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ABSTRACT 

This paper discusses calculation of mean, rms and complex rms values of h-order harmonics of a periodic waveform 

having odd-order harmonics. Nyquist rate suggests that 2h+1 samples should be taken in a period to calculate mean, rms and 

complex rms values of the waveform so that the original waveform can be reconstructed with Fourier series. In this paper, it is 

proved that only h+2 samples are required to perform same calculations. The recursive running discrete Fourier series approach 

(RRDFS) is used for computation. Results show that exact information about the waveform can be obtained below the Nyquist 

rate. 

Keywords: Harmonics, waveform sampling, Nyquist 

TEK DERECELİ HARMONİKLERE SAHİP BİR PERİYODİK DALGANIN ORTALAMA RMS 

VE CRMS DEĞERLERİNİN HESAPLANMASI İÇİN MİNİMUM ÖRNEKLEME ORANI 

TAYİNİ 

ÖZET 

Bu makalede h. dereceden tek dereceli harmonikler içeren bir dalga şeklinde ortalama, etkin ve kompleks etkin 

değerlerin hesabı incelenmektedir. Nyquist örnekleme kriterine göre, dalga şeklini elde etmek ve ortalama, etkin ve kompleks 

etkin değerleri hesaplamak için bir periyot içerisinde 2h+1 örnek alınması gerekmektedir. Bu makalede aynı hesaplamalar için bir 

periyot içerisinde h+2 örneğin yeterli olduğu gösterilmektedir. Hesaplamalar için ardışıl ayrık Fourier serileri yaklaşımı 

kullanılmaktadır. Elde edilen sonuçlar Nyquist örnekleme kriterinin altında bir değerle dalga şekli hakkında tüm bilgilerin elde 

edilebileceğini göstermektedir.  

Anahtar kelimeler: Harmonik, dalga şekli örnekleme, Nyquist 

1. INTRODUCTION 

Harmonics produced by nonlinear loads 

(e.g. devices with electrical arc, ballasts of 

fluorescent lamps, transmission system transformers 

and electrical machines) are well known. The use of 

power electronic semiconductors increased rapidly 

with the development of semiconductor 

technology. The most power electronic equipment, 

such as switch-mode dc power supplies, 

uninterruptible power supplies, and ac and dc 

motor drives, controlled and uncontrolled ac-to-dc, 

dc-to-ac converters can add inherent power line 

disturbances by distorting the utility waveform due 

to harmonic currents injected into the utility grid, 

and by producing electromagnetic interface 

causing deterioration of supply quality and power 

factor (1). Due to internal impedance of supply, 

the voltage waveform at the point of common 

coupling to the other loads will become distorted, 

which may cause harmful effects in other 

equipment such as, transformers, rotating 

machines, switch gear, capacitor banks, fuses, 

protective relays, computers, and computer-like 

measuring and control equipment (2-4). Overall 

distortion to the waveform is expressed as the total 

harmonic distortion (THD) that is limited by the 

IEEE standard 519 (5) to less than 5.0 percent for 

voltage and, 3.0 percent for current. 

The new standards legislated by governments 

place increasingly stringent requirements on 

electrical systems. New generations of equipment 

and methods must have higher performance 

parameters such as better efficiency and reduced 

electromagnetic interference. To meet these 

standards and requirements, harmonics must be 

compensated or decreased to a certain level 

described by standards. Harmonics first are to be 

identified and then to be analyzed for 

compensation and suppression. Fourier series 

analysis is common for identification of 

harmonics. However, analysis of such harmonics 

produced by electronic equipment which use fast 

semiconductor switches may require high 

sampling rate, therefore, high computational 

efforts. It may be achieved by the use of fast 

computing devices such as computers, 

microprocessors and digital signal processors.  
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The use of fast computing devices does not 

decrease the calculation effort to identify 

harmonics and thus, may not be effective in real 

time applications. To overcome this problem, 

computing devices should be faster than they are 

or, same computing devices should do same job 

with less computational effort, if possible. The 

sampling rate is to be reduced to decrease 

computational effort. The reduction in the 

sampling rate may result in loss of information. In 

balanced three phase power systems, the 

characteristic harmonics are all odd-order. Even 

harmonics are not characteristics of a balanced 

power system. Positive and negative sequence 

odd-order harmonics circulate between the phases, 

while the zero sequences circulate between phase 

and neutral or ground. Thus, sampling rate can be 

decreased below the Nyquist rate without loss of 

any information about harmonics of the waveform. 

In this paper, it is shown that sampling rate 

can be reduced to almost half of the Nyquist rate 

for periodic waveforms having odd-order 

harmonics, and then the original waveform can be 

reconstructed without loss of any information on 

the waveform. The mean, rms and complex rms 

values of h-order harmonics can be calculated 

without error, if discretization related errors are 

neglected. 

2. MINIMUM NUMBER OF SAMPLES 

A band-limited signal is a signal, x(t), which 

has no spectral components beyond a frequency f 

Hz; that is, F(s) = 0 for |s| > 2..f. The sampling 

theorem states that a real signal, f(t), which is 

band-limited to f Hz can be reconstructed without 

error from samples taken uniformly at a rate R > 2f 

samples per second. This minimum sampling 

frequency, fs = 2f Hz, is called the Nyquist rate or 

the Nyquist frequency (6). The corresponding 

sampling interval, T = 1/2f (where t = nT), is 

called the Nyquist interval. A signal band limited 

to f Hz which is sampled at less than the Nyquist 

frequency of 2f, i.e., which was sampled at an 

interval T > 1/2f, is said to be undersampled.  

A number of practical difficulties are 

encountered in reconstructing a signal from its 

samples. The sampling theorem assumes that a 

signal is band limited. In practice, however, 

signals are time-limited rather than band-limited. 

As a result, determining an adequate sampling 

frequency that does not lose desired information 

can be difficult. To create a digital representation 

of a waveform, the sampling process takes 

“snapshots” of the instantaneous value of the wave 

at regular intervals: the sample rate. Afterward, no 

information is available about what happened 

between those samples. If the set of sampled data 

is to be an accurate representation of the actual 

waveform, the samples must be spaced closely 

enough to capture all the significant details. When 

a signal is undersampled, its spectrum has 

overlapping tails; that is F(s) no longer has 

complete information about the spectrum and it is 

no longer possible to recover x(t) from the 

sampled signal. In this case, the tailing spectrum 

does not go to zero, but is folded back onto the 

apparent spectrum. This inversion of the tail is 

called spectral folding or aliasing  

Suppose the true input signal has frequency 

f, and the sampling frequency is fs. The following 

rules allow the alias frequency (fa) to be 

calculated. 

sf
2

1
f                     (1) 

As the signal frequency lies below the limit 

set by the sampling theorem, no aliasing occurs; 

the sampled signal has the correct frequency.  

ss fff
2

1
          (2) 

The signal undergoes aliasing, with an alias 

frequency  

fff sa                     (3) 

where sff  . 

Aliasing again occurs. The aliasing or 

folding property of a band-limited signal can be 

used to determine frequency components of the 

sampled signal with undersampling if signal 

contains only odd-order harmonics.  

Let the signal has the highest harmonic 

frequency ( hf ). Then, the folding frequency ( cf ) 

near the fundamental frequency ( 1f ) is defined as 

1
h

c f
2

f
f  .           (4) 
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The folding index, xh  for the harmonic 

pairs become 

n
2

1

f

f
h

1

h
x           (5) 

where n is an odd number (n = 1, 3, 5, ... , 

hn ) and, hn for the harmonic pairs defined as  

2
f

f
n

1

h
h  .         (6) 

 Therefore, minimum number of 

samples that should be taken in a period for 

reconstruction of the signal is  

2
f

f
N

1

h  .        (7) 

Since highest harmonic component is 

1

h

f

f
h  , equation (7) becomes  

2hN                   (8) 

Let the signal be sampled with N samples,  

then, at any sampling instant k, for 

k=0,1,2,...N-1 

W(h,k+1)=e
-j hk2/N  

                  (9) 

is always folded near the fundamental 

component  as seen in Fig. 1. 

Thus, 

W(h+1)=W*(N-h-1)                (10) 

where, * donates complex conjugate and h is 

the order of harmonics.  
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Fig. 1. Folding of the harmonics near the 

fundamental harmonics 

Summation of index of folded numbers 

always gives the number of samples. For example, 

if a signal contains odd-order harmonics up to 11
th 

harmonic, then the number of samples is N = h+2 

= 13. Since N is below the Nyquist rate which is 

2h+1=23, folding near the fundamental occurs. At 

points x, (11 and 2, 9 and 4, 7 and 6, 5 and 8, 3 and 

10) quantities of W are complex conjugate of each 

other. Thus, even-order harmonics occurred due to 

sampling below the Nyquist rate are to be ignored.  

3. CALCULATION OF FUNCTIONALS  

Common functionals for describing 

properties of electric circuits with periodic 

waveforms of voltages and currents having period 

T, e.g. mean, Root Mean Square, (rms) and 

Complex Root Mean Square (CRMS) can be 

calculated if both the waveform is sampled with N 

number of samples and Nyquist criteria is 

satisfied. Let periodic signal x(t) with period T is 

sampled periodically with the sampling period Ts, 
in the period T with N number of samples. Then, 

functionals the mean, the rms and the CRMS of 

the h-order harmonic can be defined as,  

x
N

x
n

n

N
: .






1

0

1
                (11)  

|| ||: .x
N

xn
n

N

 


1
2

0

1

                (12) 

Xh
n

n

N j

N

nh

N
x e  



 2

0

1

2

     (13) 

where; x  is the mean value, || ||x  is rms value and 

X
h

 is the CRMS value of the h-order harmonic 

component of the periodic waveform x(t). 

If sampling is dense enough to meet Nyquist 

criteria, then x(t) can be reconstructed with the 

Fourier series. If the number of samples taken is an 

even number, then reconstruction is given by, 

x t x eh

h

N

jh t   




2
1

2
1

1Re X


     (14) 

else, 

x t x eh

h

N

jh t   




2
1

1

2

1Re X


     (15) 
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The Recursive Running Discrete Fourier 

Series (RRDFS) approach, also referred to as 

running approach, can be used to calculate mean, 

rms and complex rms values of the waveform. 

With the running approach, functionals of the 

waveform can be calculated at each sampling 

interval. Consequently, any change in the 

waveform can be detected when next sample is 

taken. The functionals the mean, the rms and the 

CRMS of the h-order harmonic can be defined at 

discrete time k with N number of samples in the 

interval {k...k-N+1} as follows;  

x x
N

x xk k k N   1

1
       (16) 

         x x
N

x xk k k k N   1

2 2
1

    (17) 

The CRMS value of the h-order harmonic: 

X = X Whk h k k k N

khx x     1     (18) 

where 

W 
2

2

N
e

j
N



       (19) 

then x(t) can be reconstructed in the interval 

{k...k-N+1} with the Fourier series, 

x t x ek hk

jh t

h

N

( ) ~ Re
~

. 




X
1

1

1

2

     (20) 

4. SIMULATION RESULTS 

Several simulations have been performed to 

demonstrate and to verify the effectiveness of the 

proposed method. First, data have been obtained 

from practical equipment (An air conditioner, a PC 

supply, a transformer magnetizing current, a six-

pulse and twelve-pulse current source converter 

(CSC) currents). Then, harmonic analysis has been 

carried out by the use of Nyquist sampling rate. 

During the test, harmonics up to 50
th
 are taken into 

account. Next, waveform has been reconstructed. 

Same current waveforms have been sampled with 

h+2 samples. Original waveform again has been 

reconstructed from its samples and harmonic 

spectrum has been obtained. 

During the simulation fist two periods are 

considered. The waveform has been sampled with 

2550 Hz sampling frequency instead of 4950 Hz 

Nyquist sampling frequency. Higher order 

harmonics are not considered since in power 

applications higher harmonics have small 

magnitudes. 

Example 1: 

A square voltage waveform having 

components up to 50
th
 harmonic is considered. Fig. 

2 shows the original, reconstructed and the error 

between original and reconstructed waveform. Fig. 

3 shows the harmonic spectrum of the waveform 

with their angles. The original waveform has 

harmonics up to 2450Hz.  
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Fig. 2. Original, reconstructed and the error 

between original and reconstructed 

waveforms of a square voltage  
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Fig. 3. Harmonic spectrum of the square voltage 

waveform with their angles 

Example 2: 

Utility side one phase current waveform of 

an 180kVA six-pulse current source converter 
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(CSC) is considered. The effects of the 

transformer magnetizing current are neglected. 

Fig. 4 shows the original, reconstructed and the 

error between original and reconstructed 

waveform. Fig. 5 shows the harmonic spectrum up 

to 50
th
 harmonic of the current waveform with 

their angles. The original waveform is band 

limited with 2450Hz., and all harmonic 

components have 180 degrees phase angle.  
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Fig. 4. Original, reconstructed and the error 

between original and reconstructed 

waveforms of a six-pulse CSC current 
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Fig. 5. Harmonic spectrum and their angles for a 

six-pulse CSC current  

At the beginning, the sampling error (Fig. 4) 

is maximum and goes to zero when h+2 samples 

are acquired. Total harmonic distortion (THD) of 

the waveform is 30 percent. All harmonics beyond 

the fundamental (Fig.5) have 180 degrees phase 

angle.  

 

 

Example 3: 

The same six-pulse current source converter 

in Example 2 with 30 degrees phase shift is 

considered. Phase shift is used to remove phase 

angles of harmonics so that parallel operation of 

the converter can be achieved. Fig. 6 shows the 

original, reconstructed and the error waveforms. 

Fig. 7 shows the harmonic spectrum up to 50
th
 

harmonic of the waveform with their angles. 
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Fig. 6. Original, reconstructed and the error 

waveforms of a six-pulse CSC current with 

30 degrees phase shift 
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Fig. 7. Harmonic spectrum and their angles for a 

six-pulse CSC current with 30 degrees 

phase shift  

As seen in Fig. 6 and 7, again zero error was 

obtained after initiating period. And, harmonic 



Aydın ÇETİN/POLİTEKNİK DERGİSİ,CİLT 5, SAYI 2,  2002 

 

 134 

spectrum with their phase angles is obtained 

correctly. 

 

Example 4: 

Current waveform of a twelve-pulse current 

source converter is considered. Twelve-pulse 

current source converter is obtained with parallel 

connection of two six-pulse CSCs with 30 degrees 

phase shift of Example 3. Fig. 8 shows the 

original, reconstructed and the error between 

original and reconstructed waveform. Fig. 9 shows 

the harmonic spectrum up to 50
th
 harmonic of the 

waveform with their angles.  

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 
-1000 

0 

1000 

O
ri
g
in

a
l 
(A

) 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 

-1000 

0 

1000 

R
e

c
o
n
s
tr

u
c
te

d
 (

A
) 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 
-500 

0 

500 

Time (s) 

E
rr

o
r 

(A
) 

 

Fig. 8. Original, reconstructed and the error 

waveforms of a twelve-pulse CSC current 

 As seen in Fig. 8, again zero error was 

obtained when h+2 samples are acquired. Only 

1n12   harmonics are occurred in the waveform, 

where n is any integer. The THD is decreased to 

14.18 percent from 30 percent. 
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Fig. 9. Harmonic spectrum and their angles for a 

twelve-pulse CSC current 

Example 5: 

Magnetizing current waveform of a power 

system distribution transformer is considered. Fig. 

10 shows the original, reconstructed and the error 

between original and reconstructed waveform. Fig. 

11 shows the harmonic spectrum up to 50
th
 

harmonic of the waveform with their angles.  
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  Fig. 10. Original, reconstructed and the error 

waveforms of a transformer magnetizing 

current 
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Fig. 11. Harmonic spectrum and their angles for a 

transformer magnetizing current 

The waveform (Fig. 10) was reconstructed 

without error. Higher harmonics are low in 

magnitude and all harmonic components have 

different phase angles (Fig. 11). The THD of the 

waveform is 76.11 percent.  

Example 6: 

Current waveform of a PC supply is 

considered. Fig. 12 shows the original, 

reconstructed and the error between original and 

reconstructed waveform. Fig. 13 shows the 

harmonic spectrum up to 50
th
 harmonic of the 

waveform with their angles.  
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Fig. 12. Original, reconstructed and the error 

waveforms of a PC current 
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Fig. 13. Harmonic spectrum and their angles for a 

PC current 

As seen in Fig. 12 waveform was 

reconstructed without error. Higher harmonics are 

low in magnitude and all harmonic components 

have different phase angles as seen in Fig. 13, the 

THD of the waveform is 134.72 percent.  

Example 7 

Current waveform of an air conditioner is 

considered. Fig. 14 shows the original, 

reconstructed and the error waveforms. Fig. 15 

shows the harmonic spectrum up to 50
th
 harmonic 

of the waveform with their angles.  
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Fig. 14. Original, reconstructed and the error 

waveforms of an air conditioner current 
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Fig. 15. Harmonic spectrum and their angles for an 

air conditioner current 

As seen in Fig. 14 waveform was 

reconstructed without error. Higher harmonics are 

low in magnitude and all harmonic components 

have different phase angles as seen in Fig. 14, the 

THD of the waveform is 10.53 percent.  

5. DISCUSSION 

After sampling is initiated, as seen in Fig. 2-

15, the error of the reconstructed waveform is not 

zero during the first period. In running approach, 

calculation of the functionals begins immediately 

after the first sample is acquired. So, the 

reconstructed waveform contains error until all the 

required samples are obtained. This situation is the 

property of the running approach and happens only 

at first period. Once all the required samples are 

obtained for the first period, there will be enough 

data for the continuous reconstruction operation. 

Thereafter, any changes in the waveform at each 

sampling instant will be detected without error. If 

the running approach is not preferred, 

reconstruction is completed at the end of the first 

sampling period. However, in this case any 

changes of the magnitude and phase angle of the 

waveform cannot be detected at each sampling 

instant.  

If another sampling rate below the Nyquist 

rate, and different from suggested rate, folding 

occurs at fractional frequencies. Therefore, 

although it is possible to find and folding index at 

fractional frequencies, it is not possible to 

reconstruct the waveform, and calculate common 

functionals from its samples. When applying 

suggested sampling rate it is suggested that first 

Nyquist rate should be applied to be sure that 

even-order harmonics does not exist, and if even-

order harmonics is not present in the waveform, 

then sampling rate should be decreased to 

suggested rate. 

6. CONCLUSIONS 

In this paper, it is proved that sampling rate 

can be reduced to almost half of the Nyquist rate 

for periodic waveforms having odd-order 

harmonics, and then the original waveform can be 

reconstructed without loss of any information on 

the waveform. The mean, rms and CRMS values 

of h-order harmonics can be calculated without 

error, if discretization related errors are neglected. 

It should be noted that if the number of samples is 

chosen between the suggested rate and Nyquist 

rate, the waveform could not be reconstructed due 

to folding at fractional frequencies. 
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