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Abstract 

In this study, the cubic exponential B-spline collocation method 
has been proposed for the numerical solutions of the Burgers 
equation with the operator splitting. To apply the operator 
splitting method, the Burgers' equation has decomposed into 
two sub-equations based on the time term: the linear part 
(diffusion) and the nonlinear part (convection). Subsequently, 
for each sub-equation, Crank-Nicolson finite difference 
schemes in the temporal direction and cubic exponential B-
spline functions and their derivatives have been applied at the 
𝑥𝑚 nodal points in the spatial direction. The algebraic equation 
systems obtained have been solved numerically using the Lie-
Trotter and Strang splitting schemes to get the solutions of the 
main equation. Some advantages of the splitting methods 
include preserving the physical characteristics of the solution, 
yielding more convergent results over long time intervals, 
enabling simpler algorithms, and facilitating the storage of 
solution vectors on computer. To assess the accuracy of the 
computed numerical results the 𝐿2 and 𝐿∞ error norms have 
been used. Additionally, the obtained results have been 
compared with some studies in the literature. The stability 
analysis of the applied method has been investigated using the 
von Neumann Fourier series method. 
 
Keywords: Burgers Equation; Cubic  Exponential B-spline; Collocation 
Method; Lie-Trotter Splitting; Strang Splitting. 

Öz 

Bu çalışmada, Burgers denkleminin nümerik çözümleri için 
kübik üstel B-spline kollokasyon ile birlikte operatör parçalama 
yöntemi önerildi. Operatör parçalama yöntemini uygulamak 
için Burgers denklemi zaman terimine göre lineer kısım 
(difüzyon) ve lineer olamayan kısım (konveksiyon) olarak iki alt 
denkleme parçalandı. Daha sonra her bir alt denkleme zaman 
yönünde Crank-Nicolson sonlu fark yaklaşımları, konum 
yönünde ise kübik üstel B-spline fonksiyonlarının ve 
türevlerinin 𝑥𝑚 düğüm noktalarındaki değerleri uygulandı. Elde 
edilen cebirsel denklem sistemleri Lie-Trotter ve Strang 
parçalama şemaları kullanılarak ana denklemin nümerik 
çözümleri bulundu. Parçalama yöntemlerinin bazı avantajları 
çözümün fiziksel özelliklerini koruması, uzun zaman 
aralıklarında daha yakınsak sonuçlar vermesi, daha basit 
algoritmalara olanak sağlaması, çözüm vektörlerinin 
bilgisayarda depolanması olarak sayılabilir. Hesaplanan sayısal 
sonuçların doğruluğunu ölçmek için literatürde sıkça kullanılan 
𝐿2, 𝐿∞ hata normları kullanıldı. Ayrıca elde edilen sonuçlar 
literatürdeki bazı çalışmalarla karşılaştırıldı. Uygulanan 
yöntemin kararlılık analizi Von Neumann Fourier seri 
yöntemiyle incelendi. 
 
 
Anahtar Kelimeler: Burgers Denklemi; Kübik Üstel B-spline; Kollokasyon 
Yöntemi; Lie-Trotter Parçalama; Strang Parçalama. 

 
  

 

1. Introduction 

The nonlinear Burgers’ equation is 

𝑈𝑡 + 𝑈𝑈𝑥 − 𝑣𝑈𝑥𝑥 = 0, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 ≥ 0  (1) 

with the initial condition 

𝑈(𝑥, 0) = 𝜗(𝑥) 

and the boundary conditions 

𝑈(𝑎, 𝑡) = 𝑓1(𝑡),   𝑈(𝑏, 𝑡) = 𝑓2(𝑡), 

where 𝑈(𝑥, 𝑡) is a function sufficiently differentiable in 

the 𝑥 direction, 𝑡 is time, and 𝑣 is the positive kinematic 

viscosity coefficient. The Burgers’ equation was first 

introduced by (Bateman 1915) in the context of fluid 

mechanics research. This equation is acknowledged as 

the most elementary mathematical model delineating 

the equilibrium between convection and diffusion. The 

equation (1) was later studied by Burgers (Burgers, 

1948), and after this study, it was named the Burgers 

equation. If 𝑣 = 1 is substituted into equation (1), the 

inviscid Burgers’ equation is obtained, which models 

shock waves and finds numerous applications in physics 

(Brezis and Felix 1997). The reasons behind equation (1) 

attracting the attention of many researchers include its 

incorporation of the simplest form of nonlinearity, 

represented by the convective term 𝑈𝑈𝑥, its inclusion of 

the term 𝑣𝑈𝑥𝑥  modeling physical wave phenomena, and 

the possibility of comparison with the exact solution 

obtained by (Cole 1951). Due to the increasing interest in 
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nonlinear phenomena in recent years, the Burgers 

equation, which models a variety of phenomena such as 

gas dynamics, heat conduction, traffic flow, and shock 

wave events, has attracted considerable attention from 

researchers (Gao et al. 2013). In recent years, with the 

emergence of more powerful computers, efforts have 

been made to compute solutions of the Burgers 

equation using numerous numerical methods and 

techniques. Some of these studies, (Dag et al. 2005) 

applied cubic B-splines bases using a linearization 

technique and the collocation finite element method. 

(Saka and Dag 2007) utilized time and space splitting 

techniques to obtain approximate solutions of the 

Burgers' equation via quintic B-spline collocation 

procedures. (Kutluay and Esen 2004) solved the Burgers' 

equation using a lumped Galerkin method with quadratic 

B-spline finite elements. (Dag et al., 2017) employed 

cubic Trigonometric B-spline (CTB) functions to establish 

a collocation method for finding solutions of the Burgers' 

equation. (Ucar et al. 2020) solved the Burgers' equation 

using the operator splitting cubic B-spline collocation 

method. (Dag et al. 2004) solved the Burgers' equation 

using both time and space splitting with the quadratic B-

spline collocation method. (Mittal and Jain 2012) 

computed the numerical solutions of the Burgers' 

equation via collocation-modified cubic B-splines using 

SSP-RK43 and SSP-RK54. (Ersoy et al. 2018) determined 

the numerical solutions of the Burgers equation using 

the exponential B-spline collocation method. (Celikkaya 

and Guzel 2023) constructed numerical solutions of the 

Burgers equation by employing four numerical schemes 

based on operator splitting. 

2. Operator Splitting Method 

Operator splitting methods are highly effective 

techniques used to decompose complex mathematical 

and engineering problems into simpler ones to obtain 

their solutions. In splitting methods, the main equation is 

decomposed into sub equations, and the solutions of 

each sub equation are obtained independently of the 

main equation over the time interval [𝑡𝑛, 𝑡𝑛+1]. If the 

equation is decomposed in a way to model different 

physical problems, the method is called “operator 

splitting” (Hundsdorfer 2000). 

Let split the Burgers equation as follows: 

𝑈𝑡 = 𝑣𝑈𝑥𝑥 ,    (2) 

𝑈𝑡 = −𝑈𝑈𝑥 .    (3) 

The strategy to obtain numerical solutions of the Burgers 

equation using the operator splitting method involves 

solving equations (2) and (3) numerically or analytically. 

Let 𝜑∆𝑡
𝐴  and 𝜑∆𝑡

𝐵  denote the analytical or numerically 

acceptable solutions of equations (2) and (3) with a time 

step of ∆𝑡, respectively. Then, the numerical solutions of 

equation (1) can be obtained as 𝑈(𝑥, ∆𝑡) ≅ 𝜔∆𝑡𝜃(𝑥) 

with an appropriate ∆𝑡, where 

𝜔∆𝑡 = 𝜑∆𝑡𝑎1
𝐴 °𝜑∆𝑡𝑏1

𝐵 °⋯𝜑∆𝑡𝑎𝑛
𝐴 °𝜑∆𝑡𝑏𝑚

𝐵 °𝜑∆𝑡𝑎𝑚+1
𝐴  

or 

𝜔∆𝑡 = 𝜑∆𝑡𝑏1
𝐵 °𝜑∆𝑡𝑎1

𝐴 °⋯𝜑∆𝑡𝑏𝑛
𝐵 °𝜑∆𝑡𝑎𝑚

𝐴 °𝜑∆𝑡𝑏𝑚+1
𝐵 . 

Coefficients 𝑎𝑖  and 𝑏𝑖  can be obtained using the Baker-

Campel-Hausdorff formula to achieve solutions of the 

desired order (Creutz and Gocksch 1989, Suziki 1990, 

Yoshida 1990, Sari et al. 2019). The simplest splitting 

method known as Lie-Trotter (Trotter 1959) splitting is 

defined as follows: 

𝐿∆𝑡 = 𝜑∆𝑡
𝐴 °𝜑∆𝑡

𝐵  or 𝐿∆𝑡
∗ = 𝜑∆𝑡

𝐵 °𝜑∆𝑡
𝐴 . 

The solution algorithm for Lie-Trotter 𝐿∆𝑡
∗  can be written 

in the following form 

𝑑𝑈∗(𝑡)

𝑑𝑡
= 𝐴𝑈∗(𝑡), 𝑈∗(𝑡𝑛) = 𝑈

0(𝑡𝑛), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], 

𝑑𝑈∗∗(𝑡)

𝑑𝑡
= 𝐵𝑈∗∗(𝑡), 𝑈∗∗(𝑡𝑛) = 𝑈

∗(𝑡𝑛+1), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]. 

In this scheme, equation (2) is solved with the original 

initial condition given by the problem, and the obtained 

results are used as the initial condition in equation (3). 

Thus, the numerical solutions of the main problem are 

found as 𝑈(𝑡𝑛+1) = 𝑈∗∗(𝑡𝑛+1). If the order of operators 

A and B is changed, a similar algorithm can be written for 

𝐿∆𝑡. Strang splitting (Strang 1968), one of the commonly 

used methods in the literature, is defined as follows: 

𝑆∆𝑡 = 𝜑∆𝑡
2

𝐴 °𝜑∆𝑡
𝐵 °𝜑∆𝑡

2

𝐴  or 𝑆∆𝑡
∗ = 𝜑∆𝑡

2

𝐵 °𝜑∆𝑡
𝐴 °𝜑∆𝑡

2

𝐵 . 

The numerical algorithm for 𝐴°𝐵°𝐴 scheme of 𝑆∆𝑡 is 

given as follows: 

𝑑𝑈∗(𝑡)

𝑑𝑡
= 𝐴𝑈∗(𝑡), 𝑈∗(𝑡𝑛) = 𝑈

0(𝑡𝑛), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1
2

], 

𝑑𝑈∗∗(𝑡)

𝑑𝑡
= 𝐵𝑈∗∗(𝑡), 𝑈∗∗(𝑡𝑛) = 𝑈

∗ (𝑡
𝑛+

1

2

) , 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]. 

𝑑𝑈∗∗∗(𝑡)

𝑑𝑡
= 𝐴𝑈∗∗∗(𝑡), 𝑈∗∗∗ (𝑡

𝑛+
1

2
) = 𝑈∗∗(𝑡𝑛+1), 𝑡 ∈ [𝑡𝑛+1

2
, 𝑡𝑛+1], 

where, 𝑡
𝑛+

1

2

= 𝑡𝑛 +
∆𝑡

2
 and desired numerical solutions 

are obtained as 𝑈(𝑡𝑛+1) = 𝑈
∗∗∗(𝑡𝑛+1). Similarly, the 

𝐵°𝐴°𝐵 scheme can also be formulated in a similar 

manner as provided above. 

In this study, numerical solutions of the Burgers 

equation were computed using cubic exponential B-
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spline collocation finite element method with 𝐴𝐵, 𝐵𝐴, 

𝐴𝐵𝐴 and 𝐵𝐴𝐵 numerical patterns. 

3. Cubic Exponential B-spline Functions and Application 

of the Method 

A uniform partitioning of the solution domain [𝑎, 𝑏] in 

terms of the nodal points 𝑥𝑚, 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 =

𝑏 and ℎ = 𝑥𝑚+1 − 𝑥𝑚. Let 𝑠 = sinh(𝑝ℎ) and 𝑐 =

cosh (𝑝ℎ), the cubic B-spline functions 𝐸𝑖(𝑥) are defined 

in terms of the nodal points 𝑥𝑚  as follows: 

 

𝐸𝑚(𝑥) =

{
 
 
 
 

 
 
 
 𝑏2 ((𝑥𝑚−2 − 𝑥) −

1

𝑝
(sinh (𝑝((𝑥𝑚−2 − 𝑥))))) , [𝑥𝑚−2, 𝑥𝑚−1]

𝑎1 + 𝑏1(𝑥𝑚 − 𝑥) + 𝑐1 exp(𝑝 ∗ (𝑥𝑚 − 𝑥)) + 𝑑1 exp(−𝑝 ∗ (𝑥𝑚 − 𝑥)) , [𝑥𝑚−1, 𝑥𝑚]

𝑎1 + 𝑏1(𝑥−𝑥𝑚) + 𝑐1 exp(𝑝 ∗ (𝑥−𝑥𝑚)) + 𝑑1 exp(−𝑝 ∗ (𝑥−𝑥𝑚)) , [𝑥𝑚, 𝑥𝑚+1]

𝑏2 ((𝑥−𝑥𝑚+2) −
1

𝑝
(sinh (𝑝((𝑥−𝑥𝑚+2))))) [𝑥𝑚+1, 𝑥𝑚+2]

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  (4) 

 

where 𝑝 is positive free parameter and 

𝑎1 =
𝑝ℎ𝑐

𝑝ℎ𝑐 − 𝑠
, 𝑏1 =

𝑝

2
[
𝑐(𝑐 − 1) + 𝑠2

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
], 

𝑏2   =
𝑝

2(𝑝ℎ𝑐 − 𝑠)
, 

𝑐1 =
1

4
[
exp(−𝑝ℎ) (1 − 𝑐) + 𝑠(exp(−𝑝ℎ) − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
], 

𝑑1 =
1

4
[
exp(𝑝ℎ) (𝑐 − 1) + 𝑠(exp(𝑝ℎ) − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
]. 

It is clear that the set {𝐸−1(𝑥), 𝐸0(𝑥),⋯𝐸𝑁+1(𝑥)} forms 

a basis over the interval [𝑎, 𝑏], (Mccartin 1991). Hence, a 

function defined over the interval [𝑎, 𝑏], denoted as 

𝐸𝑚(𝑥),𝑚 = −1(1)𝑁 + 1,  can be expressed as a linear 

combination of the functions. That is, with 𝛿𝑚(𝑡) being 

time-dependent parameters, the expression for 𝑈𝑁(𝑥, 𝑡) 

can be approximated as follows: 

𝑈𝑁(𝑥, 𝑡) ≅ ∑ 𝛿𝑚(𝑡)𝐸𝑚(𝑥)
𝑁+1
𝑚=−1 .   (5) 

Using expressions (4) and (5), the function and its first 

and second-order derivatives can be determined as 

follows: 

𝑈(𝑥, 𝑡) = 𝑈(𝑥𝑚 , 𝑡) = 𝛼1𝛿𝑚−1 + 𝛼2𝛿𝑚 + 𝛼1𝛿𝑚+1, 

𝑈′(𝑥,𝑡) = 𝑈′(𝑥𝑚 ,𝑡) = 𝛽1𝛿𝑚−1 − 𝛽1𝛿𝑚+1,  (6) 

𝑈′′(𝑥,𝑡) = 𝑈′′(𝑥𝑚,𝑡) = 𝛾1𝛿𝑚−1 − 𝛾2𝛿𝑚 + 𝛾1𝛿𝑚+1, 

where 

𝛼1 =
𝑠−𝑝ℎ

2(𝑝ℎ𝑐−𝑠)
, 𝛽1 =

𝑝(1−𝑐)

2(𝑝ℎ𝑐−𝑠)
, 𝛾1 =

𝑝2𝑠

2(𝑝ℎ𝑐−𝑠)
, 𝛾2 =

𝑝2𝑠

𝑝ℎ𝑐−𝑠
. 

If the approximations in expression (6) are utilized in 

equations (2) and (3), the following system of ordinary 

differential equations is obtained as follows: 

𝛼1�̇�𝑚−1 + 𝛼2�̇�𝑚 + 𝛼1�̇�𝑚+1 − 𝑣(𝛾1𝛿𝑚−1 − 𝛾2𝛿𝑚 +

𝛾1𝛿𝑚+1) = 0,     (7) 

𝛼1�̇�𝑚−1 + 𝛼2�̇�𝑚 + 𝛼1�̇�𝑚+1 + 𝑧𝑚(𝛽1𝛿𝑚−1 − 𝛽1𝛿𝑚+1) =

0.       (8) 

Where, the symbol ∙ denotes the first-order derivative 

with respect to 𝑡, and 

𝑧𝑚 = 𝛼1𝛿𝑚−1 + 𝛼2𝛿𝑚 + 𝛼1𝛿𝑚+1. 

If Crank-Nicolson for time discretization and the values 

of exponential B-spline functions at nodal points 𝑥𝑚  for 

space direction in equations (7) and (8) are employed, 

the following algebraic equation systems are obtained:  

𝑟1𝛿𝑚−1
𝑛+1 + 𝑟2𝛿𝑚

𝑛+1 + 𝑟1𝛿𝑚+1
𝑛+1 = 𝑟3𝛿𝑚−1

𝑛 + 𝑟4𝛿𝑚
𝑛 + 𝑟3𝛿𝑚+1

𝑛 , 

      (9) 

𝑟5𝛿𝑚−1
𝑛+1 + 𝑟6𝛿𝑚

𝑛+1 + 𝑟7𝛿𝑚+1
𝑛+1 = 𝑟7𝛿𝑚−1

𝑛 + 𝑟6𝛿𝑚
𝑛 + 𝑟5𝛿𝑚+1

𝑛 . 

      (10) 

Where 

𝑟1 = 𝛼1 −
𝑣∆𝑡𝛾1

2
, 𝑟2 = 𝛼2 +

𝑣∆𝑡𝛾2

2
, 𝑟3 = 𝛼1 +

𝑣∆𝑡𝛾1

2
, 

𝑟4 = 𝛼2 −
𝑣∆𝑡𝛾2
2

, 𝑟5 = 𝛼1 +
𝑧𝑚∆𝑡𝛽1
2

, 𝑟6 = 𝛼2, 

𝑟7 = 𝛼1 −
𝑧𝑚∆𝑡𝛽1

2
.  

The algebraic equation systems (9) and (10) consist of 

(N+1) equations and (N+3) time-dependent parameters 

𝛿𝑚(𝑡). If boundary conditions 𝑈(𝑎, 𝑡) = 𝑈(𝑏, 𝑡) = 0 are 

applied to these systems, the following relations are 

obtained for parameters 𝛿−1 and 𝛿𝑁+1 that not in the  

solution domain: 

𝛿−1 = −
𝛼2

𝛼1
𝛿0 − 𝛿1 +

𝑓1

𝛼1
, 

 𝛿𝑁+1 = −𝛿𝑁−1 −
𝛼2

𝛼1
𝛿𝑁 ++

𝑓2

𝛼1
.    (11) 

By using the equations (11) in the (9) and (10), yielding 

tri-diagonal band matrices of size (𝑁 + 1) × (𝑁 + 1). 
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3.1 Initial State 

To start the solution of systems (9) and (10), the initial 

condition 

𝑈𝑁(𝑥𝑚, 0) = 𝜗(𝑥𝑚),𝑚 = 0(1)𝑁 

and boundary conditions 

𝑈𝑥𝑥(𝑎, 0) = 𝑓1(𝑡), 𝑈𝑥𝑥(𝑏, 0) = 𝑓2(𝑡)  

are used. The initial vector 𝛿𝑚
0  can be obtained as 

follows: 

[
 
 
 
 
 −

𝛼1𝛾2

𝛾1
+ 𝛼2 0 0   

𝛼1 𝛼2 𝛼1   
  ⋱   
  𝛼1 𝛼2 𝛼1
    −

𝛼1𝛾2

𝛾1
+ 𝛼2]

 
 
 
 
 

[
 
 
 
 
 
 
 
𝛿0
0

𝛿1
0

 
⋮
 

𝛿𝑁−1
0

𝛿𝑁
0 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝑈0 −

𝛼1𝑓1

𝛾1

0
 
⋮
 
0

𝑈𝑁 −
𝛼1𝑓2

𝛾1 ]
 
 
 
 
 
 
 

. 

3.2 The Von Neumann Stability Analysis 

The stability analysis of systems (9) and (10) has been 

investigated using the Von Neumann Fourier series 

method (Von Neumann and Richtmyer 1950). In this 

method, 𝛿𝑚
𝑛 = 𝜉𝑛𝑒𝑖𝛽𝑚ℎ, where 𝑖 = √−1, ξ is the 

amplification factor, β is the mod number, and ℎ is the 

spatial step length. Let 𝜌𝐴  and 𝜌𝐵   be the stability 

parameters associated with systems (9) and (10), 

respectively. If the expression 𝛿𝑚
𝑛 = 𝜉𝑛𝑒𝑖𝛽𝑚ℎ  is 

substituted into systems (9) and (10), and necessary 

operations are carried out, the following expressions are 

obtained, where 𝜃 =
𝑣∆𝑡𝛾1

2
 : 

𝜌𝐴 (
𝜉𝑛+1

𝜉𝑛
) =

2𝛼1𝑐𝑜𝑠𝛽ℎ+𝛼2−2𝜃(1−𝑐𝑜𝑠𝛽ℎ)

2𝛼1𝑐𝑜𝑠𝛽ℎ+𝛼2+2𝜃(1−𝑐𝑜𝑠𝛽ℎ)
=

𝑀−𝑁

𝑀+𝑁
, 

𝜌𝐵 (
𝜉𝑛+1

𝜉𝑛
) =

𝑐𝑜𝑠𝛽ℎ(𝑟5+𝑟7)+𝑟6−𝑖𝑠𝑖𝑛𝛽ℎ(𝑟7−𝑟5)

𝑐𝑜𝑠𝛽ℎ(𝑟5+𝑟7)+𝑟6+𝑖𝑠𝑖𝑛𝛽ℎ(𝑟7−𝑟5)
=

𝑃−𝑖𝑄

𝑃+𝑖𝑄
. 

For stability, the conditions |𝜌𝐴 (
𝜉𝑛+1

𝜉𝑛
)| ≤ 1 and 

|𝜌𝐴 (
𝜉𝑛+1

𝜉𝑛
)| ≤ 1 must be satisfied. To satisfy the 

condition 𝜌𝐴 ≤ 1, it is required that 𝑀 +𝑁 ≥ 𝑀 − 𝑁, 

since 𝜃 ≥ 0, the condition |𝜌𝐴 (
𝜉𝑛+1

𝜉𝑛
)| ≤ 1 is satisfied. 

Similarly, taking the absolute value of a complex number 

for 𝜌𝐵  reveals that 𝜌𝐵 ≤ 1. Thus, the following 

inequalities are obtained for the Lie-Trotter and Strang 

schemes, respectively 

𝜌𝐿∆𝑡(𝜉) = |𝜌𝐴 (
𝜉𝑛+1

𝜉𝑛
)| |𝜌𝐵 (

𝜉𝑛+1

𝜉𝑛
)| ≤ 1, 

𝜌𝑆∆𝑡(𝜉) = |𝜌𝐴 (
𝜉
𝑛+

1
2

𝜉𝑛
)| |𝜌𝐵 (

𝜉𝑛+1

𝜉𝑛
)| |𝜌𝐴 (

𝜉
𝑛+

1
2

𝜉𝑛
)| ≤ 1. 

Therefore, the numerical algorithms provided above are 

unconditionally stable. 

 
 

Table 1. Comparison of numerical results with some studies of Problem 1 for ℎ = 0.025, ∆𝑡 = 0.0005, 𝑣 = 0.01, 𝑝 = 1.

x Time 𝐋∆𝒕 𝐋∆𝒕
∗  𝐒∆𝒕 𝐒∆𝒕

∗  (Ersoy et al. 2018) (Ucar et al. 2020) (Kutluay and 

Esen 2004) 

Exact 

      ∆𝑡 = 0.0001 ∆𝑡 = 0.001 ∆𝑡 = 0.00001  

0.25 0.4 0.34200 0.34191 0.34192 0.34192 0.34192 0.34192 0.34183 0.34191 

 0.6 0.26904 0.26896 0.26897 0.26897 0.26897 0.26896 0.26889 0.26896 

 0.8 0.22154 0.22148 0.22148 0.22148 0.22148 0.22148 0.22142 0.22148 

 1 0.18824 0.18819 0.18819 0.18819 0.18819 0.18819 0.18815 0.18819 

 3 0.07513 0.07511 0.07511 0.07511 0.07511 0.07511 0.07511 0.07511 

0.5 0.4 0.66084 0.66071 0.66071 0.66071 0.66071 0.66071 0.66066 0.66071 

 0.6 0.52955 0.52942 0.52942 0.52942 0.52942 0.52942 0.52938 0.52942 

 0.8 0.43925 0.43914 0.43914 0.43914 0.43914 0.43914 0.43910 0.43914 

 1 0.37451 0.37442 0.37442 0.37442 0.37442 0.37442 0.37438 0.37442 

 3 0.15021 0.15018 0.15018 0.15018 0.15018 0.15018 0.15017 0.15018 

0.75 0.4 0.91036 0.91028 0.91029 0.91029 0.91027 0.91027 0.91024 0.91026 

 0.6 0.76738 0.76725 0.76725 0.76725 0.76725 0.76725 0.76721 0.76724 

 0.8 0.64754 0.64739 0.64740 0.64740 0.64740 0.64740 0.64737 0.64740 

 1 0.55618 0.55605 0.55605 0.55605 0.55605 0.55605 0.55603 0.55605 

 3 0.22493 0.22490 0.22490 0.22490 0.22483 0.22483 0.22480 0.22481 
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Table 2. Comparison of numerical results at 𝑡 = 0.1 for Problem 1 with ℎ = 0.0125, 0.00625, ∆𝑡 = 0.0005, 𝑣 = 1, 𝑝 = 1. 

x 𝒉 𝐋∆𝒕 𝐋∆𝒕
∗  𝐒∆𝒕 𝐒∆𝒕

∗  (Ersoy et al. 

2018) 

(Uçar et al. 2020) (Kutluay and Esen 

2004) 
Exact 

      ∆𝑡 = 0.0001 ∆𝑡 = 0.001 ∆𝑡 = 0.00001  

0.1 0.0125 0.10955 0.10950 0.10953 0.10953 0.10953 0.10953 0.10953 0.10954 

0.2  0.20981 0.20973 0.20977 0.20977 0.20977 0.20977 0.20978 0.20979 

0.3  0.29191 0.29182 0.29186 0.29186 0.29186 0.29187 0.29187 0.29190 

0.4  0.34791 0.34785 0.34788 0.34788 0.34788 0.34788 0.34790 0.34792 

0.5  0.37153 0.37153 0.37153 0.37153 0.37153 0.37153 0.37155 0.37158 

0.6  0.35897 0.35902 0.35899 0.35899 0.35899 0.35900 0.35901 0.35905 

0.7  0.30981 0.30990 0.30985 0.30985 0.30986 0.30986 0.30988 0.30991 

0.8  0.22773 0.22783 0.22778 0.22778 0.22778 0.22778 0.22780 0.22782 

0.9  0.12064 0.12070 0.12067 0.12066 0.12067 0.12067 0.12068 0.12069 

0.1 0.00625 0.10956 0.10951 0.10954 0.10954 0.10954 0.10954 - 0.10954 

0.2  0.20983 0.20975 0.20979 0.20979 0.20979 0.20979 - 0.20979 

0.3  0.29194 0.29185 0.29189 0.29189 0.29189 0.29189 - 0.29190 

0.4  0.34795 0.34789 0.34791 0.34791 0.34792 0.34791 - 0.34792 

0.5  0.37157 0.37156 0.37156 0.37156 0.37156 0.37157 - 0.37158 

0.6  0.35901 0.35906 0.35903 0.35903 0.35903 0.35903 - 0.35905 

0.7  0.30985 0.30994 0.30989 0.30989 0.30989 0.30989 - 0.30991 

0.8  0.22776 0.22786 0.22781 0.22781 0.22781 0.22781 - 0.22782 

0.9  0.12065 0.12071 0.12068 0.12068 0.12068 0.12068 - 0.12069 

          

 
4. Numerical Experiment and Results 

4.1 Problem 1 

In this problem, the Burgers' equation is considered with 

the following initial and boundary conditions 

𝑈(𝑥, 0) = sin 𝜋𝑥 , 0 ≤ 𝑥 ≤ 1, 

𝑈(0, 𝑡) = 𝑈(1, 𝑡) = 0, 𝑡 ≥ 0. 

The exact solution of this problem was obtained as an 

infinite series by (Cole 1951) as follows: 

𝑈(𝑥, 𝑡) = 2𝜋𝑣
∑ 𝑗𝑎𝑗 sin 𝑗𝜋𝑥𝑒𝑥𝑝(−𝑗

2𝜋2𝑣𝑡)∞
𝑗=1

𝑎0+∑ 𝑎𝑗 cos 𝑗𝜋𝑥𝑒𝑥𝑝(−𝑗
2𝜋2𝑣𝑡)∞

𝑗=1

, 

where 

𝑎0 = ∫ e(−(2𝜋𝑣)
−1)(1−cos𝜋𝑥)

1

0

𝑑𝑥, 

𝑎𝑗 = 2∫ e(−(2𝜋𝑣)
−1)(1−cos 𝜋𝑥)

1

0

cos 𝑗𝜋𝑥 𝑑𝑥, 𝑗 = 1(1)…. 

Table 1 In Table 1, some nodal values are given for 

different 𝑡 values of Problem 1. As observed from the 

table 1, despite the use of smaller time step ∆𝑡 in some 

studies, it is clear that the results obtained by our 

method are more accurate. Although the same type of B-

spline is used in the (Ersoy et al. 2018), the results 

obtained with operator splitting are quite close to the 

exact solution even with larger ∆𝑡. In Table 2, numerical 

values at different 𝑥 at t = 0.1 are given. As can be seen 

from the Table 2, the results computed with the Strang 

scheme are generally more accurate compared to those 

computed with the Lie-Trotter scheme. Moreover, 

despite using larger ∆𝑡, our numerical results are in good 

agreement with those in other studies. 

4.2 Problem 2 

In this problem, the Burgers' equation is considered with 

the given initial condition at 𝑡 = 1 and the following 

boundary conditions (Asaithambi 2010, Mittal and Jain 

2012) 

𝑈(𝑥, 1) =
𝑥

1 + exp (
1

4𝑣
(𝑥2 −

1

4
))
, 

𝑈(0, 𝑡) = 𝑈(1, 𝑡) = 0, 𝑡 ≥ 1. 

The exact solution of this problem is given as follows: 

𝑈(𝑥, 𝑡) =
𝑥/𝑡

1 + √
𝑡

𝑡0
exp (

1

4𝑣
(𝑥2 −

1

4
))

, 𝑡 ≥ 1, 

where 𝑡0 = exp (1/(8𝑣)). The numerical solutions of 

this problem depict the represent of shock waves as 

time progresses. It can be seen from the Figure 2 that as 

viscosity parameter 𝑣 decreases, the shock waves are 

getting steeper. The results are computed with the Lie-
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Trotter and Strang splitting schemes are given in Table 3 for Problem 2. 

Table 3. Comparison of numerical results at different times for Problem 2 with ℎ = 0.005, ∆𝑡 = 0.01, 𝑣 = 0.0005, 𝑝 = 1. 

x 𝒕 𝐋∆𝒕 𝐋∆𝒕
∗  𝐒∆𝒕 𝐒∆𝒕

∗  (Ersoy et al. 2018) (Dağ et al. 2005) Exact 

0.1 1.7 0.05882 0.05882 0.05882 0.05882 0.05882 0.05883 0.05882 

0.2  0.11765 0.11765 0.11765 0.11765 0.11765 0.11765 0.11765 

0.3  0.17647 0.17647 0.17647 0.17647 0.17647 0.17648 0.17647 

0.4  0.23529 0.23529 0.23529 0.23529 0.23529 0.23531 0.23529 

0.5  0.29412 0.29412 0.29412 0.29412 0.29412 0.29414 0.29412 

0.6  0.35294 0.35294 0.35294 0.35294 0.35294 0.35296 0.35294 

0.7  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.8  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.9  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.1 2.5 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000 

0.2  0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 

0.3  0.12000 0.12000 0.12000 0.12000 0.12000 0.12001 0.12000 

0.4  0.16000 0.16000 0.16000 0.16000 0.16000 0.16001 0.16000 

0.5  0.20000 0.20000 0.20000 0.20000 0.20000 0.20001 0.20000 

0.6  0.24000 0.24000 0.24000 0.24000 0.24000 0.24001 0.24000 

0.7  0.28000 0.28000 0.28000 0.28000 0.28000 0.28001 0.28000 

0.8  0.01121 0.01121 0.01121 0.01121 0.01121 0.00811 0.01121 

0.9  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.1 3.25 0.03077 0.03077 0.03077 0.03077 0.03077 0.03077 0.03077 

0.2  0.06154 0.06154 0.06154 0.06154 0.06154 0.06154 0.06154 

0.3  0.09231 0.09231 0.09231 0.09231 0.09231 0.09231 0.09231 

0.4  0.12308 0.12308 0.12308 0.12308 0.12308 0.12308 0.12308 

0.5  0.15385 0.15385 0.15385 0.15385 0.15385 0.15385 0.15385 

0.6  0.18461 0.18461 0.18461 0.18462 0.18462 0.18462 0.18462 

0.7  0.21538 0.21538 0.21538 0.21538 0.21538 0.21539 0.21538 

0.8  0.24615 0.24615 0.24615 0.24615 0.24615 0.24616 0.24615 

0.9  0.12539 0.12221 0.12221 0.12461 0.12394 0.12358 0.12435 

 

Furthermore, numerical results are compared with some 

existing studies for the same parameters found in the 

literature. As clearly seen from the table, the results 

obtained with our method are quite close to the exact 

solution. 

4.3 Problem 3 

As the final problem, the Burgers' equation is considered 

with the following exact solution 

𝑈(𝑥, 𝑡) =
𝛼+𝜇+𝜇(𝜇−𝛼)𝑒𝜂

1+𝑒𝜂
, 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, where 𝜂 =

𝛼(𝑥−𝜇𝑡−𝛾)

𝑣
. 

With boundary conditions 𝑈(0, 𝑡) = 1, 𝑈(1, 𝑡) = 0.2 and 

the initial condition can be obtained from the exact 

solution for 𝑡 = 0. 

In Table 4, the results are compared with the (Celikkaya 

and Guzel 2023), which used operator splitting with the 

cubic trigonometric B-spline collocation, for the 

parameters ℎ = 1/36, ∆𝑡 = 0.01, 𝑣 = 0.01, 𝑝 = 1. As 

seen from the table, the nodal values computed with our 

method are in good agreement with those of in the 

(Celikkaya and Guzel 2023).  

 
Figure 1. The physical behavior of Problem 1 for 𝑣 = 1, ℎ =
0.025, ∆𝑡 = 0.0005 (Above) and absolute error at 𝑡 =
0.1(Below).  
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Table 4. Comparison of numerical results of Problem 3 at 𝑡 = 0.5 for ℎ = 1/36, ∆𝑡 = 0.01, 𝑣 = 0.01, 𝑝 = 1. 

      (Celikkaya and Guzel 2023) 

x 𝐋∆𝑡 𝐋∆𝑡
∗  𝐒∆𝑡 𝐒∆𝑡

∗  𝐿°𝑁 𝑁°𝐿 𝐿°𝑁°𝐿 𝑁°𝐿°𝑁 Exact 

0.000 0.998 0.997 0.998 0.997 1.000 1.000 1.000 1.000 1.000 

0.056 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 

0.111 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 

0.167 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 

0.222 1.000 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 

0.278 0.999 0.999 1.001 0.999 0.999 0.999 1.001 0.999 0.998 

0.333 0.981 0.984 0.985 0.982 0.981 0.984 0.985 0.982 0.980 

0.389 0.837 0.848 0.845 0.843 0.835 0.848 0.845 0.843 0.847 

0.444 0.461 0.451 0.457 0.457 0.458 0.451 0.457 0.457 0.452 

0.500 0.240 0.235 0.237 0.237 0.239 0.235 0.237 0.237 0.238 

0.556 0.204 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.204 

0.611 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.667 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.722 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.778 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.833 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.889 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.944 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

0.100 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

 

  
Figure 2. The physical behavior of Problem 2 for 𝑣 = 0.0005, 
ℎ = 0.005, ∆𝑡 = 0.01 (Above) and absolute error at 𝑡 = 3.25 

(Below). 
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Figure 3. The physical behavior of Problem 3 for 𝑣 = 0.01, ℎ =
1/36, ∆𝑡 = 0.01 (Above) and absolute error at 𝑡 = 1.2 

(Below). 

 

 
Figure 4. The physical behavior of Problem 3 for 𝑣 = 0.005, 
ℎ = 1/36, ∆𝑡 = 0.01 (Above) and absolute error 𝑡 = 0.1 
(Below). 

 

Figure 1 shows that the results are computed with the 

𝑆∆𝑡 for 𝑣 = 1.  As seen from the Figure 1, the exact 

solution closely resembles the numerical solution to the 

extent that they are practically indistinguishable. 

Furthermore, it is observed that the error is high in the 

middle of the solution domain at 𝑡 = 0.1. Figure 2 

illustrates the shock waves generated by Problem 2 for 

𝑣 = 0.0005. As seen from the Figure, as time 

progresses, the height of the shock wave decreases and 

moving towards the right. Additionally, it is observed 

that the error concentrates on the right side of the 

solution domain at 𝑡 = 3.25. Figures 3 and 4 show the 

shock waves obtained for the Problem 3 with viscosity 

values of 𝑣 = 0.01 and 𝑣 = 0.005, respectively. As 

clearly seen from the Figures, as the viscosity parameter 

𝑣 decreases, the shock waves steeper, and it is observed 

that the errors reach their highest values at the right 

boundary at t=3.25.  

 

5. Conclusions 

In this study, the numerical solutions of the Burgers’ 

equation are obtained using the exponential B-spline 

collocation method with operator splitting. The 

computed results are supported with graphs and tables. 

Additionally, the obtained numerical results are 

compared with more computationally intensive methods 

such as Galerkin method. It has been observed that quite 

accurate results are obtained for larger ∆t values using 

operator splitting. Furthermore, a comparison has been 

made with the (Celikkaya and Guzel 2023), which solved 

the equation using the cubic trigonometric B-spline 

collocation method with operator splitting. 
 

It is observed that the results obtained with exponential 

B-spline are in good agreement with those found in 

(Celikkaya and Guzel 2023). Splitting a given partial 

differential equation has been demonstrated as an 

effective method with simpler algorithms, proving to be 

effective in the numerical solutions of partial differential 

equations. It is clearly seen from the provided graphs 

that the operator splitting method preserves the 

physical structure of the solution. The cubic exponential 

B-spline collocation operator splitting method will be an 

effective and suitable method for the numerical 

solutions of partial differential equations with more 

complex structures. 
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