

Generalized Riesz Spaces Defined by Using a Sequence of Modulus Functions

Çiğdem A. BEKTAŞ¹ and Emine ÖZÇELİK² ¹⁻²Department of Mathematics, University of Firat, Elazig, Turkey <u>cbektas@firat.edu.tr</u>, <u>eminemozcelik@gmail.com</u>

Abstract In this paper, we define a new Riesz sequence space using a sequence of modulus functions. Furthermore, we give that this space is linearly isomorphism with $\ell(p)$ and determine its basis. We also give some inclusion relationships and compute α - and β - duals of this space.

Key words: Paranorm, Riesz sequence space, modulus function, $\alpha -, \beta -$ duals, infinite matrices.

1. Introduction

We will denote the set of all sequences with complex terms by ω . With ℓ_{∞} , c and c_0 , we show that the sequence space of all bounded, covergent and null, respectively. Also, we denote by ℓ_1 , $\ell(p)$, cs and bs, respectively the spaces of all absolutely, p – absolutely convergent, convergent and bounded series. ([6],[14])

Let $A = (a_{nk})$ be an infinite matrix of real or complex numbers (a_{nk}) , $n, k \in \Box$. The matrix A define a transformation from X into Y and we denote by $A: X \to Y$, if for every sequence $x = (x_k) \in X$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in Y where

$$(Ax)_n = \sum_k a_{nk} x_k$$
 for each $n \in \square$.

Let (q_k) be a sequence of positive numbers. We write

$$Q_n = \sum_{k=0}^n q_k, \quad \text{for } n \in \square$$
.

Then the matrix $R^q = (r_{nk}^q)$ of the Riesz mean (R, q_n) is defined by

$$r_{nk}^{q} = \begin{cases} \frac{q_{k}}{Q_{n}}, & 0 \le k \le n, \\ 0, & k > n \end{cases}$$

In [17] and [13] Riesz mean (R, q_n) is regular if and only if $Q_n \to \infty$ is $n \to \infty$. More recently, in [18] a new concept has been introduced by the following:

$$r^{q}(u,p) = \left\{ x = (x_{k}) \in \omega : \sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k} u_{j} q_{j} x_{j} \right|^{p_{k}} < \infty \right\}$$

in which $0 < p_k \le H < \infty$ is involved.

The author defined the following difference sequence spaces $X(\Delta)$, in [7].

$$X(\Delta) = \left\{ x = (x_k) \in \omega : (\Delta x_k) \in X \right\}$$

where $X = \ell_{\infty}, c, c_0$ and $\Delta x_k = x_k - x_{k+1}$.

A function $f:[0,\infty) \to [0,\infty)$ is modulus function if

(i)
$$f(x) = 0 \Leftrightarrow x = \theta$$

(ii)
$$f(x+y) \le f(x) + f(y), \quad \forall x, y \ge 0$$

- (iii) f is increasing
- (iv) f is continuous from the right at 0.

Ruckle [12] defined by the following sequence space

$$L(f) = \left\{ x = (x_k) : \sum_k \left| f(x_k) \right| < \infty \right\}.$$

Several authors have studied regard to this subject ([1],[3],[4],[15],[18],[19],[20],[21]) Finally, Gupkari [15] defined the following sequence space

$$r_f^q\left(\Delta_s^p\right) = \left\{ x = \left(x_k\right) \in \omega : \sum_k \left| f\left(\frac{1}{Q_k^s} \sum_{j=0}^k q_j \Delta x_j\right) \right|^{p_k} < \infty \right\}.$$

2 The Sequence Space $r^q \left(F, \Delta_s^p \right)$

In this section, we define the Riesz sequence space $r^q(F, \Delta_s^p)$, as a completely paranormal linear space, which is linearly isomorphic to the space $\ell(p)$. Also we give some topological properties.

The difference sequence space $r^q(F, \Delta_s^p)$ is defined by

$$r^{q}\left(F,\Delta_{s}^{p}\right) = \left\{x = \left(x_{k}\right) \in \omega: \sum_{k} \left|f_{k}\left(\frac{1}{\mathcal{Q}_{k}^{s}}\sum_{j=0}^{k}q_{j}\Delta x_{j}\right)\right|^{p_{k}} < \infty\right\},\$$

where $s \ge 0$ and $F = (f_k)$ is a sequence of modulus functions. It can be redefined as

$$r^{q}\left(F,\Delta_{s}^{p}\right)=\left\{\ell\left(p\right)\right\}_{R^{q}\left(F,\Delta_{s}^{p}\right)}$$

Theorem 1. The space $r^q(F, \Delta_s^p)$ is a complete linear metric space paranormed by h_{Δ} defined by

$$h_{\Delta}(x) = \left[\sum_{k} \left| f_{k} \left[\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k-1} (q_{j} - q_{j+1}) x_{j} + \frac{q_{k}}{Q_{k}^{s}} x_{k} \right] \right|^{p_{k}} \right]^{\frac{1}{M}}$$

where $0 < p_k \le H < \infty$ and $M = \max(1, H)$.

Proof. For the linearity of $r^q(F, \Delta_s^p)$, we need to show that with respect to coordinate-wise addition and scalar multiplication. Thus we have

$$\begin{split} \left[\sum_{k} \left| f_{k} \left[\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k-1} (q_{j} - q_{j+1}) (x_{j} + y_{j}) + \frac{q_{k}}{Q_{k}^{s}} (x_{k} + y_{k}) \right] \right|^{p_{k}} \right]^{\frac{1}{M}} \\ \leq \left[\sum_{k} \left| f_{k} \left[\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k-1} (q_{j} - q_{j+1}) x_{j} + \frac{q_{k}}{Q_{k}^{s}} x_{k} \right] \right|^{p_{k}} \right]^{\frac{1}{M}} \\ + \left[\sum_{k} \left| f_{k} \left[\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k-1} (q_{j} - q_{j+1}) y_{j} + \frac{q_{k}}{Q_{k}^{s}} y_{k} \right] \right|^{p_{k}} \right]^{\frac{1}{M}} \end{split}$$

In the case of all $\gamma \in \Box$ (see [13]),

$$\left|\gamma\right|^{p_{k}} \leq \max\left(1,\left|\gamma\right|^{M}\right)$$

It is clear that $h_{\Delta}(\theta) = 0$ and $h_{\Delta}(x) = h_{\Delta}(-x)$, for all $x \in r^q(F, \Delta_s^p)$. From the above inequalities, yield the subadditivity of h_{Δ} and

$$h_{\Delta}(\gamma x) \leq \max(1, |\gamma|) h_{\Delta}(x)$$

Let $\{x^n\}$ be any sequence of $r^q(F, \Delta_s^p)$ such that $h_{\Delta}(x^n - x) \to 0$ and (γ_n) is a sequence of scalars such that $\gamma_n \to \gamma$. Then,

$$h_{\Delta}(x^n) \leq h_{\Delta}(x) + h_{\Delta}(x^n - x).$$

 ${h_{\Delta}(x^n)}$ is bounded. Hence we obtain

$$h_{\Delta}(\gamma_{n}x^{n}-\gamma x) = \left[\sum_{k} \left| f_{k} \left[\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} (q_{j}-q_{j+1}) (\gamma_{n}x_{j}^{n}-\gamma x_{j}) \right] \right|^{p_{k}} \right]^{\frac{1}{M}}$$
$$\leq |\gamma_{n}-\gamma|^{\frac{1}{M}} h_{\Delta}(x^{n}) + |\gamma|^{\frac{1}{M}} h_{\Delta}(x^{n}-x) \qquad (n \to \infty)$$

1

This implies that the scalar multiplication is continuous. Namely h_{Δ} is paranorm on $r^q \left(F, \Delta_s^p \right)$

Now, let us show completeness of this space. Suppose $\{x^i\}$ is any Cauchy sequence in space $r^q(F, \Delta_s^p)$. Here is $x^i = \{x_k^i\} \in r^q(F, \Delta_s^p)$. Then, there exists a positive integer $n_0(\varepsilon)$,

$$h_{\Delta}\left(x^{i}-x^{j}\right) < \varepsilon \tag{1}$$

for all $i, j \ge n_0(\varepsilon)$. Hence, we have

$$f_{k}\left[\left(R^{q}\left(F,\Delta_{s}^{p}\right)x^{i}\right)_{k}-\left(R^{q}\left(F,\Delta_{s}^{p}\right)x^{j}\right)_{k}\right]$$

$$\leq\left[\sum_{k}\left|f_{k}\left[\left(R^{q}\left(F,\Delta_{s}^{p}\right)x^{i}\right)_{k}-\left(R^{q}\left(F,\Delta_{s}^{p}\right)x^{j}\right)_{k}\right]\right|^{p_{k}}\right]^{\frac{1}{M}}<\varepsilon$$

for $i, j \ge n_0(\varepsilon)$. So $\left\{ \left(R^q(F, \Delta_s) x^0 \right)_k, \left(R^q(F, \Delta_s) x^1 \right)_k, \ldots \right\}$ is a Cauchy sequence of real numbers. Since \Box is complete, $\left(R^q(F, \Delta_s^p) x^i \right)_k \rightarrow \left(R^q(F, \Delta_s^p) x \right)_k$ as $i \rightarrow \infty$.

From (1) we have

$$\sum_{k=0}^{m} \left| f_k \left[\left(R^q \left(F, \Delta_s \right) x^i \right)_k - \left(R^q \left(F, \Delta_s \right) x^j \right)_k \right] \right|^{p_k} \le h_\Delta \left(x^i - x^j \right)^M < \varepsilon^M$$
⁽²⁾

for each $m \in \square$ and $i, j \ge n_0(\varepsilon)$. If we take limit in (2) for $j \to \infty$ and $m \to \infty$, we have $h_{\Delta}(x^i - x) \le \varepsilon$.

Now, if we take $\varepsilon = 1$ in (2), we obtain that by Minkowski inequality

$$\left[\sum_{k=0}^{m} \left| f_k \left[\left(R^q \left(F, \Delta_s \right) x \right)_k \right] \right|^{p_k} \right]^{\frac{1}{M}} \le h_\Delta \left(x^i - x \right) + h_\Delta \left(x^i \right) < 1 + h_\Delta \left(x^i \right)$$

Thus $r^q(F,\Delta_s^p)$ is complete.

Theorem 2. If (p_k) and (t_k) are bounded sequences of positive real numbers where $0 < p_k \le t_k < \infty$ for any $k \in \Box$, then for any sequence of modulus functions $F = (f_k)$, $r^q (F, \Delta_s^p) \subseteq r^q (F, \Delta_s^t)$.

Proof. Let $x \in r^q(F, \Delta_s^p)$. Then

$$\left| f_k \left(\frac{1}{Q_k^n} \sum_{j=0}^{k-1} (q_j - q_{j+1}) x_j + \frac{q_k}{Q_k^n} a_k \right) \right|^{p_k} < \infty$$

for sufficiently large values of k, say $k \ge k_0$ for some fixed $k_0 \in \Box$. Hence

Journal of Advanced Mathematics and Mathematics Education

$$\left| f_k \left(\frac{1}{Q_k^n} \sum_{j=0}^{k-1} (q_j - q_{j+1}) x_j + \frac{q_k}{Q_k^n} x_k \right) \right| < \infty$$

Since $F = (f_k)$ is increasing and $p_k \le t_k$, we obtain

$$\begin{split} & \sum_{k \ge k_0} \left| f_k \left(\frac{1}{Q_k^n} \sum_{j=0}^{k-1} q_j - q_{j+1} \right) x_j + \frac{q_k}{Q_k^n} \right|^{t_k} \\ & \le \sum_{k \ge k_0} \left| f_k \left(\frac{1}{Q_k^n} \sum_{j=0}^{k-1} \left(q_j - q_{j+1} \right) x_j + \frac{q_k}{Q_k^n} x_k \right) \right|^{p_k} < \infty \end{split}$$

Therefore, $x \in r^q (F, \Delta_s^p)$.

Theorem 3. Let $F = (f_k)$, $F' = (f_k')$ and $F'' = (f_k'')$ are sequences of modulus functions. Then we have $r^q (F', \Delta_s^p) \cap r^q (F'', \Delta_s^p) \subseteq r^q (F' + F'', \Delta_s^p)$.

Proof. Let $x \in r^q(F, \Delta_s^p) \cap r^q(F, \Delta_s^p)$. Then, it can be easily seen that

$$\sum_{k} \left| f_{k}^{\prime} \left(\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right) \right|^{p_{k}} < \infty;$$

and

$$\sum_{k} \left| f_{k}^{"} \left(\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right) \right|^{p_{k}} < \infty$$

From here, we have

$$\sum_{k} \left| \left(f_{k}^{'} + f_{k}^{''} \right) \left(\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right) \right|^{p_{k}} \leq M \sum_{k} \left| f_{k}^{'} \left(\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right) \right|^{p_{k}} + M \sum_{k} \left| f_{k}^{''} \left(\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right) \right|^{p_{k}}$$
ch means that
$$x \in r^{q} \left(F' + F'', \Delta^{p} \right)$$

which means that $x \in r^q \left(F' + F'', \Delta_s^p \right)$.

Theorem 4. Let $F = (f_k)$, $F' = (f_k')$ and $F'' = (f_k'')$ are sequences of modulus functions. Then we have $r^q (F', \Delta_s^p) \subseteq r^q (F' \circ F'', \Delta_s^p)$.

Proof. Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(q) < \varepsilon$ for $0 \le q \le \delta$. We write

$$y_k = f_k \frac{1}{Q_k^s} \sum_{j=0}^k q_j \Delta x_j$$

and consider

$$\sum_{n} \left[f_{k}\left(y_{k} \right) \right]^{p_{k}} = \sum_{y_{k} \leq \delta} \left[f_{k}\left(y_{k} \right) \right]^{p_{k}} + \sum_{y_{k} > \delta} \left[f_{k}\left(y_{k} \right) \right]^{p_{k}}$$

Since f_k is continuous, we have

$$\sum_{y_k \le \delta} \left[f_k \left(y_k \right) \right]^{p_k} < \varepsilon^H \tag{3}$$

and for $y_k > \delta \Rightarrow y_k < \frac{y_k}{\delta} \le 1 + \frac{y_k}{\delta}$. We obtain by the definition

$$f_k(y_k) < 2f_k(1)\frac{y_k}{\delta}$$

and so

$$\sum_{\mathbf{y}_{k} > \delta} \left[f_{k} \left(\mathbf{y}_{k} \right) \right]^{p_{k}} < \max \left\{ 1, \left(2f_{k} \left(1 \right) \delta^{-1} \right)^{H} \right\} \sum_{k} \left[\mathbf{y}_{k} \right]^{p_{k}}$$
(4)

From inequality (3) and (4), we have that $r^q (F, \Delta_s^p) \subseteq r^q (F \circ F', \Delta_s^p)$.

Theorem 5. If $F = (f_k)$ be a sequence of modulus functions and $\alpha = \lim_{t \to \infty} \frac{f_k(t)}{t} > 0$, then

$$(F, \Delta_s^p) \subseteq r^q (\Delta_s^p)$$
, where $r^q (\Delta_s^p) = \left\{ x = (x_k) \in \omega : \sum_k \left| \frac{1}{Q_k^s} \sum_{j=0}^k q_j \Delta x_j \right|^{p_k} < \infty \right\}$.

Proof. The definition of α , we obtain $f_k(t) \ge \alpha(t)$, for all t > 0 and $\frac{1}{\alpha} f_k(t) \ge t$, for all t > 0. Now, for $x \in (F, \Delta_s^p)$ we have

$$\sum_{k} \left| \frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right|^{p_{k}} \leq \frac{1}{\alpha} \sum_{k} \left| f_{k} \left(\frac{1}{Q_{k}^{s}} \sum_{j=0}^{k} q_{j} \Delta x_{j} \right) \right|^{p_{k}}$$

which shows that $x \in r^q \left(\Delta_s^p \right)$.

Theorem 6. Let $0 < p_k \le H < \infty$. Then the space $r^q(F, \Delta_s^p)$ is linearly isomorphic to the space $\ell(p)$.

Proof. To prove this, we need to show that there is a linear bijection between the spaces $r^q(F, \Delta_s^p)$ and $\ell(p)$ for $0 < p_k \le H < \infty$, using the notation of

$$y_k = f_k \frac{1}{Q_k^s} \sum_{j=0}^k q_j \Delta x_j \; .$$

Let us take $T: r^q(F, \Delta_s^p) \to \ell(p)$. It is obvious that, T is linear transformation. If we take $x = \theta$ we obtain that $Tx = \theta$ and hence T is injective.

We consider an arbitrary sequence $y \in \ell(p)$ and define the sequence, $x = (x_k)$ by

$$x_{k} = \sum_{n=0}^{k-1} \left(\frac{1}{q_{n}} - \frac{1}{q_{n+1}} \right) Q_{n} y_{n} + \frac{Q_{k}}{q_{k}} y_{k} \text{ for } k \in \Box \text{ , where } Q_{n} = \sum_{k=0}^{n} q_{k} \text{ .}$$

Then we have

$$h_{\Delta}(x) = \left[\sum_{k} \left| f_{k} \left[\frac{1}{Q_{k}^{n}} \sum_{j=0}^{k-1} (q_{j} - q_{j+1}) x_{j} + \frac{q_{k}}{Q_{k}^{n}} \right] \right|^{p_{k}} \right]^{\frac{1}{M}}$$

$$= \left(\sum_{k} \left| f_{k} \left(\sum_{j=0}^{k} \delta_{kj} y_{j} \right) \right|^{p_{k}} \right)^{\frac{1}{M}}$$
$$= \left(\sum_{k} \left| f_{k} \left(y_{k} \right) \right|^{p_{k}} \right)^{\frac{1}{M}} = h_{\Delta} \left(y \right) < \infty$$
$$\delta_{kj} = \begin{cases} 1, \quad k = j \\ 0, \quad k \neq j \end{cases}.$$

where

Then we have $x \in r^q(F, \Delta_s^p)$. Hence *T* is surjective and paranorm preserving. Therefore there is a linear bijection between the spaces $r^q(F, \Delta_s^p)$ and $\ell(p)$.

3-The α -and β - duals of $r^q(F, \Delta_s^p)$

In the present section, we compute the α -, β - duals of the space $r^q(F, \Delta_s^p)$ and give a basis for this space.

If a sequence space X paranormed by h contains a sequence (y_n) with the property that for every $x \in X$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n\to\infty} h\left(x-\sum_{k=0}^n \alpha_k y_k\right)=0$$

then (y_n) is called a Schauder basis (or briefly basis) for X. The series $\sum_{k=0}^{\infty} \alpha_k y_k$ which has the sum x is then called the expansion of x with respect to (y_n) and is written as

$$x = \sum_{k=0}^{\infty} \alpha_k y_k$$

For the sequence spaces X and Y, define multipler sequence space M(X:Y) by

$$M(X:Y) = \left\{ p = (p_k) \in \omega : px = (p_k x_k) \in Y, \forall x \in X \right\}$$

Then the $\alpha -, \beta$ – duals of X are given by

$$X^{\alpha} = M(X, \ell_1), \qquad X^{\beta} = M(X, cs)$$

Now we give some lemmas which need to prove our theorems.

Lemma 1.

(i) Let $1 < p_k \le H < \infty$ for every $k \in \square$. Then $A \in (\ell(p) : \ell_1)$ if and only if there exists an integer K > 1 such that

$$\sup_{n\in F}\sum_{k=0}^{\infty}\left|\sum_{n\in K}a_{nk}K^{-1}\right|^{p_{k}}<\infty$$

(ii) Let $0 < p_k \le 1$ for every $k \in \square$. Then $A \in (\ell(p); \ell_1)$ if and only if

Journal of Advanced Mathematics and Mathematics Education

$$\sup_{K\in F}\sup_{k\in \Box}\left|\sum_{n\in K}\alpha_{nk}\right|^{p_k}<\infty$$

Lemma 2.

(i) Let $1 < p_k \le H < \infty$ for every $k \in \Box$. Then $A \in (\ell(p): \ell_\infty)$ if and only if there exists an integer K > 1 such that

$$\sup_{n\in\mathbb{D}}\sum_{k=0}^{\infty}\left|\alpha_{nk}^{-1}K^{-1}\right|^{p_{k}^{-}}<\infty$$

(ii) Let $0 < p_k \le 1$ for every $k \in \square$. Then $A \in (\ell(p): \ell_{\infty})$ if and only if

$$\sup_{n,k\in\mathbb{D}}\left|\alpha_{nk}\right|^{p_{k}}<\infty$$

Lemma 3. Let $0 < p_k \le H < \infty$ for every $k \in \Box$. Then $A \in (\ell(p):c)$ if and only if Lemma 2 hold, and

$$\lim_{n\to\infty}\alpha_{nk}=\beta_k$$

Theorem 7. (i) Let $1 < p_k \le H < \infty$ for every $k \in \Box$. Define the set $R_1(p)$ as follows

$$R_1(p) = \bigcup_{K>1} \left\{ x = (x_k) \in \omega : \sup_{N \in F} \sum_k \left| \sum_{n \in \mathbb{D}} f_k \left(\left[\left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) x_n Q_k + \frac{x_n}{q_n} Q_n \right] K^{-1} \right) \right|^{p_k} < \infty \right\}$$

Then

$$\left[r^{q}\left(F,\Delta_{s}^{p}\right)\right]^{\alpha}=R_{1}\left(p\right)$$

(ii) Let $0 < p_k \le 1$ for every $k \in \Box$. Define the set $R_2(p)$ by

$$R_{2}(p) = \left\{ x = (x_{k}) \in \omega : \sup_{N \in F} \sup_{k \in \mathbb{D}} \left| \sum_{n \in \mathbb{D}} f_{k} \left(\left[\left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}} \right) x_{n} Q_{k} + \frac{x_{n}}{q_{n}} Q_{n} \right] K^{-1} \right) \right|^{p_{k}} < \infty \right\}$$

Then

$$\left[r^{q}\left(F,\Delta_{s}^{p}\right)\right]^{\alpha}=R_{2}\left(p\right).$$

Proof. (i) Let $x = (x_k) \in \omega$. We easily derive with the notation $y_k = f_k \frac{1}{Q_k^n} \sum_{j=0}^k q_j \Delta x_j$ that

$$x_{n}y_{n} = \sum_{k=0}^{n-1} \left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}}\right) x_{n}Q_{k}^{s}y_{k} + \frac{x_{n}Q_{n}^{s}}{q_{n}}y_{n} = \sum_{k=0}^{n} b_{nk}y_{k} = (By)_{n}$$
(5)

 $n \in \Box$, where $B = \{b_{nk}\}$ is defined by

Journal of Advanced Mathematics and Mathematics Education

$$b_{nk} = \begin{cases} \left(f_k \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) x_n Q_k \right), & (0 \le k \le n-1) \\ f_k \left(\frac{x_n}{q_n} Q_n \right), & k = n \\ 0, & k > n \end{cases}$$

for all $k, n \in \Box$. Thus we deduce from (5) that $xy = (x_n y_n) \in \ell_1$ whenever $x = (x_k) \in r^q (F, \Delta_s^p)$ if and only if $By \in \ell_1$ whenever $y = (y_k) \in \ell(p)$. This yields, (i) result that

$$\left[r^{q}\left(F,\Delta_{s}^{p}\right)\right]^{\alpha}=R_{1}\left(p\right).$$

(ii) This is easily obtained by proceeding as in the proof of (i) above by using the Lemma 1. So we omit the detail.

Theorem 8. (i) Let $1 < p_k \le H < \infty$ for every $k \in \Box$. Define the set $R_2(p)$ as follow

$$R_{3}(p) = \bigcup_{k>1} \left\{ x = (x_{k}) \in \omega : \sum_{k} \left| f_{k} \left[\left(\frac{x_{k}}{q_{k}} + \left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} x_{i} \right) Q_{k}^{s} \right] K^{-1} \right|^{p_{k}} < \infty \right\}$$

Then

$$\left[r^q\left(F,\Delta_s^p\right)\right]^\beta=R_3(p)\cap cs$$

(ii) Let $0 < p_k \le 1$ for every $k \in \square$. Define the set $R_4(p)$ by

$$R_4(p) = \left\{ x = (x_k) \in \omega : \sup_{k \in \mathbb{D}} \left| f_k \left[\left(\frac{x_k}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^n x_i \right) Q_k^s \right] K^{-1} \right|^{p_k} < \infty \right\}$$

Then

$$\left[r^{q}\left(F,\Delta_{s}^{p}\right)\right]^{\beta}=R_{4}\left(p\right)\cap cs.$$

Proof. (i) Consider the following equation

$$\sum_{k=0}^{n} x_{k} y_{k} = \sum_{k=0}^{n} f_{k} \left[\left(\frac{x_{k}}{q_{k}} \right) + \left(\frac{x_{k}}{q_{k}} + \left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} x_{i} \right) Q_{k}^{s} \right] y_{k}$$

$$= (C_{n} y)$$
(6)

where $C = (c_{nk})$ is defined by

$$c_{nk} = \begin{cases} f_k \left(\left(\frac{x_k}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^n x_i \right) Q_k^s \right), & (0 \le k \le n) \\ 0, & (k > n) \end{cases}$$

for $k, n \in \square$. By this way, we see from (6) that $xy = (x_n y_n) \in cs$ whenever

 $x = (x_k) \in r^q (F, \Delta_s^p)$ if and only if $Cy \in c$ whenever $y \in \ell(p)$. Hence we deduce from Lemma 3

$$\sum_{k} \left| f_k \left[\left(\frac{x_k}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^n x_i \right) Q_k^s \right] K^{-1} \right|^{p_k} < \infty$$

and $\lim c_{nk}$ exists which is show that

$$\left[r^{q}\left(F,\Delta_{s}^{p}\right)\right]^{\beta}=R_{3}\left(p\right)\cap cs.$$

(ii) This may be obtained in the similar way as in the proof of (i) above by using the Lemma 2. and Lemma 3. So omit it.

Theorem 9. Let $F = (f_k)$ be a sequence of modulus functions and we define the sequence $y^{(k)}(q) = \{y_n^{(k)}(q)\}_{n \in \mathbb{Z}}$ of the elements of the space $r^q(F, \Delta_s^p)$ for every fixed $k \in \mathbb{Z}_0$ by $(\square_0 = \square \cup 0)$

$$y_{n}^{(k)}(q) = \begin{cases} f_{k}\left(\left(\frac{1}{q_{k}} - \frac{1}{q_{k+1}}\right)Q_{k}^{s}\right), & (0 \le n \le k-1) \\ 0, & (n > k-1) \end{cases}$$

Then the sequence $\{y^{(k)}(q)\}_{k\in\mathbb{D}}$ is a basis for the space $r^q(F,\Delta_s^p)$ and any $x \in r^q(F,\Delta_s^p)$ has a unique representation of the form

$$x = \sum_{k} \lambda_{k} \left(q \right) y^{(k)} \left(q \right) \tag{7}$$

where $\lambda_k(q) = (R^q \Delta x)_k$ for all $k \in \square$ and $0 < p_k \le H < \infty$, $M = \max\{1, H\}$.

Proof It is clear that $y^{(k)}(q) \in r^q(F, \Delta_s^p)$, since

$$R^{q} \Delta y^{(k)}(q) = e^{(k)} \in \ell(p), \qquad k \in \Box_{0}$$

$$\tag{8}$$

for $0 < p_k \le H < \infty$, where $e^{(k)}$ is a sequence whose only non-zero term is 1 in k^{th} place for each $k \in \Box_0$.

Let $x \in r^q(F, \Delta_s^p)$ be given. For every non-negative integer *m*, we put

$$x^{[m]} = \sum_{k=0}^{m} \lambda_k(q) y^{(k)}(q)$$
(9)

We obtain by applying $R^{q}\Delta$ to (9) with (8) that

$$R^{q}\Delta x^{[m]} = \sum_{k=0}^{m} \lambda_{k}\left(q\right) R^{q}\Delta y^{(k)}\left(q\right) = \sum_{k=0}^{m} \lambda_{k}\left(q\right) e^{(k)}$$

and

$$\left(R^q\left(x-x^{[m]}\right)\right)_i = \begin{cases} \left(R^q \Delta x\right)_i, & i > m \\ 0, & 0 \le i \le m \end{cases} \quad (i, m \in \Box).$$

given $\varepsilon > 0$, then there exists an integer m_0 such that

$$\sum_{i=m}^{\infty} \left[f_k \left(\left| \left(R^q \Delta x \right)_i \right| \right) \right]^{p_k} < \left(\frac{\varepsilon}{2} \right)^M$$

for all $m \ge m_0$. Hence,

$$g_{\Delta}\left(x-x^{[m]}\right) = \left(\sum_{i=m}^{\infty} \left[f_{k}\left(\left|\left(R^{q}\Delta x\right)_{i}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} \le \left(\sum_{i=m_{0}}^{\infty} \left[f_{k}\left(\left|\left(R^{q}\Delta x\right)_{i}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{M}} < \frac{\varepsilon}{2} < \varepsilon$$

for all $m \ge m_0$, which supplies that $x \in r^q (F, \Delta_s^p)$ is represented as (7). To show the uniqueness of this representation, we suppose that

$$\mathbf{x} = \sum_{k} \mu_{k}(q) \mathbf{y}^{(k)}(q).$$

Since the linear transformation T, from $r^q(F, \Delta_s^p)$ to $\ell(p)$ used in Theorem 2, is continuous we have

$$\left(R^{q}\Delta x_{n}\right) = \sum_{k} \mu_{k}\left(q\right) \left[f_{k}\left(R^{q}\Delta y^{(k)}\left(q\right)\right)_{n}\right] = \sum_{k} \mu_{k}\left(q\right)e_{n}^{(k)} = \mu_{n}\left(q\right), \quad n \in \Box$$

which contradicts the fact that $(R^q \Delta x)_n = \lambda_n(q)$ for all $n \in \square$. Hence, the representation (7) of $x \in r^q(F, \Delta_s^p)$ is unique.

REFERENCES

- [1] B. Altay and F. Başar, On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bull. Math., 26 (2002), pp. 701-715.
- [2] B. Altay, and F. Başar, On the space of sequences of *p*-bounded variation and related matrix mappings, Ukranian Math. J., 1(1) (2003), pp. 136-147.
- [3] C. Aydın and F. Başar, On the new sequence spaces which include the spaces c_o and c, Hokkaido Math. J., 33 (2002), pp. 383-398.
- [4] C. Aydın and F. Başar, Some new paranormed sequence spaces, Inf. Sci., 160 (2004), 27-40.
- [5] M. Basarır and M.Öztürk, On the Riesz difference sequence space," Rendiconti del Cirocolo di Palermo, 57 (2008), 377-389.
- [6] A. H. Ganie and N. A. Sheikh, On some new sequence spaces of nonabsolute type and matrix transformations, J. Egyp. Math. Soc., (2013)(in Press).
- [7] H. Kızmaz, On certain sequence, Canad, Math. Bull., 24(2) (1981), pp.169-176.
- [8] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64 (1968), pp. 335-340.

- [9] I. J. Maddox, Elements of Functional Analysis, 2nded., The University Press, Cambridge, (1988).
- [10] N. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [11] M. Mursaleen, and A. K. Noman, On some new difference sequence spaces of nonabsolute type, Math. Comput. Mod., 52 (2010), pp. 603-617.
- [12] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
- [13] S. Toeplitz," Uber allegemeine Lineare mittelbildungen, Prace Math." Fiz., 22 (1991). pp.113-119.
- [14] A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, Amsterdam New York Oxford, (1984).
- [15] Gupkari S.A., Some New Generalized Riesz Spaces, Fasciculi Mathematici, (2023).
- [16] K. Raj and S.K Sharma., Difference Sequence Spaces Defined by A Sequence of Modulus Functions, Proyecciones Journal of Mathematics, (2011).
- [17] G. M. Petersen, Regular matrix transformations, Mc Graw-Hill, London, (1966).
- [18] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedago. Nygr., 28 (2012), pp. 47-58.
- [19] C. S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 9 (1978)," pp. 269-274.
- [20] P. N. Ng and P. Y. Lee, Cesaro sequences spaces of non-absolute type, 'Comment. Math. Prace Mat. 20(2) (1978), pp. 429-433.
- [21] K. G. Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), pp. 223-238.
- [22] B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include the spaces l_p and l_{∞} -II, Nonlinear Anal., 176 (2006), pp. 1465-1462.
- [23] M. Başarır and M.Kayıkçı, On the Generalized B^m -Riesz Difference Sequence Space and β -Property, (2009).