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Highlights 

 Monitoring soil moisture levels by tracking changes in Bluetooth signal strength over time, eliminating 

the need for in-situ probes or specialised sensors. 

 Utilising artificial intelligence techniques from the LSTM architecture, this research achieves a 

remarkable level of accuracy in predicting soil moisture content changes. 

 This study presents a method that enables the use of Bluetooth signals, traditionally used in wireless 

communication, as a means to non-invasively measure soil moisture content. 
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Measuring soil moisture without damaging the soil structure is important in 

agriculture. Electrical conductivity and microwaves are widely used for this 

purpose. Recently, there has been increasing interest in using artificial neural 

networks and time series forecasts to determine soil moisture content. This study 

investigates the possibility of determining soil moisture content, especially for soil 

samples with different pH values, using neural network architecture and Bluetooth 

signal power values with a transmission power of 0.001 Watt. The aim is to assess 

the soil moisture change state directly using Bluetooth signal levels without an in-

situ probe. In an experimental study, a machine learning model based on Bluetooth 

signal strengths from alkaline soil samples was used to estimate the soil moisture 

content change with a root-mean-square error of 15%. This method eliminates the 

need for a dedicated sensor, as soil moisture can be measured reliably by 

monitoring signal level changes over time. 
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Toprak yapısına zarar vermeden toprak nemi ölçümü tarımda önemlidir. Elektriksel 

iletkenlik ve mikrodalgalar bu amaçla yaygın olarak kullanılmaktadır. Son 

zamanlarda, toprak nem içeriğini belirlemek için yapay sinir ağları ve zaman serisi 

tahminlerinin kullanılmasına olan ilgi artmaktadır. Bu çalışmada, bir yapay sinir 

ağı mimarisi ve 0,001 Watt iletim gücüne sahip Bluetooth sinyal güç değerleri 

kullanılarak, özellikle farklı pH değerlerine sahip toprak örnekleri için toprak nem 

içeriğinin belirlenme olasılığı araştırılmaktadır. Amaç, toprak nem değişim 

durumunu yerinde bir prob olmadan doğrudan Bluetooth sinyal seviyelerini 

kullanarak değerlendirmektir. Yapılan deneysel bir çalışmada, alkali toprak 

örneklerinden elde edilen Bluetooth sinyal güçlerine dayalı bir yapay öğrenme 

modeli kullanılarak toprak nem içeriği değişimi %15’lik bir kök-ortalama-kare hata 

(RMSE) değeri ile tahmin edilmiştir. Bu yöntem, toprak nemi zaman içindeki 

sinyal seviyesi değişiklikleri izlenerek güvenilir bir şekilde ölçülebildiğinden, özel 

bir sensör ihtiyacını ortadan kaldırmaktadır. 
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1. Introduction 

Soil moisture retrieval methods which are frequently 

used today to measure the amount of water in the soil 

is a critical element that should be known mainly in 

agricultural production. In addition to agricultural 

production, the amount of water in the soil is important 

information for hydrological applications, disaster 

prediction, and environmental monitoring. There are 

many remote and proximal detection methods for 

calculating this value. All these measurement 

techniques used today have been developed primarily 

considering the chemical and physical properties of the 

soil. Different variables, including vegetation, need to 

be taken into account to determine the moisture content 

of the soil. Characterization and monitoring of soil 

characteristics are necessary to perform site-specific 

farming practices that are important for matching 

human activities with local environmental 

requirements.  

Measuring the water content has a great interest in 

many disciplines, especially in porous environments 

such as soil. Although gravimetric sampling is the best 

way to measure the water content in the soil, samples 

must be removed from a soil mass. The methods used 

in the '50s and '60s to measure soil water content were 

mostly radioactive (Gardner and Kirkham 1952; 

Reginato and Bavel 1964). These methods were quite 

accurate and harmful to the soil; however, they required 

special care to avoid calibration and potential health 

hazards for each soil sample. A novel and innovative 

technique for quantifying the moisture content in soil 

without causing any damage or alteration was devised 

by employing Time Domain Reflectometry (TDR) as 

the primary means of measurement (Davis and 

Chudobiak 1975).  TDR determines the dielectric 

constant of an object using simple electrodes placed on 

the sample in which moisture content is to be measured 

(Topp et al. 1980) proposed an empirical relationship 

between the dielectric constant of the soils with various 

tissues and the volumetric water content. One 

advantage of TDR is that the water content and 

collective electrical conductivity of the soil are 

measured simultaneously with a single probe. The 

methods which are used to determine the hydrological 

properties of the soil are in two main titles. Reference 

sampling methods or TDR at small scales such as (0.1 

m) passive microwave radiometry or active radar 

method used in large scales such as (> 10 m and 100 m) 

(Lambot et al. 2010). 

Small-scale techniques are often invasive, sometimes 

require drilling holes, and they may not represent soil 

characteristics on a management scale. Electrical 

drilling of the soil, which is an invasive method, can be 

done with conventional geoelectric or electromagnetic 

induction techniques (Carriere et al. 2021). However, 

the electrical conductivity of the soil is highly variable 

depending on the water content, water salinity, texture, 

and structure at the same time (Noborio 2001). For 

large-scale techniques, the characterization in the 

measured area is limited with the first few centimeters 

of soil and the temporal resolution is relatively poor. 

Non-invasive field scale techniques are required for 

applications involving agricultural water management, 

soil and water conservation, and to close the existing 

scale gap between ground accuracy measurements and 

remote sensing. 

One of the most often measured soil parameters is soil 

reaction, or pH, which has an impact on a variety of 

chemical, biological, and physicochemical soil 

processes. Nutrient availability, root development, 

microbial activity, mineral solubility, and adsorption 

phenomena are a few examples of these activities. 

Despite how simple it is to measure a pH meter's 

output; it can be challenging to ascertain the true pH of 

the soil or soil solution. Because it influences many 

chemical and microbiological activities as well as plant 

growth, soil pH is a crucial factor. Valdez et al. show 

that it is crucial to understand that pH is a dynamic 

variable that is influenced by a variety of 
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circumstances. In irrigated soils and soils that 

experience wetting and drying in natural ecosystems, 

significant fluctuations in pH are expected to happen 

throughout wetting/drying cycles (Zarate-Valdez, 

2006). Cycles of wet and dry weather are likely to cause 

changes in the pH of the soil. Some other articles 

(Gascho, Parker, Gaines,1996; Scheberl et al., 2019) 

shows a relationship with pH value and soil moisture. 

In those papers for all soil textures and moisture 

contents, it was discovered that the glass electrode 

sensors could measure soil pH very precisely and 

substantially. The relationship between some specific 

water solutions and soil pH levels was statistically 

determined. 

Outside of the traditional methods used for 

measurement, a variety of machine learning techniques, 

such as the K-neighbors Regressor (KNR), Random 

Forest Regressor (RFR), Gradient Boosting (GB), 

Multi-layer Perceptron Regressor (MLPR), and 

Stochastic Gradient Descent Regressor (SGDR), have 

shown to be very beneficial for assessing soil moisture 

content. In a paper (Manfreda et al, 2023), the authors 

examined accurate global surface soil moisture (SSM) 

data, which is vital for hydrological and climatological 

needs. Machine learning (ML) techniques using 

various data sources were used to estimate daily SSM. 

Eight ML algorithms and ten ensemble models were 

tested. Gradient Boosting (GB), Multi-layer Perceptron 

Regressor (MLPR), Stochastic Gradient Descent 

Regressor (SGDR) and RFR showed promise in 

multiple climates. In particular, ensemble models 

combining KNR, RFR, and XB have demonstrated 

their potential in water management and crop yield 

forecasting by improving forecast accuracy. 

Some other research (Pekel, 2020) discusses the 

development of a hybrid method that combines particle 

swarm optimization (PSO) and artificial neural network 

(ANN) for estimating soil moisture (SM) in different 

parameters such as air temperature, time, relative 

humidity, and soil temperature. The PSO algorithm is 

used to change the weights of the ANN in order to 

optimize the estimation process. The proposed hybrid 

PSO-ANN method shows promise in accurately 

estimating soil moisture, which can have implications 

for agriculture and climate research. 

Furthermore, several Artificial Neural Networks 

(ANN) (Zonghan 2023; Singh and Gaurav 2023; Luo 

et al. 2023; Mu et al. 2022; Batchu et al. 2023) are 

commonly used inversion techniques for soil moisture 

retrieval. In the literature, several studies have been 

done using machine-learning-based inversion models.  

For instance (Ma et al. 2023) proposed a soil moisture 

prediction neural network guided by the water transport 

driving mechanism, which reduced the need for large 

datasets and training capability while achieving high 

accuracy. (Singh and Gaurav 2023) developed a fully 

connected feed-forward artificial neural network model 

to estimate surface soil moisture using satellite images, 

outperforming other machine learning algorithms. (Luo 

et al. 2023) introduced a back propagation neural 

network model to determine the relationship between 

characteristic bands/indices and soil moisture 

measurements, achieving high accuracy and 

applicability. (Mu et al. 2022) developed a nonlinear 

Erf-BP neural network method using multiple-resource 

remote-sensing data, which improved the accuracy of 

soil moisture estimation compared to linear models. 

(Batchu et al., 2023) developed a deep learning 

convolutional-regression model that estimated soil 

moisture using various predictors, achieving high 

correlation and accuracy. 

The aim of this study is the possibility of determine soil 

moisture content using Long Short-Term Memory 

(LSTM) neural network architecture and Bluetooth 

Low Energy (BLE) signal strengths with a maximum 

transmission power of 1 mW. Here, the pH values of 

soil samples have been used as distinctive features. Our 

study will contribute to soil moisture detection by 
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presenting a novel technique based on neural networks 

with satisfactory efficiency. With our method, we have 

shown that the moisture of the soil can be measured 

directly with BLE signals without using a special 

sensor.  

2. Material and Method 

2.1 Microwave Sensing 

Microwaves are now frequently employed to study the 

structure of objects in a variety of domains, including 

astronomy and food (Martin et al. 2022). Energy is 

reflected, transmitted, or absorbed by the substance 

when microwaves are directed at it. Microwaves also 

scatter in soil and rocks due to various factors such as 

roughness, water content, polarization, and angle of 

incidence. These three types of energy ratios are 

referred to as material properties (Nguyen and S. 

Songsermpong 2022). The fundamental variables that 

describe how materials interact with electromagnetic 

fields like microwaves are dielectric constant and 

permeability. Diverse frequency regions of a material's 

dielectric profile are studied. The dielectric constant of 

materials can be measured at microwave frequencies 

using a variety of non-resonance and resonant 

techniques, such as transmission lines, free space, 

coaxial probes, and cavities. The permeability of 

microwaves in soil measurements has been discovered 

to be influenced by several factors. These factors 

include not only frequency, but also density, water 

content, sampling depth, mineral composition, grain 

size distribution, porosity, boundary conditions, 

vegetation canopies, and geographical conditions. 

Some of these parameters, especially the last few have 

very typical features. Remote measurements with 

microwaves can be grouped as active and passive 

microwave remote sensing. Images of some devices 

used in active and passive microwave soil water 

moisture measurements are shown in Figure1.

 

Figure 1. (a, b). Passive microwave sensors at performing at sites, (c) SMAP satellite launch in January 2015, 

for both active and passive microwave earth sensing.2.2 Dielectric measurements

Dielectric permeability is a measure of the change in 

the electric charge distribution caused by the electric 

field applied to any material. It is often expressed in 

relation to free space and for these reasons, it is called 

as complex relative permeability and is expressed as 

𝜀𝑟. 𝜀𝑟 describes the behavior of the material in the 

electric field as shown in Equation 1. The value shown 

as 𝜀𝑟
′  in the same equation is called the dielectric 

constant. The second part, 𝜀𝑟
′′, is called the loss factor. 

The value of 𝜀𝑟 varies between 2.5 for dry soil and 25 

for very moist soil (Newman 1964). 

𝜀𝑟 =  𝜀𝑟
′ −  𝑗𝜀𝑟

′′ (1) 

In addition, these properties differ accordingly soil 

density and texture. The ε_r  value in Eq.(1) affects 

variables such as the grain size of the soil and water 

content in the spaces between them.  The sand and clay 

content of the soil should also add more empirical 

expressions to dielectric constant.  
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The loss factor represents the loss of electric field 

energy in the material, whereas the dielectric constant 

represents a material's capacity to hold electrical 

energy. The loss tangent, as described in equation (2), 

is another widely used parameter. It is the ratio of the 

loss factor to the dielectric constant. 

tan 𝛿 =  
𝜀𝑟

′′

𝜀𝑟
′⁄ (2) 

Soil as a general definition can be defined as the main 

material in which land plants grow in the world, 

providing a natural environment. In the process of soil 

formation, it is subjected to climatic and genetic 

changes, and as a result, an altered material emerges 

with the effects of micro and macro-organisms. The 

content of this material is effective to a particular extent 

in determining its properties.  

Microwaves, which are used to determine the moisture 

properties of the soil, can penetrate the vegetation and 

soil deeply. For dry vegetation and dry soil, microwave 

penetration  

depth is larger. With an increase in vegetation and soil 

moisture content, penetration declines. The power of 

the waves will weaken as they travel through the soil 

due to this characteristic of microwaves. This is brought 

on by the dry material's variable dielectric constant in 

the presence of water. At ambient temperature, pure 

water has a dielectric constant of between 80 and 1 GHz 

(Calla 2002).  Therefore, by computing the soil's 

dielectric constant using these microwave properties, 

the moisture content in the soil can be determined. The 

electromagnetic (EM) properties of the soil are 

impacted not only by frequency dependence but also by 

the dependency on density and water content. Surface 

soil moisture, which is an important component 

especially in drought studies and agricultural activities, 

is the water content of the top 10 cm of the soil (Dong 

et al. 2016). Knowing the moisture value at this depth 

provides the necessary information in the decision-

making stages for the studies to be carried out. 

2.3 Long-Short Term Memory 

For many learning issues involving sequential input, 

recurrent neural networks with long short-term memory 

(LSTM) have proven to be an efficient and scalable 

solution. LSTM was originally designed by Hochreiter 

and Schmidhuber in 1997 (Hochreiter and 

Schmidhuber 1997). Deep learning techniques have led 

to the recent rediscovery of this kind of neural network. 

Many conventional methods for deep learning can be 

replaced with LSTM-based neural networks, which 

excel at predicting and categorizing temporal 

sequences. A memory cell with the ability to maintain 

its status over time and nonlinear door units that control 

the flow of information into and out of the cell make up 

the core of the LSTM architecture. The three different 

types of gates found in each LSTM block the input gate, 

output gate, and forget gate perform writing, reading, 

and resetting to the cell memory, respectively. These 

gates are not binary, but they are analogical (usually 

mapped in [0, 1], representing 0 total inhibition and 1 

total activation) are managed by a sigmoidal activation 

function. 

These gates make it possible for LSTM cells to retain 

information indefinitely. The cell keeps its prior state if 

the input gate protects it on the activation threshold, and 

if the current state is activated, it is coupled with the 

entry value. The output gate determines whether or not 

the value in the cell will be carried out, while the forget 

gate, as the name suggests, resets the present state of 

the cell when its value is cleared to 0. 

All repetitive neural networks have the shape of a chain 

of the network's repetitive modules. This repeating 

module in conventional RNNs has a fairly 

straightforward structure similar to a single tanh layer. 

Although the repeated module of LSTMs also has a 

chain-like structure, it is structured differently. Four 

layers interact in a highly unique way instead of just 

one, like in a neural network. Figure 2 depicts a typical 

LSTM cell's general structure. 



26 S. Yazar, D. Taşkın, E. Bahar 

  Trakya Univ J Eng Sci, 25(1):21-38, 2024 

 

Figure 2: Sample diagram of standard LSTM cell and 

contents 

The line shown above Figure 2 is c, which indicates the 

status of an LSTM cell and represents the internal 

memory of the unit. The technique that works around 

the gradient problem of LSTM is the hidden state, and 

it uses the i, f, o, and g gates. The parameters for these 

gates are learned by the LSTM during the recurrent 

neural network's training. i, f, and o are the input, 

forget, and output gates in Figure 2. The same equations 

are used to calculate them, but with different parameter 

matrices. The output vector is utilized to specify how 

much of the second vector can travel through the first 

since the sigmoid function modulates the output of 

these gates between zero and one. During this process, 

another vector can multiply the output element. Briefly, 

we can explain how LSTM works as follows. 

The forget-gate equation (3) defines how much of the 

previous case h (t-1) you want to pass. 

𝑓 =  𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡) (3) 

The input gate, an essential component within the 

architecture of a recurrent neural network, determines 

the degree to which the recently computed state for the 

present entry x(t) shall be considered, while the exit 

output, another crucial element, denotes the extent of 

the internal state that one desires to exhibit to the 

subsequent layer in the network. 

𝑖 =  𝜎(𝑊𝑖ℎ𝑡−1 +  𝑈𝑖𝑥𝑡) (4) 

𝑜 =  𝜎(𝑊𝑜ℎ𝑡−1 +  𝑈𝑜𝑥𝑡) (5) 

The internal hidden state g shown in Figure 2 is 

calculated based on the current entry x (t) and the 

previously hidden state h (t-1). 

𝑔 =  𝑡𝑎𝑛ℎ(𝑊𝑔ℎ𝑡−1 + 𝑈𝑔𝑥𝑡) (6) 

Equation (6) is the same as the SimpleRNN cell used in 

recurrent neural network methods, but in this case, its 

output is modulated by the output of the input gate i. 

Considering i, f, o and g, the cell state at any time t are 

expressed in c (t). Here, c(t) value can be calculated as 

the sum of c(t-1) multiplied by forget-gate and g value 

multiplied by input-gate during the training of the 

neural network in equation (7). 

𝑐𝑡 = (𝑐𝑡−1  ⊗  𝑓) ⊕ (𝑔 ⊗  𝑖) (7) 

This method is essentially a technique for merging the 

significance of the preceding memory and the fresh 

input when it comes to the learning process of the 

network. By assigning a value of 0 to the forget-gate, 

the previous memory is disregarded, while setting the 

input-gate to 0 results in the disregard of the newly 

computed state. Ultimately, the hidden-state h(t) at any 

given time t is obtained through the multiplication of 

the memory value c (t) by the output-gate. 

ℎ𝑡 = tanh(𝑐𝑡) ⊗  𝑜 (8) 

On the other hand, LSTMs are effective in catching 

long-term temporal dependencies in general. 

Optimization problems encountered in Simple 

Recurrent Networks (SRN) (Gao et al. 2020; Allen-

Zhu, Li, and Song 2019) do not appear here, and thanks 

to these features, they have provided new approaches 

to solve many difficult problems. Some of these 

problems can be listed as handwriting recognition and 

production (Carbune et al. 2019; Paul et al. 2019; Ren 

and Ganapathy 2019), language modeling and 

translation (Adate and Tripathy 2019), speech acoustic 

modeling (Zia and Zahid 2019), speech synthesis 

(Hanzlíček, Vít, and Tihelka 2019), protein secondary 

structure prediction (Hu et al. 2019), the analysis of 

audio (Ertam 2019) and video data (Hussain et al. 

2019), indoor based location (Zhang, Qu, and Wang 

2020). 
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2.4 Bi-directional LSTM and Gated Recurrent Unit 

In general behavior, RNN’s are unidirectional and 

move along the directions of the original time series 

data. However, in some applications, capturing ordered 

information in reversed series greatly improves 

prediction. RNN structures like this that use both 

forward and backward pass-through improves the 

ability of the network to capture memory over long 

ranges and are called bi-directional (Schuster and 

Paliwal 1997). Bi-directional LSTM also acts on the 

time series with the same logic. 

The so-called gated recurrent unit (GRU) method is 

quite similar to LSTM, and compared to LSTM, which 

has three gates, the GRU has only two processing gates. 

It does not have the output gate and internal memory 

found in LSTM. The update gate in the GRU 

determines how the previous memory is combined with 

the available memory and combines the functionality 

achieved by the LSTM's input and forget gates. 

Combining the effect of the previous memory with the 

effect of the current input, the reset gate is applied 

directly to the previous memory. Despite a few 

differences in how memory is transmitted across the 

data series within the time series, the gate mechanisms 

in both LSTM and GRU aim to learn long-range 

dependencies in the data. On the other hand, GRU has 

the advantage of less trainable weights compared to 

LSTM. Tuning model hyperparameters, such as the 

dimensionality of hidden units, improves the 

predictions of both. GRU has more advantages in 

situations with less training data as it requires fewer 

trainable weights (Cho et al. 2014). 

2.4 Bluetooth Low Energy 

Bluetooth Low Energy (BLE), commercially known as 

Bluetooth Smart which, is a low power wireless 

technology evolves for short-range communication. 

BLE operates on the 2.4 GHz Industrial Scientific 

Medicine (ISM) band. Since the main feature of BLE 

technology is lower power consumption, it is very 

suitable for systems running on small batteries 

(Darroudi, Caldera-Sànchez, and Gomez 2019). That is 

the reason why devices operating on BLE have the 

ability to utilize a coin cell as a source of power and 

function continuously for many years. The 

advantageous attributes of BLE, including its low 

power consumption and economical cost, render it an 

optimal selection for sensor devices that require power 

sensitivity. Furthermore, BLE can be seamlessly 

integrated into a diverse range of applications, such as 

efficient monitoring of environmental and health 

conditions (Ghori, Wan, and Sodhy 2019; Al Mamun 

and Yuce 2019; Wu, Wu, and Yuce 2019), smart home 

automation (Ali and Ali 2019), indoor localization 

(Nagarajan et al. 2020), as well as labeling and services 

based on proximity. It is also used in combination with 

other close-range communication protocols such as 

Near Field Communication (NFC) or RFID (Wang et 

al. 2019). In BLE applications, multiple BLE slave 

devices known as advertisers can be connected to the 

master BLE devices known as scanners. 

There are three class devices in BLE with radio 

transmission power specified as 100mW (20dBm), 

2.5mW (4dBm) and 1mW (0dBm). For Class 3 devices 

with 0dBm radio transmission power, the 

communication range exceeds 10 meters, and for 

20dBm, the communication range exceeds 100 meters. 

Bluetooth power classes shown in Table 1. 

Table 1: Bluetooth power classes. 

 

In this study, the signals produced by the simple 

advertiser BLE beacon device were used. The 

devices that used are in the 3rd power class and 

their transmitter power is maximum 1mW. 

Power 

Class 

Maximum Output  

Power (mW) 
Range (m) 

1 100 100 

2 2.5 15 

3 1 10 



28 S. Yazar, D. Taşkın, E. Bahar 

  Trakya Univ J Eng Sci, 25(1):21-38, 2024 

2.4 Soil Samples Preparation 

The soil samples used in this study were prepared in the 

laboratories of Kırklareli Agricultural Research 

Institute. Soil samples were prepared for analysis by 

drying, beating and sieving and their reactions were 

examined using purified water. The pH determination 

method here is based on potentiometric measurement 

of the amount of hydrogen ions in the medium created 

by mixing the soil with deionized purified water using 

a pH meter. No measurements were made for moisture 

during soil sample preparation but moisture 

measurements made during experiment. Soil samples 

were prepared at the institute, brought to the laboratory 

of Trakya University for the experiments and the 

measurement system was installed there. 

3. Experiment 

During this study, we used soil samples with pH values 

of 4.47, 5.31, 6.64, and 7.52 to determine the soil water 

content. We did not make a special selection study for 

properties such as texture, hardness except pH value 

that can be found in soil samples. We placed beacons 

with Texas Instruments CC2541 BLE chip in plastic 

containers where we put soil samples. We placed the 

transmitting devices at a depth of 15 cm and in the 

horizontal plane. Beacon devices that we use BLE chips 

have antennas in the "inverted F" format and produce 

an approximately spherical electromagnetic field. The 

BLE receiver is the BLE receiver on the RaspberryPi 

card. We recorded the Received Signal Strength 

Indicator (RSSI) values of beacons at 15 seconds 

intervals, to a database over the network with a scanner 

application running on Raspberry Pi device. Soil 

samples and plastic containers are shown in Figure 3. 

In our experiment, for 8 weeks, we added 200 ml of 

water to each soil sample with the different  pH 

properties on Mondays. We assumed that all soil 

samples were found in the same atmospheric conditions 

since the containers with the samples were open-

mouthed. During this process, we constantly recorded 

the values of Beacon devices.  

BLE receiver software is developed by Python with 

pyBluez, the Python port of the Bluez protocol stack, 

and the basic Python libraries, which transform each 

BLE node into a container based virtual nodes. The 

Python port of the Bluez protocol stack is preferred due 

to its flexibility and ease of use in implementing 

Bluetooth-based systems. Additionally, the Bluez 

protocol stack, offers direct access to the Host 

Controller Interface (HCI) layer, reducing overhead 

from higher layers and enabling efficient data transfer 

operations. The Python application scans and receives 

RSSI information from beacon devices. 

 

Figure 3: Setup of sample soils for BLE for RSSI and moisture values collecting. 
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4. Results and Discussion 

First, we reduced the signal strength data we collected 

in our experiment to 30 minutes intervals. We reduced 

the number of data we collected at intervals of 15 

seconds to a reasonable level. Before creating the 

artificial intelligence model for the collected RSSI data, 

we examined the mean values of this information 

according to the days of the week. The mean values we 

obtained are shown in Table 2.

Table 2: Table of calculated mean values of daily measurements based on the pH value of the soil samples. 

Weekdays / Means 

of RSSI values 

pH 4.47 pH 5.31 pH 6.64 pH 7.52 

1 -80.997520 -79.096771 -73.359802 -80.034737 

2 -80.539352 -80.437500 -76.238426 -82.134262 

3 -79.851852 -81.171295 -75.680557 -82.004631 

4 -78.689812 -80.858795 -72.793983 -80.821762 

5 -78.392250 -78.968521 -72.450363 -79.595642 

6 -77.174477 -79.648438 -71.059898 -80.125000 

7 -79.463539 -79.473961 -70.554688 -78.958336 

When we examine the data in Table 2, we found that 

the rate of change of RSSI values based on days of the 

week is closer to each other in alkali soil samples. To 

see this result better, we graphically analyzed the mean 

values we obtained. The results are shown in Figure 4. 

According to the results shown in Figure 4, we have 

seen that the means of RSSI values are close to each 

other as the pH value of the soil samples increases. 

When we pay particular attention to the graphics (c) and 

(d), we observed a similar change in RSSI levels from 

the first day of the week when we added water to soil 

samples with pH 6.64 and pH 7.52. This shows that in 

our experiment, we can use BLE signals to estimate soil 

moisture value/level. 

 

Figure 4: (a) RSSI levels for pH 4.5 daily manner, (b) RSSI levels for pH 5.3 daily manner,  (c) RSSI levels for 

pH 6.6 daily manner, (d) RSSI levels for pH 7.5 daily manner, Graphs showing the change of RSSI levels of all 

soil samples on days of the week  (0:Monday, 6:Sunday). 
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We aimed to develop an artificial neural network model 

where we can estimate the RSSI values here based on 

time, especially since we observed the gradual change 

in the soil at pH 7.52. While creating the artificial 

neural network, we chose to send the time-bound BLE 

signals to the 1D convolution layer before sending them 

to the LSTM cells for higher performance. One 

dimensional convolution artificial neural network layer 

is used especially in time series analysis. In our studies, 

we have achieved the most successful result of the 

prediction models we have created to find the lowest 

RMSE value for four different pH soil samples, thanks 

to the model shown in Figure 5.

 

 

Figure 5: Artificial Neural Network model for predicting for RSSI values. 

In the model we have developed, there are 800 time 

steps in the LSTM layer we feed after the first 

convolution layer. In this study, the total data set size 

that we use for the training of the neural network is 

2880 BLE signal data. The filter that we set here as 

1x3x1, is moved by a stride of the one-time unit over 

the on data set. Thus, 1 x 3 feature maps are created. 

The rest of the time steps are calculated similarly. We 

used an approach equivalent to the third degree 

autoregressive model training using a 1 x 3 convolution 

filter. We also added a 40% drop out layer to our model 

to prevent over-fitting of training data. This style of 

approach produces features on short-term subsets of 

time series. Progress of filter shown in Figure 6. 

 

Figure 6: Illustration of 1D convolution. 

In the LSTM layer, we preferred hyperbolic tangent 

(tanh) as the activation function. We used the 3200-

dimensional vector we obtained from the LSTM layer 

to feed 100, 50 and 1 dimensional fully connected 

layers, respectively. In this way, we tried to predict BLE 

signal strength values we obtained with 30 minutes 

intervals. By running this model for 100 epochs, we 

compared the results for all different pH values. In the 

model training, no significant change was observed for 

more than 100 epochs, and to avoid overfitting, an 

optimum number of 100 was found to be appropriate. 

A lower value was found to be insufficient considering 

the frequency of signal recording. 

During the training of the artificial neural network, we 

used the Mean squared Error function for the loss 

function and the adaptive momentum (ADAM) 

approach to optimize the Loss function. We also set the 

value of batch size to 256. The training and prediction 

results of the soil sample at pH 7.52 with the lowest 

RMSE value we obtained are shown in Figure 7. As 

seen here, even though the train and predict values of 

our artificial intelligence model do not fully capture the 

signal levels, we have seen that the RSSI values are 

close to the peak values generated over time with a 

certain offset difference. 
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Figure 7: Best train and prediction results for pH 7.52 soil sample 

Also, as seen in Figure 7, there is a technical artifact 

that we think our dataset originates in measurement 

devices between 1500 –2000 values. However, this 

distortion did not make any difference to the mean 

values we calculated at the signal levels. The model 

results that we obtained for all different pH values are 

shown in Table 3. Considering the results in Table 3, it 

is seen that the GRU and the Bi-directional LSTM 

methods give very good results in soils at the acidity 

limit. But the other values in the table also show that 

the method used works well. 

 

Table 3: RMSE results for all soil samples with other 

LSTM types 

Soil pH 

value 

RMSE 

value 

with 

LSTM 

RMSE 

value 

with GRU 

RMSE value 

with Bi-

directional 

LSTM 

4.47 8.42 8.61 8.59 

5.31 8.12 7.75 7.79 

6.64 8.75 8.82 8.73 

7.52 8.01 0.15 0.20 

 

Another metric used in regression estimation such as 

LSTM is the R2 value. R2, also known as the 

coefficient of determination, is a statistical measure of 

the proportion of variance in the dependent variable 

that can be estimated from the independent variables in 

a regression model. R2 is a scale-free score, meaning 

that its value is always less than one, regardless of how 

big or tiny the values are. The calculation of R2 is 

shown in equation (9). 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂)

∑(𝑦𝑖 − 𝑦̅)
(9) 

Table 4 shows the R2 values of the measured RSSI 

values. Again, the highest and consistent values were 

obtained in the alkaline soil sample, confirming the 

RMSE results. In terms of R2 and RMSE relationship, 

the prediction made with GRU unit for the sample with 

a pH value of 7.52 fits the data better than other models. 

 

Table 4:  R2 results for all soil samples with other 

LSTM types 

Soil 

pH 

value 

R2 value 

with 

LSTM 

R2 value 

with GRU 

R2 value with Bi-

directional 

LSTM 

4.47 0.06432 0.08620 0.086182 

5.31 0.04050 0.04041 0.04048 

6.64 -1.6210 0.08264 0.09006 

7.52 0.08626 0.08625 0.08624 

 

During the experiments, RSSI values were measured 

periodically but not frequently with a capacitive 

moisture meter. This device measures the moisture in 

the soil in % value. This value, which is found by 

proportioning two discrete values defined as dry and 

wet, is used to determine the moisture content in the 

soil in simple applications. On device sensor there is a 
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capacitor and when the capacitor is charged, it begins 

to discharge. The duration of this process is measured 

by the sensor. The variance of the moisture values we 

obtained during the study period is shown in Table 5.  

Table 5:  Variance of moisture sensor values 

Soil pH value Variance of moisture sensor 

values 

4.47 1.06122449 

5.31 1.346938776 

6.64 1.530612245 

7.52 1.204081633 

 

As can be seen in Table 5, the variance of the change 

between the measured values increases gradually in 

alkaline samples. Although the variation of soil 

moisture is not related to pH in terms of certain 

minerals, the result seen here is that moisture values 

change visibly. The distinctive properties of the soil 

samples were determined only on the basis of pH and 

other components were not taken into account. 

Therefore, although it is not clear whether this change 

is due to other characteristics of the samples, there is a 

significant change. Different pH values were used here 

as a distinguishing feature of the four different soil 

samples. The effects of pH values in relation to water 

or various salts have been studied in many studies. 

However, this study did not set up a setup to directly 

examine these relationships. 

In our study, we observed that the results of the artificial 

intelligence model and it also gave good results in clay 

soils, even if we did not take into account the clay rate 

in soil samples.  

Considering Fig. 4.b, although the change in RSSI 

values here occurs later than acidic soil samples, the 

RMSE values obtained as a result of the artificial 

intelligence model are closer to the alkali soil sample 

(pH 7.52). Under normal conditions, water diffusion in 

clay soils is slow due to the very small gaps in the clay 

(Haria et al. 1994). Our model results support this fact. 

Another result is that the clay rate in the soil increases 

and behaves similarly to acidic properties. The 

prediction of the RSSI values of the clay soil sample at 

pH 5.31 is shown in Figure 8. 

 

 

Figure 8: Train and prediction results for pH 5.3 clay soil sample 

Here, it was seen that the offset difference between the 

measured signals and the predicted values found during 

the training of the model was higher. This difference is 

due to the fact that the 1D feature map values are lower 

than the measured RSSI values. However, the results of 

the artificial intelligence model still follow the pattern 

of the signal levels. 

Numerous theoretical, empirical and semi-empirical 

methods have been developed to detect the moisture 

level of soil with active and passive microwave remote 
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sensing technics. In particular, assimilation of 

frequently referenced Radiometry and Synthetic 

Aperture Radar (SAR) data is a new technique used in 

soil moisture measurements, and there is a lot of 

research on this subject. The equipment in this type of 

works is quite large and energy-consuming devices. 

Today, researchers are constantly developing studies 

with active and passive microwaves. It can be said that 

these have some advantages and disadvantages 

compared to each other. A summary of the advantages 

and disadvantages of the different methods is available 

in Table 6. 

 

Table 6:  Passive and active microwave sensing methods comparation 

Studies Method Power Advantages Disadvantages 

(De Jeu et al. 

2014) 

Passive 

Microwave 
300 kW 

Can penetrate 

through different 

objects. Not limited 

by clouds, dust and 

daytime conditions, 

etc. 

The energy level 

being emitted is quite 

low. (Sun et al. 2019)  400W 

(Panciera et al. 

2014) 

Active 

Microwave 

500 W Detailed spatial 

resolution, not 

limited by clouds, 

dust and daytime 

conditions, etc. 

Complicated analysis, 

cost-intensive. (Abdel-Wahab et 

al. 2019) 
10W 

Our Proposal 

Active 

Microwave 

(BLE) 

1mW 

Low Power, Low 

Cost Devices. In-situ 

detection. Not 

limited by clouds, 

dust and daytime 

conditions, etc. 

Low spatial 

resolution. Best 

results for acidic soils. 

 

5 Conclusion 

In this paper, we have presented the soil moisture 

content prediction method using LSTM recurrent 

neural networks. It has shown promising results on 

acidic soil samples and clay soil sample. We believe 

that using BLE signal strengths predicting soil 

moisture content proposed method has contributed 

to environmental and agricultural improvement. We 

foresee that the artificial intelligence solution 

applied in this study will make the method of 

obtaining information about the soil more 

widespread with the help of easily accessible and 

cheap devices. 

Today, passive microwave measurements that used 

to determine soil moisture content are made at 

wavelengths called L-Band. These measurements 

are usually carried out via satellites. However, many 

factors should be taken into account during the 

remote sensing of soil moisture content. These 

factors can be listed as soil content, surface hardness, 

vegetation, backscattering angle of microwaves. 

There are theoretically and empirically constantly 

developed approaches to explain the effects of all 

these components. Even though there are effects to 

be neglected, even the effects of dipole moment, 

which will occur by the interaction of water 

molecules and microwaves in the soil, should be 

examined to determine the exact value in the 

measured sites. In this study, we tried to find the 

water content by the machine learning method by 

examining the BLE signal behavior in acidic soils 

without ignoring the importance of all these physical 

effects. Our results show that the artificial neural 
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network method we created is feasible. 

On the other hand, BLE signals are similar to 

microwaves defined as L and S bands in satellite 

measurement systems, which are used frequently 

today. Although the transmission power of BLE 

signals is lower than the L and S bands, we think that 

the applications to be carried out using these signals 

will vary depending on the water content of the soil 

in the long term by the method of temporal analysis. 

With BLE signals, an estimate of water moisture 

content can also bring economic gain. The market 

prices of these BLE devices that are incomparable 

degree with similar microwave radar and measuring 

devices and methods are quite low. The properties of 

BLE and other L, S-band microwaves are shown in 

Table 7 (Sengupta and Liepa 2005). 

 

Table 7:  Frequency and wavelength values for L, S 

microwave bands and simple BLE signal values 

Microwave 

Bands 

Frequency 

Range (GHz) 

Wavelength 

(cm) 

L 1 – 2 30 – 15 

S 2 – 4 15 – 7.5 

BLE 2.4 ~12 
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