing is an effective way to measure I/O performance. The proposed method analyzes the efficiency of I/O

operations by evaluating the performance of file system operations. This is especially important for understanding and
optimizing disk performance (Ferrari, 1972; Sudha, 2013).

3.4. Network Performance
Network performance is an important metric that measures the effectiveness of an application or system in transmitting

data over a network. In this section, the network bandwidth, latency, packet loss rate, reliability, and network traffic
management factors are evaluated. Good network performance positively impacts user experience and ensures that
applications run quickly and reliably (Sudha, 2013).

The tachyon test provided by the Phoronix test suite evaluates the network communication performance. This test is
useful for measuring the system’s network performance in terms of network traffic management, bandwidth use, and
reliability.

4. MATERIAL AND METHOD
When analyzing performance, it is important to set up a test environment that can simulate real-life conditions. This

increases the validity and reliability of the obtained results and provides decision makers with tangible data.

4.1. Virtualization Platforms for Testing
The virtualization platforms we chose to perform the tests were VirtualBox, VMware and Docker. The virtualization

platforms were installed on the same machine, and the Ubuntu 22.04 LTS operating system was run on each machine.
The hardware specifications of the computer used in the tests affect the figures in the test results. However, the

performance ratios of virtual machines to each other did not change even when they were tested on different hardware.
The hardware information of the computer on which the virtual machines were installed to perform the tests is

described as follows.

Hardware Information
Processor: Intel Core i7-6500U @ 2.50 GHz
Motherboard: Lenovo 20EVS01G00
Memory: 2x8GB SODIMM DDR3 Synchronous 1600 MHz (0,6 ns)
Disk: 500 GB SanDisk SDSSDH3

178

Candemir, A. İ., İncereis, N. , Comparative Analysis of Transaction Performance in Different Virtualization Environments

4.2. Workloads and scenarios
The tests performed using the Phoronix Test Suite on the Ubuntu 22.04 LTS operating system were as follows:
Tiobench: The Tiobench test is used to measure file input/output performance. This test is intended to determine

the speed of input/output operations in a file system. In other words, it can be used to measure and compare disk
performance. Tiobench was used to test factors such as disk read/write speeds, file processing speeds, and delays in
data access (Gurjar et al., 2019).

Compress-7zip: The 7-Zip is an archiving program that provides high compression rates and supports various file
formats. The Compress-7zip test in the Phoronix Test Suite measures how fast 7-Zip compresses and archives different
file types and sizes (Gupta et al., 2017).

C-ray: This test measures processor performance by simulating 3D modeling operations. It is used specifically to
evaluate processor computational capabilities. c-ray shows how effectively processor power is used to render visual
effects and 3D modeling using ray tracing. This test was used to measure and compare the performance of the processor
cores. It is preferred to see the performance differences between different processor models, core counts, and clock
speeds (Benchmark, 2024).

Smallpt: This benchmark test is a 3D ray tracing dataset. This test was used to measure the performance of the ray
tracing techniques used to render 3D graphics. Ray tracing is used to create realistic visuals. It is used to simulate how
light is refracted and reflected. Smallpt creates 3D scenes using these techniques in a simple manner and measures the
rendering time of these scenes (Benchmark, 2024). CPU intensive tests such as c-ray and small, which you run with
Phoronix-test-suite, are an important way to evaluate processor utilization in the system. The overall efficiency of the
CPU was evaluated by measuring the effectiveness of the processor performance in terms of computational tasks.

Tachyon: It is another ray tracing benchmark test is designed to measure the performance of ray tracing algorithms
used to render 3D graphics (Benchmark, 2024).

OSBench: This test aims to measure how fast an operating system can perform basic operating system calls and
operations, such as file system access. It is used to evaluate operating system functions, such as file processing, memory
management, threading, and other basic system calls (Benchmark, 2024).

For example, the implementation stages of the 7zip compression test on Docker:
First, we pull the Ubuntu 22.04 LTS image from the Docker Hub and run a container. Figure 1 shows the installation

and operation of the Docker container.

Figure 1. Docker container installation and running

Then, we install the required packages. Figure 2 shows the installation of the required packages.

Figure 2. Installation of required packages

Then, we install the 7zip compression test in the PRONONix test suite Figure 3 shows the installation of 7zip.

Figure 3. Install 7zip

As illustrated in Figure 4, the 7zip compression test is conducted.

Figure 4. Run 7zip compression test

179

Acta Infologica

The results are presented in Figure 5.

Figure 5. Results

4.3. Data collection and analysis
The test results are presented in tables for clarity and are not presented in the Phoronix Test Suite. In case of

inconsistencies in the results, the tests were repeated. Certain variation selections were made in order not to extend the
test times. The total test time was measured as 6 h.

Column charts were used to compare and analyze the data made into tables.
Then, the data were analyzed, and comments were made about the usage scenarios.

5. RESULTS
This section presents the results of experimental tests performed in different virtualization environments and their

comparative analysis.

5.1. Performance Results of Each Virtualization Environment
The test results are given in the tables below.

5.1.1. Tiobench Test
The tests we apply with the Tiobench test are random write and random-read test.
Test:Size per thread: 64 MB, thread count: 8
The Tiobench test results are presented in Table 1.

Table 1. Tiobench test results

Comparative Analysis of Transaction Performance in Different Virtualization Environments

7

5.1. Performance Results of Each Virtualization Environment

The test results are given in the tables below.

5.1.1. Tiobench Test

The tests we apply with the Tiobench test are random write and random-read test.
Test:Size per thread: 64 MB, thread count: 8

The Tiobench test results are presented in Table 1.

Table 1. Tiobench test results

 VirtualBox VMware Docker
Random_read (MB/ms) 34,705 37,574 40,638
Random_write (MB/ms) 0032 1159 0255

5.1.2. Compress-7zip Test

7-zip compression and decompression tests were performed. Table 2 lists the results of the Compress-7zip test.

Table 2. Compress-7zip test results

 VirtualBox VMware Docker
Compression (MIPS) (million
instructions per second)

5557 6495 11435

Decompression (MIPS) (million
instructions per second)

5903 5187 8721

5.1.3. C-ray Test

The C-ray and standard ray tracing tests were performed. The results are given in the table below. Test 3 shows
the results of the C-ray test.

Test 3. C-ray test results

 VirtualBox VMware Docker
Test (ms) 0482 0481 0455

5.1.4. Smallpt Test

The smallpt and standard ray tracing tests were performed. The results are given in the table below. The Smallpt
test results are presented in Table 4.

Table 4. Smallpt test results

 VirtualBox VMware Docker
Test (ms) 0113 0115 0066

5.1.2. Compress-7zip Test
7-zip compression and decompression tests were performed. Table 2 lists the results of the Compress-7zip test.

Table 2. Compress-7zip test results

Comparative Analysis of Transaction Performance in Different Virtualization Environments

7

5.1. Performance Results of Each Virtualization Environment

The test results are given in the tables below.

5.1.1. Tiobench Test

The tests we apply with the Tiobench test are random write and random-read test.
Test:Size per thread: 64 MB, thread count: 8

The Tiobench test results are presented in Table 1.

Table 1. Tiobench test results

 VirtualBox VMware Docker
Random_read (MB/ms) 34,705 37,574 40,638
Random_write (MB/ms) 0032 1159 0255

5.1.2. Compress-7zip Test

7-zip compression and decompression tests were performed. Table 2 lists the results of the Compress-7zip test.

Table 2. Compress-7zip test results

 VirtualBox VMware Docker
Compression (MIPS) (million
instructions per second)

5557 6495 11435

Decompression (MIPS) (million
instructions per second)

5903 5187 8721

5.1.3. C-ray Test

The C-ray and standard ray tracing tests were performed. The results are given in the table below. Test 3 shows
the results of the C-ray test.

Test 3. C-ray test results

 VirtualBox VMware Docker
Test (ms) 0482 0481 0455

5.1.4. Smallpt Test

The smallpt and standard ray tracing tests were performed. The results are given in the table below. The Smallpt
test results are presented in Table 4.

Table 4. Smallpt test results

 VirtualBox VMware Docker
Test (ms) 0113 0115 0066

180

Candemir, A. İ., İncereis, N. , Comparative Analysis of Transaction Performance in Different Virtualization Environments

5.1.3. C-ray Test
The C-ray and standard ray tracing tests were performed. The results are given in the table below. Test 3 shows the

results of the C-ray test.

Table 3. C-ray test results

Comparative Analysis of Transaction Performance in Different Virtualization Environments

7

5.1. Performance Results of Each Virtualization Environment

The test results are given in the tables below.

5.1.1. Tiobench Test

The tests we apply with the Tiobench test are random write and random-read test.
Test:Size per thread: 64 MB, thread count: 8

The Tiobench test results are presented in Table 1.

Table 1. Tiobench test results

 VirtualBox VMware Docker
Random_read (MB/ms) 34,705 37,574 40,638
Random_write (MB/ms) 0032 1159 0255

5.1.2. Compress-7zip Test

7-zip compression and decompression tests were performed. Table 2 lists the results of the Compress-7zip test.

Table 2. Compress-7zip test results

 VirtualBox VMware Docker
Compression (MIPS) (million
instructions per second)

5557 6495 11435

Decompression (MIPS) (million
instructions per second)

5903 5187 8721

5.1.3. C-ray Test

The C-ray and standard ray tracing tests were performed. The results are given in the table below. Test 3 shows
the results of the C-ray test.

Test 3. C-ray test results

 VirtualBox VMware Docker
Test (ms) 0482 0481 0455

5.1.4. Smallpt Test

The smallpt and standard ray tracing tests were performed. The results are given in the table below. The Smallpt
test results are presented in Table 4.

Table 4. Smallpt test results

 VirtualBox VMware Docker
Test (ms) 0113 0115 0066

5.1.4. Smallpt Test
The smallpt and standard ray tracing tests were performed. The results are given in the table below. The Smallpt test

results are presented in Table 4.

Table 4. Smallpt test results

Comparative Analysis of Transaction Performance in Different Virtualization Environments

7

5.1. Performance Results of Each Virtualization Environment

The test results are given in the tables below.

5.1.1. Tiobench Test

The tests we apply with the Tiobench test are random write and random-read test.
Test:Size per thread: 64 MB, thread count: 8

The Tiobench test results are presented in Table 1.

Table 1. Tiobench test results

 VirtualBox VMware Docker
Random_read (MB/ms) 34,705 37,574 40,638
Random_write (MB/ms) 0032 1159 0255

5.1.2. Compress-7zip Test

7-zip compression and decompression tests were performed. Table 2 lists the results of the Compress-7zip test.

Table 2. Compress-7zip test results

 VirtualBox VMware Docker
Compression (MIPS) (million
instructions per second)

5557 6495 11435

Decompression (MIPS) (million
instructions per second)

5903 5187 8721

5.1.3. C-ray Test

The C-ray and standard ray tracing tests were performed. The results are given in the table below. Test 3 shows
the results of the C-ray test.

Test 3. C-ray test results

 VirtualBox VMware Docker
Test (ms) 0482 0481 0455

5.1.4. Smallpt Test

The smallpt and standard ray tracing tests were performed. The results are given in the table below. The Smallpt
test results are presented in Table 4.

Table 4. Smallpt test results

 VirtualBox VMware Docker
Test (ms) 0113 0115 0066

5.1.5. Tachyon Test
The tachyon test and standard ray tracing test were performed. The results are given in the table below. Table 5

presents the Tachyon test results.

Table 5. Tachyon test results

8

5.1.5. Tachyon Test

The tachyon test and standard ray tracing test were performed. The results are given in the table below. Table
5 presents the Tachyon test results.

Table 5. Tachyon test results

 VirtualBox VMware Docker
Test (ms) 2234 1493 1017

5.1.6. OSBench Test

The OSBench test was applied to the thread creation, process creation, and memory allocation tests. Table 6
presents the OSBench test results.

Table 6. OSBench test results

 VirtualBox VMware Docker

Create Threads
(microsecond/event)

36 57,1 34,7

Create Process
(microsecond/event)

85,9 126,2 70,7

Memory allocation
(nanosecond/event)

161,9 159,3 136,4

5.2. Comparative Analysis and Findings

The results of each test performed using the Phoronix Test Suite are presented separately using bar graphs for
clarity. There were two types of tests we applied in Tiobench tests; random_write and random_read. Because
of the random_read test, we found that Docker had the highest read data per second speed among virtual
software with a value of 40638 MB/s. In the random_write test, it is noteworthy that the values were very
different from each other. Re-tests were performed, and similar results were obtained. This demonstrates that
VMware’s data-writing speed is superior to other virtualization environments.

Figure 6. Tiobench random-read test result bar

graph.

Figure 7. Tiobench random write test result bar

graph.

5.1.6. OSBench Test
The OSBench test was applied to the thread creation, process creation, and memory allocation tests. Table 6 presents

the OSBench test results.

Table 6. OSBench test results

8

5.1.5. Tachyon Test

The tachyon test and standard ray tracing test were performed. The results are given in the table below. Table
5 presents the Tachyon test results.

Table 5. Tachyon test results

 VirtualBox VMware Docker
Test (ms) 2234 1493 1017

5.1.6. OSBench Test

The OSBench test was applied to the thread creation, process creation, and memory allocation tests. Table 6
presents the OSBench test results.

Table 6. OSBench test results

 VirtualBox VMware Docker
Create Threads
(microsecond/event)

36 57,1 34,7

Create Process
(microsecond/event)

85,9 126,2 70,7

Memory allocation
(nanosecond/event)

161,9 159,3 136,4

5.2. Comparative Analysis and Findings

The results of each test performed using the Phoronix Test Suite are presented separately using bar graphs for
clarity. There were two types of tests we applied in Tiobench tests; random_write and random_read. Because
of the random_read test, we found that Docker had the highest read data per second speed among virtual
software with a value of 40638 MB/s. In the random_write test, it is noteworthy that the values were very
different from each other. Re-tests were performed, and similar results were obtained. This demonstrates that
VMware’s data-writing speed is superior to other virtualization environments.

Figure 6. Tiobench random-read test result bar

graph.

Figure 7. Tiobench random write test result bar

graph.

5.2. Comparative Analysis and Findings
The results of each test performed using the Phoronix Test Suite are presented separately using bar graphs for

clarity. There were two types of tests we applied in Tiobench tests; random_write and random_read. Because of the
random_read test, we found that Docker had the highest read data per second speed among virtual software with a value
of 40638 MB/s. In the random_write test, it is noteworthy that the values were very different from each other. Re-tests
were performed, and similar results were obtained. This demonstrates that VMware’s data-writing speed is superior to
other virtualization environments.

181

Acta Infologica

Figure 6. Tiobench random-read test result bar graph.

Figure 7. Tiobench random write test result bar graph.

Figure 8. Compress-7zip compression test results are shown as a bar graph.

Figure 9. Compress-7zip decompression test results are shown as a bar graph.

182

Candemir, A. İ., İncereis, N. , Comparative Analysis of Transaction Performance in Different Virtualization Environments

Figure 10. C-ray test results are shown as a bar graph.

Figure 11. Bar graph of smallpt test results.

Figure 12. Tachyon test result bar graph.

Figure 13. OSBench creates a thread test result bar graph.

183

Acta Infologica

Figure 14. OSBench creates a process test result bar graph.

Figure 15. OSBench memory allocation test result bar graph.

In the Tiobench test, the results of which are shown in Figures 6 and 7, it can be seen that Docker demonstrated high
performance in the reading test and VMWare in the writing test. This test provides us with information about the disk
performance of the virtual machines. In the Compress7zip tests, the results of which are shown in Figures 9 and 10,
it can be seen that Docker obtained the highest MIPS (Million instructions per second) values. This demonstrates that
Docker outperformed other virtualization environments in tests measuring disk performance. When we look at the C-ray
results (Figure 10), which mainly test the processor performance, we see that Docker is superior; however, the results
are very close to each other. In the Smallpt (Figure 11) and Tachyon (Figure 12) test results, which focus on processor
performance, it is seen that Docker’s performance is quite high. However, VMware and VirtualBox demonstrated
inconsistent results. This is because these tests measure not only the processor performance. In OSBench’s Create
Threads (Figure 13) and Create Process (Figure 14) tests; parameters such as processor performance, OS efficiency,
memory management, input/output performance, and multi-core usage, were measured. The performance rankings
are Docker, VirtualBox, and VMware. Another test from OSBench, Memory Allocations, measures memory-intensive
performance such as memory allocation speed, memory-release speed, and memory fragmentation. Although the results
(Figure 15) are similar to those of other OSBench tests, VMware appears to perform better than VirtualBox in this test.
Docker also demonstrated the highest performance in this test.

Docker takes a different approach from other virtualization technologies. Instead of using hypervisors, as in other
virtualization environments, it provides containerization at the operating system level (Pahl et al., 2017; Wang, 2022).
This allows Docker containers to be lighter and consume fewer resources (Kaiser et al., 2022; Reis et al., 2022).
The fact that MIPS values are superior to those of other virtualization environments suggests that Docker may
incur lower overhead (added processing power). This structure of Docker indicates that it will outperform other
virtualization technologies in all tests. The results show that this is not the case. We found that Docker outperformed
other virtualization environments in certain tests and workloads. In particular, in the Compress-7zip test, we observed
that Docker’s compression and decompression performance was quite high compared to others. In addition, in the
Tiobench test, notably Docker performs quite well in the random read and write operations. However, Docker was not
superior in every test. In the Tiobench random write test, Docker outperformed the other virtualization environments.

These results demonstrate that for certain workloads and tests, Docker may have performance advantages; however,
these advantages are not always and not in every test scenario. Thus, the selection of a virtualization environment should

184

Candemir, A. İ., İncereis, N. , Comparative Analysis of Transaction Performance in Different Virtualization Environments

depend on the workload, performance requirements, and case. Each can offer different advantages and disadvantages.
It is important to choose a virtualization solution that best suits specific requirements (Potdar et al., 2020). VirtualBox
and VMware are the most widely used virtualization technologies. Considering the test results, the performance of
both virtualization technologies appeared to be close to each other. On average, VMware provides slightly higher
performance. When selecting the virtualization technology to use, the use scenario should be considered. Because the
usage scenario involves different workloads, performance varies for different workloads.

6. DISCUSSION AND CONCLUSION
Docker’s overall success rate in tests was approximately 92%.
Based on the Tiobench test results, Docker achieved the highest read speed of 40,638 MB per second in the

random_read test, while it exhibited an average performance of 255 MB in the random_write test. VMwareachievedd
the highest write speed (1159 MB. These results demonstrate that Docker exhibits better disk performance, especially
in read operations, whereas VMware exhibits better performance in write operations.

In the Compress-7zip test results, Docker achieved the highest values with 11.435 million instructions per second
(MIPS) in the compression test and 8.721 MIPS in the decompression test. This demonstrates that Docker is more
efficient than other virtualization technologies in terms of disk performance.

Docker obtained the fastest results in the processor-intensive ray tracing test with 455 µs. VMware and VirtualBox
gave results of 481 µs and 482 µs respectively. It can be observed that Docker is faster than other processor-based
operations, albeit by a small margin.

Dockeroutperformed then other virtualization environments by completing the test in less time than the Smallpt test
with 66 µs and Tachyon test with 1017 µs. This demonstrates that Docker is more efficient, especially in CPU-intensive
tasks, and provides faster results, especially in 3D graphic operations.

Considering the OSBench test results, Docker obtained the fastest results with 71 µs in the process creation test.
VMware and VirtualBox delivered results of 126 and 86 µs, respectively. In addition, Docker demonstrated the fastest
performance at 136 ns in the memory allocation test. These findings demonstrate that Docker is more efficient in
operational processes such as memory management and process creation.

Docker outperformed other virtualization environments in various performance metrics. In particular, Docker has
been observed to be faster and more efficient in tests such as disk reading, compression, ray tracing, and memory
management. However, it may have disadvantages, such as security risks and resource isolation. VMware is more
suitable for applications that require security and comprehensive resource management and stands out particularly for
disk write performance and security requirements. VirtualBox, on the other hand, offered a more balanced performance
but fell behind other technologies, especially in terms of disk performance and processor-intensive operations. Users
should choose between these virtualization technologies based on their particular needs and application scenarios.

With the increasing use of Docker, security threats targeting Docker containers from malicious hacker teams such as
TeamTNT, WatchDog, Kinsing, and Rocke, have increased (Unit42, 2022).

Our findings align with those of Reis and Oliveira (2022), who demonstrated that Docker outperforms traditional
virtual machines in terms of start-up time and resource usage. Pahl and Lee (2017) also highlighted that while
Docker containers are advantageous for lightweight and scalable deployments, they may not always offer the same
level of isolation and security as hypervisor-based solutions. These comparisons underscore the necessity of selecting
appropriate virtualization technologies that meet specific workload requirements and performance expectations.

For researchers focusing on virtualization technologies, it is recommended to consider both containerization and
traditional virtualization methods depending on the specific case. Docker, with its rapid deployment and efficient
resource usage, is ideal for applications requiring agility and scalability. However, for applications needing high security
and extensive resource management, traditional virtualization technologies like VMware may be more suitable. Future
research should also explore the integration of these technologies to exploit the strengths of both approaches.

This study has certain limitations. First, the tests were conducted using a single type of hardware configuration,
which may not represent all possible scenarios. In addition, the focus was on a limited set of performance metrics,
thereby eliminating other potentially significant factors, such as long-term stability and maintenance costs. Future
studies should consider a broader range of hardware environments and performance indicators.

In future, we plan to consider other factors in the virtualization technology selection process, including security tests.
Afterwards, we plan to extend this test, which we conducted using the Ubuntu 22.04 operating system, with different
operating systems and other virtualization technologies (Hyper-V, KVM, Parallels).

185

Acta Infologica

Peer Review: Externally peer-reviewed.
Author Contributions: Conception/Design of Study- A.İ.C., N.İ.; Data Acquisition- A.İ.C., N.İ.; Data
Analysis/Interpretation- A.İ.C., N.İ.; Drafting Manuscript- A.İ.C., N.İ.; Critical Revision of Manuscript- A.İ.C., N.İ.;
Final Approval and Accountability- A.İ.C., N.İ.; Technical or Material Support- A.İ.C., N.İ.; Supervision- A.İ.C., N.İ.
Conflict of Interest: The authors have no conflict of interest to declare.
Grant Support: The authors declared that this study has received no financial support.

ORCID IDs of the authors
Ali İhsan Candemir 0009-0001-0167-7879
Nilgün İncereis 0000-0001-5508-8159

REFERENCES
Ayaz, Ö., Aydın, G. (2016), Uygulama Sanallaştırmada Yeni Bir Yaklaşım: Docker. Retrieved from https://ab.org.tr/ab15/bildiri/312.
Brady, K., Moon, S., Nguyen, T., Coffman, J. (2020), Docker Container Security in Cloud Computing, 2020 10th Annual Computing and

Communication Workshop and Conference (CCWC), doi: 10.1109/CCWC47524.2020.9031195
Benchmark Tests: https://openbenchmarking.org/tests, 01.01. 2024.
Ferrari, D. (1972). Workload characterization and selection in computer performance measurement. Computer 5: 18-24.
Gupta, A., Bansal, A. and Khanduja, V. (2017), Modern lossless compression techniques: Review, comparison and analysis, 2017 Second

International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, pp. 1-8.
Gurjar, D. and S. S. Kumbhar, (2019) A Review on Performance Analysis of ZFS & BTRFS, 2019 International Conference on Communication

and Signal Processing (ICCSP), Chennai, India, pp. 0073-0076, doi: 10.1109/ICCSP.2019.8698103.
Kaiser, S., Haq, M.S., Tosun, A.S., & Korkmaz, T. (2022). Container technologies for ARM Architecture: A Comprehensive Survey of the

State-of-the-Art, IEEE Access, 10, 84853-84881.
Mongia, V., Sharma, A. (2020 July-August), Performance Comparison of Virtual Machine Selection Policies in Cloud Environment, International

Journal of Advanced Trends in Computer Science and Engineering, Volume 9, No.4.
Natawiguna, A., & InggrianiLiem, M. M. (2016), Virtualization Methods for Securing Online Exam, 2016 International Conference on Data and

Software Engineering (ICoDSE), Denpasar, Indonesia, pp. 1-7.
Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). Cloud container technologies: A State-of-the-art review. IEEE Transactions on Cloud

Computing, 7, 677-692.
Patil, S. (2021 May), Study of container technology with docker. International Journal of Advanced Research in Science Communication and

Technology.
Perez, R., vanDoorn, L., & Sailer, R. (2008 November). Virtualization and hardware-based security. IEEE Security and Privacy Magazine

6(5):24 – 31
Potdar, A.M., Naraya, D. G., Kengond, S., Mulla, M.M. (2020), Performance Evaluation of Docker Container and Virtual Machine, Procedia

Computer Science, 171, 1419-1428.
Reis, D., Piedade, B., Correia, F. F., Dias, J. P., & Aguiar, A., (2022). Developing Docker and Docker-Compose Specifications: A Developers’

Survey. IEEE Access, vol. 10, pp. 2318-2329.
Robbi, F. A. A., A. B, Prasetijo, and E. D., Widianto ED (2019 January), Perbandingan Kinerja Block Storage Ceph dan ZFS di Lingkungan

Virtual, Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 1, pp. 7-11.
Schlosser, D., Duelli, M., & Goll, S. (2011). Performance comparison of hardware virtualization Plaforms, International Conference on Research

in Networking, 393-405.
Sudha, M. (2013), Performance Analysis of Kernel-Based Virtual Machine, International Journal of Computer Science and Information Tech-

nology.
Syauqi, M. R., Sabrina, N. P., Santikarama, I. (2023), K-Means Clustering with KNN and mean computation on CPU Benchmark Compilation

Data, Journal of Applied Informatics and Computing, 7(2), pp. 231–239. https://doi.org/10.30871/jaic.v7i2.6491
Unit42 (2022, April 12). I Am Your Defense against Cloud Threats: The Latest Unit 42 Cloud Threat Research. Available online: https:

//unit42.paloaltonetworks.com/iam-cloud-threat-research (accessed on 20 July 2024).
Wang, W., (2022), Research on Using Docker Container Technology to Realize Rapid Deployment Environment on Virtual Machine, 2022 8th

Annual International Conference on Network and Information Systems for Computers (ICNISC), Hangzhou, China, pp. 541-544.
Wei, S., Zhang, K., & Tu, B. (2019 June). HyperBench: A benchmark suite for virtualization capabilities. Proc. ACM Meas. Anal. Comput. Syst.

3, 2, Article 24, 22 pages.
Yılmaz, E. C., Oktaş, R., & Karabulut, B. (2016). DOCKER İLE WEB UYGULAMASI GELİŞTİRME. Küresel Mühendislik Çalışmaları

Dergisi, 3(2), 116-121.

186

https://orcid.org/0009-0001-0167-7879
https://orcid.org/0000-0001-5508-8159
https://ab.org.tr/ab15/bildiri/312
https://openbenchmarking.org/tests
https://unit42.paloaltonetworks.com/iam-cloud-threat-research
https://unit42.paloaltonetworks.com/iam-cloud-threat-research

Candemir, A. İ., İncereis, N. , Comparative Analysis of Transaction Performance in Different Virtualization Environments

How cite this article
Candemir, A. İ., & İncereis, N. (2024). Comparative Analysis of Transaction Performance in Different Virtualization

Environments. Acta Infologica, 8(2), 176-187. https://doi.org/10.26650/acin.1462076

187

https://doi.org/10.26650/acin.1462076

	INTRODUCTION
	VIRTUALIZATION ENVIRONMENTS
	Hardware Level Virtualization
	Operating System Level Virtualization
	Application-Level Virtualization

	PERFORMANCE METRICS AND EVALUATION CRITERIA
	CPU use
	Memory Management
	Input/Output Operations
	Network Performance

	MATERIAL AND METHOD
	Virtualization Platforms for Testing
	Workloads and scenarios
	Data collection and analysis

	RESULTS
	Performance Results of Each Virtualization Environment
	Comparative Analysis and Findings

	DISCUSSION AND CONCLUSION

