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Abstract In this paper, we define a new Riesz sequence space using a sequence of modulus
functions. Furthermore, we give that this space is linearly isomorphism with E(p) and

determine its basis. We also give some inclusion relationships and compute a- and - duals of
this space.

Key words: Paranorm, Riesz sequence space, modulus function, a—, f—duals, infinite
matrices.

1. Introduction

We will denote the set of all sequences with complex terms by @. With £_, ¢ and c,,

we show that the sequence space of all bounded, covergent and null, respectively. Also,
we denote by £,, E(p), cs and bs, respectively the spaces of all absolutely, p-

absolutely convergent, convergent and bounded series. ([6][14])

Let A=(a,) be an infinite matrix of real or complex numbers (a, ), n,k €0 . The
matrix A define a transformation from X into Y and we denote by A: X —Y, if for
every sequence x=(xk)e X the sequence AX= {(Ax)n}, the A—transform of x, isin

Y where
(Ax) =>a,x  foreach nel .
k

Let (qk) be a sequence of positive numbers. We write
Q,=>.0q., fornel.
k=0

Then the matrix R = (rn“k) of the Riesz mean (R, q, ) is defined by
Oy
rni = Qn ’
0, k>n
In[17] and [13] Riesz mean (R,qn) is regular if and only if Q, — 0 is N —00.

0<k<n,

More recently, in [18] a new concept has been introduced by the following:

ri(u, p)={x:(xk)eca:zQizk:ujqjxJ k <oo}

k k j=0

in which 0< p, <H <o isinvolved.


mailto:cbektas@firat.edu.tr
mailto:eminemozcelik@gmail.com

Journal of Advanced Mathematics and Mathematics Education

The author defined the following difference sequence spaces X (A), in [7].

X(A)={x=(%)ew:(Ax )e X}
where X =£_,c,c, and AX, =X, — X, -

A function f :[0,00) —[0,0) is modulus function if
) f(x)=0e=x=0

(i) f(x+y)<f(x)+f(y), Vvxy=0
(i) f is increasing
(iv) f is continuous from the right at 0.

Ruckle [12] defined by the following sequence space

L(f):{x:(xk):Z‘f (Xk)‘<oo}.
k
Several authors have studied regard to this subject([1],[3],[4].[15].[18],[19],[20].[21])
Finally, Gupkari [15] defined the following sequence space
Py
. oo} |

k
ro (Af){x(xk)ea):z f [équijJ
In this section, we define the Riesz sequence space r* (F : Asp) , as a completely paranormal

k k j=0

2 The Sequence Space r* (F,AS”)

linear space, which is linearly isomorphic to the space ¢(p). Also we give some
topological properties.

The difference sequence space r* (F,Af) is defined by

f, [ézk:quij

k =0

Py
rq(F,Af){x(xk)ew:Z <oo},
k
where s>0 and F =(f,) is a sequence of modulus functions. It can be redefined as
re (F’Asp ) - {f( p)}Rq(F,AS")

Theorem 1. The space r* (F,Af) is a complete linear metric space paranormed by h,
defined by
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1
pk]M

Proof. For the linearity of r® (F,Af), we need to show that with respect to coordinate-wise

1
pk]M

1 k-1 )
|:Qk Z( qj+l)xj+%xk}

i=0 k

-3

where 0< p, <H <o and M =max(LH).

addition and scalar multiplication. Thus we have

e[ E 5w aton G

-0 K

IA
~[M
—h
=
1
rO||_\
=~
AR
—_—
=
|
=
=
s
~
o]
=~
X
=~
| E—
=
| — |
Z‘»—‘

_ 1
r P |M
1 k-1 q
+ D Tl = 2,09 -00) Y + =5 Y,
Zk: k_Qk j—O( Jl) Qk k_

In the case of all y €0 (see [13]),
7™ Smax(1,|y|M)

It is clear thath,(6)=0 and h,(x)=h,(—x), for all XErq(F,Af). From the above
inequalities, yield the subadditivity of h, and

h, (7x) <max(1[y|)h, (x).

Let {x"} be any sequence of r° (F,Af) such that hA(xn —x)—>0 and (y, ) is a sequence of

scalars such that , — . Then,

h, (x") <h, (x)+h, (x"=x).

{hA (x” )} is bounded. Hence we obtain

j=0

1
Pk:|M

<Jra =2 B, ()] B (€= %) (N> )

h, (}/nxn —;/X) =[
k

f, {Q%Zk)(q,-—qm)(n ?—VXJ-)}

This implies that the scalar multiplication is continuous. Namely h, is paranorm on r° (F,Af)
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Now, let us show completeness of this space. Suppose {xi} is any Cauchy sequence in space

r'(F,A?). Hereis X' ={x} e r*(F,A?). Then, there exists a positive integer n, (s),
h,(x'-x')<e (1)

forall i, j >n,(&). Hence, we have
fk[(RQ(F,Ag)x‘)k—(R‘*(F,Af)xi)k]

sL f| (RU(F.a2)x), -(RY(F.a2)x), |

1
P M
<¢&

for i, j>n,(¢). So {(R‘J‘(F,As)xo)k ,(R“(F,As)xl)k } is a Cauchy sequence of real

2

numbers. Since O is complete, (Rq(F,AS")x‘ )k —>(Rq(F,As")x)k as i—oo.
From (1) we have
>

k=0

L[(RU(FLa)€), —(RU(F.a)x0), ] < (X =xT)" <& @

for each mel and i, j>n,(&). If we take limit in (2) for j—»o and m— oo, we have

h, (X' -x)<e.

Now, if we take & =1in (2), we obtain that by Minkowski inequality

pk}MshA(x‘—x)+hA(x‘)<1+hA(x‘)

[ (RU(F.A,)), |

3

k=0

Thus rq(F,Af) is complete.

Theorem 2. If (p,) and (t,) are bounded sequences of positive real numbers where

0<p <t <co for any kel , then for any sequence of modulus functions F=(f,),

r'(F.A2) < (F,AL).

Proof. Let xer® (F,Asp) . Then

1< !
fi EZ(qj—qju)xj"‘_nak
k -0 k

for sufficiently large values of k, say k >k, for some fixed k, €J. Hence
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<00

fi {ikzl:(qj ~0j.1)X, +q_kxkj
Q Q

j=0 k

Since F =(f,)is increasing and p, <t,, we obtain

>If ikf‘q —0 |X +q—k
e BN = Q

<2
K=k,

Therefore, x e r® (F,AS") .

Pk

< 00

(280 0 8)

j=0 k

Theorem 3. Let F =(f,), F = ( fk') and F = ( fk) are sequences of modulus functions.
Then we have r* (F',As")mrq (F",As”)g re (F' + F",AS").

Proof. Let xer® (F',Af)m r (F",AS"). Then, it can be easily seen that

L

f.l =— ) Q,AX
(agom)
1

f.| — > q.AX
[agee)

(Qk 20 j

Theorem 4. Let F=(f,), F :(fk') and F :(fk") are sequences of modulus functions.

Pk

2

k

and
Py

< oo

>

From here, we have

S ) & Sam) =

k k j=0

Pk Pk

M2

[Qk 20 j

which means that X e rq(F'+F",A§).

Then we have rq(F',Af)g re (F'oF",AS").

Proof. Let £>0 and choose & with 0<& <1suchthat f(q)<e for 0<q<&. We write

1 k
f—S g;AX.
QZ ’
and consider

L))" = 2[00+ 2[R )]"

V<o Yk >0
Since f, is continuous, we have

PARACD <" 3)

Y <O
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andfor y, >d=vy, < % s1+%. We obtain by the definition

f(y)<2f, (1)%
and so

S ()] <maxi (26, @)57) | X [w]" @

Y >0

From inequality (3) and (4) , we have that r*(F’ ,Af) cr?(FoF",A?).
t—ow

m}_

Proof. The definition of o, we obtain f, (t)>«(t), forall t>0 and 1 f (t)>t, forall
a

f(t
Theorem 5. If F :(f ) be a sequence of modulus functions and « = lim t( ) >0, then

Zq AX,

kJ0

k

(F,Af)grq(Af),where rq(Ag’){x(xk Z

t >0. Now, for XE(F,ASP) we have

>

which shows that x e r*(A?).

p

‘1
jﬁgzk:

Kk

1
EquAx

k j=0

( l Zk: )Pk
fo| =) d;AX;
k ka = =7

Theorem 6. Let 0 < p, <H <oo. Then the space r° (F,As") is linearly isomorphic to the space

£(p).
Proof. To prove this, we need to show that there is a linear bijection between the spaces
rq(F,AS") and ¢(p) for 0< p, <H <oo, using the notation of
l k
Yo = fo == D ;A%
Qk j=0
Let us take T :r(F,A?)— £(p). It is obvious that, T is linear transformation. If we take

X =6 we obtain that Tx=6 and hence T is injective.

We consider an arbitrary sequence y €£(p) and define the sequence, x=(x,) by

= 1 Qk
X = __q_ YL+ ] Y, for kell , where Q, qu
n=0

k

Then we have
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=[Zk: pk}M

:(Z|fk(yk)pk)“;:hA(y)<oo

1, k=]
where Oy = 0, k%]

(g

j=0

Then we have xer® (F,Af) . Hence T is surjective and paranorm preserving. Therefore there

is a linear bijection between the spaces r° (F,Af) and £(p).

3-The —and 4 - duals of r*(F,A?)
In the present section, we compute the a—, - duals of the space r* (F,Af) and give a basis
for this space.

If a sequence space X paranormed by h contains a sequence (yn) with the property that
for every x e X there is a unique sequence of scalars (an) such that

lim h(x—Zakykj:O
k=0

n—o

then (', ) is called a Schauder basis (or briefly basis) for X . The series Zf:oak Yy, which has

the sum x is then called the expansion of x with respect to (yn) and is written as

X= Z:lo %Y -
For the sequence spaces X and Y , define multipler sequence space M (X :Y) by

M(X:Y)={p=(p)ee: px=(px)eY,Vxe X}
Then the a—, #—duals of X are given by

X*=M(X,4,), X5=M(X,cs)
Now we give some lemmas which need to prove our theorems.

Lemma 1.
() Let 1< p, <H <o forevery kel . Then Ae(f( p):ﬂl) if and only if there exists an

integer K >1 such that

supi

neF k=0

P
-1
ZankK <o

nekK

(i)  Let 0<p,<1forevery kel .Then Ae(¢(p):4,) if and only if
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Pk
supsup <o
KeF kel

Z X

nekK

Lemma 2.
(i)  Let1<p, <H <o forevery kel . Then Ae(¢(p):£,) if and only if there exists

an integer K >1 such that

supi

nell k—o

(i)  Let 0<p, <1forevery kel . Then Ae(#(p):¢,) ifand only if

1 _1p;<
o, K ‘ <00

sup |ez, | < oo
n,kel

Lemma 3. Let 0< p, <H <oofor every kel . Then Ae(¢(p):c)if and only if Lemma 2

hold, and
lime,, =p,

n—oo

Theorem 7. (i) Let 1< p, <H <ooforevery k e[l . Define the set Rl( p) as follows

P

1 1 X _
R(p)=UJ X=(Xk)€a’:SUpZZfkﬂ[———anQﬁ—nQn}K 1] <o
K1 NeF "k |nem O Ot a,
Then
[rq(F,Af)T =R (p)
(ii) Let 0< p, <1 for every k e[J . Define the set R, (p) by
1 1 X Rk
R,(p)=1x=(x)ea:supsup|> f, K———jankJr—"Qn}K <o
nel qk qk+1 qn

NeF kel

[r(F.al)] =R, (p).

k
Proof. (i) Let x=(x, ) € @. We easily derive with the notation y, = f, %quij that

k j=0
(1 1) o oxQ 3
X, Yo = Z[———jank y, + Q y, = ank yk =(By). (5)
k=o\ Ok Ok On k=0

nel , where B={b,}is defined by
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1 1
f | —— IX.Q |, 0<k<n-1
{ k[qk qk+lJ kj ( )
X
b, = f, (q—“an, k=n

n

0, k>n

forall k,n el . Thus we deduce from (5) that xy =(x,y, ) € ¢, whenever x=(x, )€ rq(F,AS")

if and only if By € £, whenever y=(y,)e£(p). Thisyields, (i) result that

[rq (F,Ag)] =R (p).
(i) This is easily obtained by proceeding as in the proof of (i) above by using the Lemma 1.
So we omit the detail.

Theorem 8. (i) Let 1< p, < H <oofor every k ell . Define the set Rz(p) as follow
X 1 1 :

fll X+ ——— x QK™

k[[qk [qk qmji; ] k}

[rq(F,AS)T:&(p)mcs

(ii) Let 0< p, <1 for every k el . Define the set R, (p) by

X 1 1 >
fll 2] ——— |3 x Q¢ |K™
k|:(qk [qk qk+1ji;1 j kj|

[rq(F,AE)]ﬂ:R4(p)mcs.

Proof. (i) Consider the following equation

2R gle

P

R (p)=Upx=(x) ey

K>1 k

< 00

Then

R4(p)={x=(xk)ea):sup

ked

Pk
< o0

Then

k=0 Oy O O Ot Jizkn

= (Cn y)
where C =(c,, ) is defined by

X 1 1 :
fll ey ——— X Q7 ], (0<k<n
Cok = k{(qk qu qk+1l;1 J kJ ( )

0, (k>n)
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for k,n e . By this way, we see from (6) that xy =(x,y, ) € cs whenever

x=(x)er? (F,Af) if and only if Cy e c whenever y e ¢(p). Hence we deduce from

X 1 19
fll X+ ——— > % |Q|K™
kl:[qk (qk qk+1ji;1 J k}

and limc,, exists which is show that
n

Lemma 3
Pk
<o

2

k

[rq (F,AE)T =R;(p)ncs.
(if) This may be obtained in the similar way as in the proof of (i) above by using the Lemma
2. and Lemma 3. So omit it.

Theorem 9. Let F :( fk) be a sequence of modulus functions and we define the sequence
y(")(q):{yg")(q)} _of the elements of the space r'(F,A?) for every fixed ke, by

(0,=000)

1 1
fll —— Q¢ |, (0<n<k-1
ygk)(Q)= [(qk Qk+1JQ J ( " )

0, (n >k —1)
Then the sequence {y(k) (q)}k _is a basis for the space r (F,As") and any xer® (F,Af) has a

unique representation of the form

x=2 Ay (a) )
where Ak(q):(RqAx)k forall kel and 0<p,<H <o , M=max{LH}.
Proof Itis clear that y"'(q)er?(F,A?), since

RAYY (q)=e® es(p), keO, (8)
for 0< p, <H <o, where e is a sequence whose only non-zero term is 1in k™ place for each
kel, .
Let xer® (F,Af) be given. For evey non-negative integer m, we put

[l — ki‘;lk (q)y“‘) (9) 9)
We obtain by applying R%A to (9) with (8) that
RN = 2, (a)RAY" ()= 4, ()"
k0

k=0

10
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and

(Rq(x—x[m]))i:{(RQAx)i’ I>m (i,mel).

0, 0<i<m

given &> 0, then there exists an integer m, such that

()] <[

o0
i=m

forall m>m,. Hence,

g, (x—x")= (i[ f, (‘(RQAx)iDTk ]hlﬂ < [i [ f, (‘(RqAx)im i Jhﬁ <s<e

for all m>m,, which supplies that x  r’ (F : Af) is represented as (7). To show the uniqueness

of this representation, we suppose that

x=> u (a)y"(a).

k
Since the linear transformation T , from r° (F,Af) to £(p) used in Theorem 2, is continuous

we have

(RUax,) =2 (@) F(RU8(0) |=Fsn (a)el? = (@), met

k

which contradicts the fact that (R“Ax)n =,(q)for all ne . Hence, the representation (7) of

xer?(F,A?) is unique.
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