
İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

The Implementation of Chaos Engineering in Cloud Architecture and Applications

Mehmet Altuğ AKGÜL*1 , Hakan GÜVEZ2

Research Article, Received Date: 02.04.2024, Accepted Date: 23.08.2024

Abstract

The emergence of microservice architecture and the concept of Chaos Engineering, which was researched to understand

how the system will behave in case of possible interruptions and service problems that may occur when software services

trying to do the same job in different locations talk to each other, play an important role in determining the robustness of

systems exposed to intense network traffic. In this article, the concept of Chaos Engineering, which has emerged in recent

years and has started to be used especially in checking the reliability of distributed systems, is mentioned. As a result, it

is emphasized that Chaos Engineering can play an important role in increasing the reliability of distributed systems

running on the cloud.

Keywords: Cloud, Chaos engineering, Distributed systems, Microservices, Infrastructure.

1. INTRODUCTION

This article includes a research on while monolithic

applications were common, all business logic ran in a

single service and a single database, and there were

actually huge applications controlled from a single place.

However, especially with the increase in network speeds

and traffic density of cloud systems, monolithic

applications no longer respond to demand. It has become

impossible for huge software teams to work on a single

monolithic application. For this reason, an approach

called microservices emerged where each service does

only one job or has a minimum number of job

responsibilities. Moreover, it was a very suitable

architectural approach for distributed systems.

Chaos Engineering is a discipline that emphasizes on in-

tensional injection of faults into software systems to

minimize downtime while increasing resiliency. The

main motivation for this approach is to overcome

uncertainties prevalent in distributed systems e.g. cloud

infrastructure (Kennedy et al., 2019).

*1Corresponding author mehmetaltugakgul@gmail.com,
2guvezhakan@gmail.com

Implementing chaos engineering in cloud environments

is critical due to the inherent complexity and dynamics of

cloud infrastructure. As companies increasingly rely on

cloud services for their critical operations, the need for

resilience and reliability becomes increasingly important.

Chaos engineering provides a proactive approach to

identifying and mitigating potential failures by

intentionally introducing disruptions into the system.

This approach helps uncover vulnerabilities that may not

be apparent during normal operation, ensuring that the

system can withstand unexpected challenges. By

regularly testing the system's ability to handle failures,

companies can build more robust and resilient cloud

architectures. Additionally, the insights gained from

chaos engineering experiments enable teams to

implement improvements and develop better incident

response strategies, ultimately improving overall service

availability and user satisfaction. Discussing how to

implement chaos engineering in the cloud is critical to

fostering a culture of continuous improvement and

operational excellence given the ever-evolving

technology landscape.

https://orcid.org/0009-0006-1452-9089
https://orcid.org/0000-0002-5087-4705

Akgül ve Güvez (2024). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

93

A rapid microservices transformation has begun all over

the world. Software teams have worked quickly to

transform legacy monolithic applications into

microservices architecture, and with the help of

frameworks, many projects are no longer monolithic but

serve in a microservices architectural approach and cloud

native.

In addition to the advantages of having everything run on

microservices responsible for a single job, the

disadvantages include the difficulty in service

management and the difficulty of these services

communicating with each other. It becomes impossible

to understand how the system will react, especially in the

event of an unexpected error or service stop. Data

integrity and high accessibility are two very important

factors, especially in services with high transaction

density, such as fintech. The possibility of losing millions

of dollars even in the event of a 5-minute system crash

requires these systems to operate flawlessly. Therefore,

all disaster scenarios need to be created, tested and

appropriate measures taken. Regardless of how

distributed or complex the system is, the sources of

systemic errors are generally clear and these errors must

be found in advance and the fragility of the system must

be determined through relevant tests.

2. EMERGENCE OF CHAOS ENGINEERING

Chaos engineering is the discipline of experimenting on

a distributed system to build confidence in a system's

ability to withstand unexpected failures. This method is

used to increase the flexibility of complex systems by

deliberately adding errors and measuring the results.

Chaos engineering identifies and remedies potential

system weaknesses and vulnerabilities in the design,

architecture and operational applications of the system by

simulating controlled malfunctions. There are many

ways of adding failure to the system, including closing a

service, adding delays or errors (for example, a service

cancellation attack), terminating operations or tasks, or

simulating a change in the environment or configuration

settings. This makes it easier to measure performance and

reliability measurements such as system operating time,

error rates, and recovery times. This helps us better

understand how the system responds to deliberate error

occurrences and increases the resilience of systems by

using the information obtained. Therefore, it is difficult

to ensure the reliability of local applications in the cloud

and requires more research. Chaos engineering simulates

real-world conditions and malfunction scenarios to assess

system durability and reliability. Failure injection causes

errors in test systems, while chaos engineering advocates

deliberately injecting errors directly into production

systems. This allows teams to identify weaknesses and

increase overall system resilience (Ahmad et al., 2024).

Netflix moved its traditional architecture systems to the

cloud environment in the 2010s, and this migration

process took an average of 7 years. During this long

process, there were no tools to detect systemic errors and

to test the consequences of these errors in the cloud

environment. The Chaos Monkey tool was a tool that

emerged from this deficiency. People who work

professionally in the field of testing are familiar with the

testing method called "monkey test". The purpose here

was based on the idea that a monkey left in the system

room would randomly damage the relevant system

components, network cables, servers and other parts. In

such a situation, an attempt was made to measure how

systemic outages would affect the main system. In this

way, precautions could be taken to reduce the fragility of

the system against unexpected outages, and these outages

occurred randomly on an unexpected day and time. Real-

life problems often arise unexpectedly.

Following these developments, the Chaos Engineering

concept and the Chaos Engineer position as a position in

professional business life began to become widespread

and used more. Industry giants such as Facebook,

Google, LinkedIn and Amazon started working on Chaos

Engineering and creating employment.

Figure 1. Cycle of chaos engineering experiments

Akgül ve Güvez (2024). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

94

3. APPLICATIONS OF CHAOS

ENGINEERING

Chaos engineering, as in many projects, starts from the

planning phase, and this planning generally consists of

considering the errors that may occur in the system and

the preliminary preparation process. These errors can

cover a wide range from very common errors to the rarest

problems.

After the planning phase, the Exploding phase comes into

play and a small-scale error is created in the system. In

other words, the necessary information can be obtained

at the point where the system crashes and becomes

unresponsive. If information cannot be obtained, this

blasting scale is enlarged and scaled. If the problem is

solved, a different trial can be started; if the problem is

not solved, the system can be scaled until this problem is

solved.

In fact, deliberately detonating the system adopts the

approach of making the system immune to possible

problems, just like our body's immune system. The more

familiar the system is with such situations, the weaker the

effect it will have (IBM., n.d.).

The probability of error is much higher, especially in

distributed systems. Because the system consists of the

combination of different subsystems working remotely

from each other. Here, many problems such as network

problems, packet transfers, delays, bandwidth, and

dissimilarity of devices in the system are the problems

that come with distributed systems. At this point, there

may be different misconceptions that all system

designers get caught up in. Peter Deutsch collected these

misconceptions in a list of 8 items (Wikic2., n.d.).

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn't change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

In fact, all the items in this list summarize the problems

we encounter in modern distributed systems. In general,

system architects accept most things under normal

conditions when designing systems, but generally all

problems arise after these mistakes. With cloud use,

system management in general is provided through cloud

providers that we call hyperscaler, and shared

responsibility models are generally clearly stated in user

agreements, and the responsibilities of the infrastructure

owner and the customer are different. For this reason,

although there are not many infrastructure, maintenance

and operational problems in modern cloud architectures,

problems that may occur after user error are much more

serious. Especially chaos engineering on the cloud is very

different from on-premise systems.

Various platforms and technologies facilitate chaos

engineering experiments on cloud systems. Gremlin and

Litmus are notable examples of error addition and the

ability to evaluate the flexibility of systems. The

techniques used by Netflix engineers to test the system's

resistance to unforeseen failures led to the emergence of

the chaos engineering field. To identify weaknesses and

increase system resilience, use concepts such as error

addition and edited trial (Rahul, 2024).

In addition, chaos engineering in systems should be

planned by considering all components of the system.

With a transaction-based intensive payment system,

scheduled systems that operate at certain times of the day

are not subject to the same interruptions and fragility.

Network, storage, database and architecture teams are

expected to work together and make chaos engineering

planning appropriate to their systems.

We can also separate errors according to the types we

encounter.

Known errors: Errors that we are aware of, familiar

with, and can easily understand are included in these

errors.

Known and unknown errors: These are errors that we

are aware of and familiar with, but cannot easily

understand.

Unknown known errors: These are errors that we are

not aware of or familiar with, but can easily understand.

Unknown unknown errors: Errors that we are neither

aware of, familiar with nor can we easily understand also

fall into this class.

Akgül ve Güvez (2024). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

95

4. WHICH TYPES ARE AVAILABLE?

While preparing chaos engineering test environments,

different types of methods can be used. These methods

are listed below. Methods can be diversified, but in

general, proceeding with these headings is appropriate in

terms of best practices and compatible with current life

practices.

Load Generation: It can be summarized as performing a

load test on the system by creating a traffic load much

higher than the traffic on the media received by the

system. Thus, the degree of fragility of the system can be

measured.

Canary Testing: Canary testing is a method used to open

an application or a systemic change to a selected small

group, rather than to all users, and to help them

understand whether there is any problem in the system.

The remaining users will not be informed of the update

until the test is finished.

Error injection: This type is a technique that deliberately

injects an error into a system that generally has no errors

and makes it easier for us to understand how the system

works. Types of error injection can be very diverse. In

general, there may also be physical difficulties such as

hardware malfunction or increasing the ambient

temperature. Or deliberately corrupting the software also

falls under this type of injection.

Latency injection: Testing the instability of the system by

deliberately creating low-speed network or network

connection errors. These levels of slowness can be

repeated in a certain principle.

5. AREAS OF IMPLEMENTATION FOR

CHAOS ENGINEERING IN CLOUD

Chaos Engineering, an innovative approach aimed at

enhancing the resilience of software systems through

deliberate fault injection, has become a cornerstone in

ensuring system robustness within the tech industry. This

proactive methodology is spearheaded by dedicated

teams, often small in number, whose mission is to embed

these practices across their organizations. These teams

not only apply Chaos Engineering techniques directly but

also empower and motivate other engineering

departments to adopt these practices in their daily

workflow.

The implementation of Chaos Engineering typically

begins with crucial service-oriented teams, who lead the

charge in its adoption and serve as advocates for its

benefits across their organizations. These teams are

responsible for crucial areas such as:

Managing Traffic Infrastructure (examples include

HAProxy, Squid, Load Balancers)

Streaming Services (such as RabbitMQ, ActiveMQ,

Stream Processing Platforms)

Storage Solutions (for example, Cassandra, Redis,

Distributed File Systems)

Data Processing Frameworks (e.g., Spark, Flink, Big

Data Analytics Platforms)

Database Management (including Oracle, SQL Server,

NoSQL Databases)

By focusing on these essential components,

organizations can significantly improve the resilience

and reliability of their foundational services.

Forward-thinking companies have integrated Chaos

Engineering into their regular release cycles, positioning

it alongside other established testing methodologies. This

approach ensures that considerations of reliability are

woven into the fabric of the development process from

the outset, embedding durability into every feature prior

to its release. This shift in perspective highlights the

evolution of Chaos Engineering from a specialized

technique to a vital element of software development,

emphasizing its critical role in constructing robust

systems capable of withstanding the complexities of the

modern digital landscape.

Figure 2. Chaos engineering tests can be thought of as a

monkey being left in a system room and randomly interfering

with servers and cables

Akgül ve Güvez (2024). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

96

6. CHAOS ENGINEERING FOR LOAD

BALANCERS

In our online world, load balancers work like junctions

on a busy road, making sure internet traffic goes where it

should. Chaos Engineering is like testing those junctions

with unexpected problems to make sure they can handle

the pressure and keep the traffic flowing smoothly.

Known-Knowns: The awareness of an infrastructure's

capability to reroute traffic in the event of a load balancer

failure is well-established. Systems are equipped with

health check mechanisms to identify inactive or

malfunctioning load balancers.

Experiment: The simulation of a single load balancer's

failure during off-peak hours is conducted to observe the

efficacy of traffic rerouting and to quantify the detection

and rerouting duration.

Figure 3. Chaos engineering things table (Mesh, 2024).

Known-Unknowns: While load balancers are

configured to manage a specified volume of traffic, the

precise limitations of the current setup and the

consequences of abrupt traffic surges remain uncertain.

Experiment: The load on load balancers is incrementally

increased beyond anticipated capacity to ascertain the

threshold at which failure or significant performance

degradation occurs. The system's response and recovery

duration are meticulously measured.

Unknown-Knowns:

The premise that load balancers distribute traffic

according to specified rules, such as least connections or

round-robin algorithms, is understood. However, the

efficiency of these algorithms under specific conditions

is not fully known.

Experiment: Controlled scenarios are crafted to simulate

particular traffic patterns that might result in

disproportionate load distribution. The effectiveness of

the current algorithm in managing these patterns is

evaluated.

Unknown-Unknowns:

Potential vulnerabilities may arise from the complex

interdependencies between load balancers and other

infrastructure components like DNS services or internal

network configurations.

Experiment: A comprehensive shutdown of all load

balancers is executed to examine the infrastructure's

reaction. Such a rigorous test has the potential to reveal

latent dependencies or failure points within the system's

architecture that have not been previously considered.

Through methodical progression across these categories

with targeted experiments, the opportunity arises to

detect and rectify potential frailties within the Load

Balancer configuration, thereby reinforcing the system's

overall robustness. This approach necessitates

meticulous planning, execution, and analysis of each

experiment to accrue valuable insights while curtailing

the impact on the operational environment.

7. CHAOS ENGINEERING TOOLS

1-Litmus / Harness Chaos Engineering:

Platforms: Kubernetes

Release year: 2018

Creator: MayaData

License: Open source (with a managed option)

Litmus started as a testing tool for OpenEBS and has

since grown into one of the largest open-source

Kubernetes-native Chaos Engineering tools. It provides a

library of faults for testing containers, hosts, and

platforms such as Amazon EC2, Apache Kafka, and

Azure.

Akgül ve Güvez (2024). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

97

2-AWS Fault Injection Simulator and AWS

Resilience Hub

Platforms: AWS

Release year: 2021

Creator: Amazon Web Services

License: Commercial

AWS Fault Injection Simulator (FIS) lets you introduce

faults into AWS services, including Amazon RDS,

Amazon EC2, and Amazon EKS. AWS Resilience Hub

evaluates your AWS environment, compares them to

reliability policies, and provides improvement

recommendations.

3-Azure Chaos Studio

Platforms: Azure

Release year: 2021

Creator: Microsoft

License: Commercial

Azure Chaos Studio is a Chaos Engineering solution for

running faults directly on the Azure API. It supports

faults on Azure Compute instances, CosmosDB, and

Azure Cache for Redis. It also supports Kubernetes via

integration with Chaos Mesh.

4-Steadybit

Platforms: Docker, Kubernetes, Linux hosts

Release year: 2018

Creator: Steadybit

License: Commercial

Steadybit is a commercial Chaos Engineering tool that

aims to build remediation into its experiments.

5-Chaos Monkey

Platform: Spinnaker

Release year: 2012

Creator: Netflix

Language: Go

It was one of the first Chaos Engineering tools and

kickstarted the adoption of Chaos Engineering outside of

large companies.

6-ChaosBlade

Platforms: Docker, Kubernetes, bare-metal, cloud

platforms

Release year: 2019

Creator: Alibaba

Language: Go

ChaosBlade is a CNCF sandbox project built on nearly

ten years of failure testing at Alibaba. It supports many

platforms, including Kubernetes, cloud platforms, and

bare-metal, and provides dozens of attacks, including

packet loss, process killing, and resource consumption.

7-Chaos Mesh

Platform: Kubernetes

Release year: 2020

Creator: PingCAP

License: Open source

Chaos Mesh is a Kubernetes-native tool that lets you

deploy and manage your experiments as Kubernetes

resources. It's also a Cloud Native Computing

Foundation (CNCF) sandbox project (Wikic2., n.d.).

8-Chaos Toolkit

Platforms: Docker, Kubernetes, bare-metal, cloud

platforms

Release year: 2018

Creator: ChaosIQ

License: Open source

Chaos Toolkit will be familiar to anyone who's used an

infrastructure automation tool like Ansible. Instead of

making you select from predefined experiments, Chaos

Toolkit lets you define your own.

9-Toxiproxy

Platforms: Any

Release year: 2014

Akgül ve Güvez (2024). İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 4(2), 92-98

98

Creator: Shopify

License: Open source

Toxiproxy is a network failure injection tool that lets you

create conditions such as latency, connection loss,

bandwidth throttling, and packet manipulation. As the

name implies, it acts as a proxy that sits between two

services and can inject failure directly into traffic.

10-Istio

Platform: Kubernetes

Release year: 2017

Creators: Google, IBM, and Lyft

License: Open source

Istio is best known as a Kubernetes service mesh, but not

many know it natively supports fault injection as part of

its traffic management feature.

Figure 4. Chaos engineering tools comparison matrix

(Comparing chaos engineering tools)

8. WHAT ARE THE BENEFITS

We have talked about many features of chaos

engineering, but it would be good to talk about its

benefits in general. First of all, determining and testing

this approach shows how well the system can survive

against problems that may occur in live environments and

increases the reliability of the system. If errors are known

in advance, preliminary studies can be carried out on this

issue to ensure that the system is resistant to major errors.

It prevents major problems in remote systems of users

and customers and reduces repair and maintenance

activities. It saves money and time for the customer and

provides long-term reliability to the company. It prevents

unexpected interruptions in distributed systems and

creates a working area for high availability. In addition,

it gives an idea about all the weaknesses of the system

and how to act in case of disaster.

9. CONCLUSION

In this article, we have discussed Chaos Engineering is a

concept that has started to be used to check the reliability

of distributed systems and systems running on the cloud,

especially distributed systems running on the cloud. In

this context, it is stated that Chaos Engineering involves

creating errors around the service in a controlled manner

in order to verify the durability of the service and find

weaknesses. Chaos Engineering is used to understand the

behavior of systems by simulating real-world scenarios,

detect weaknesses and strengthen the system against

unexpected failures. This continuous improvement

process ensures that cloud systems become more robust

and reliable. You can also strengthen the fragility of your

systems by using best practices and relevant tools.

REFERENCES

Al-Said Ahmad, A., Al-Qora’n, L.F. & Zayed, A.

Exploring the impact of chaos engineering with various

user loads on cloud native applications: an exploratory

empirical study. Computing 106, 2389–2425 (2024).

https://doi.org/10.1007/s00607-024-01292-z

Chaos Mesh. (2024). Chaos Mesh Overview. Chaos

Mesh. https://chaos-mesh.org/docs/

Comparing Chaos Engineering tools. (2024, February

19). Gremlin.

https://www.gremlin.com/community/tutorials/chaos-

engineering-tools-comparison

IBM. (n.d.). What is Chaos Engineering? Retrieved

from https://www.ibm.com/topics/chaos-engineering

Torkura, Kennedy & Sukmana, Muhammad Ihsan Haikal

& Cheng, Feng & Meinel, Christoph. (2019). Security

Chaos Engineering for Cloud Services.

https://doi.org/10.1109/NCA.2019.8935046.

Yadav, Rahul. (2024). Harnessing Chaos: The Role of

Chaos Engineering in Cloud Applications and Impacts

on Site Reliability Engineering. 72. 25-30.

https://doi.org/10.14445/22312803/IJCTT-V72I6P104.

Wikic2. (n.d.). Eight Fallacies of Distributed

Computing. Retrieved from

https://wiki.c2.com/?EightFallaciesOfDistributedCompu

ting

