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 The feature selection process is indispensable for the machine learning area to avoid the 

curse of dimensionality. Hereof, the feature selection techniques endeavor to handle this 

issue. Yet, the feature selection techniques hold several weaknesses: (i) the efficacy of 

the machine learning methods could be quite different on the chosen features (ii) by 

depending on the selected subset, substantial differences in the effectiveness of the 

machine learning algorithms could also be monitored (iii) the feature selection 

algorithms can consume much time on massive data. In this work, to address the issues 

above, we suggest a new and quick unsupervised feature selection procedure, which is 

based on a filter and univariate technique. The offered approach together regards both 

the Shannon entropy computed by the symmetry of the distribution and the cumulative 

entropy of the distribution. As a consequence of comparisons done with some cutting-

edge feature selection strategies, the empirical results indicate that the presented 

algorithm solves these problems in a better way than other methods.        
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1. Introduction 

Machine learning algorithms suffer from high-

dimensional data sets. In this respect, the Feature 

Selection (FS) algorithms would be a supporting 

element for reconstructing the model fast and 

increasing its performance. FS is the task of 

determining features that allow preserving or, in 

some data sets, enhancing the model performance 

without needing the use of all original features [1]. 

FS is beneficial in learning tasks such as 

classification, regression, or clustering since as well 

as decreasing the storage and computing 

requirements, it affords to dismiss the curse of 

dimensionality [2] and allows to form of models that 

have better generalization ability [3]. Thus, the 

feature subset that best represents the original data set 

is selected. The selected features refer to information 

that affects the model outcome and cannot be 
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provided by other features.  

Figure 1 describes this process.  

 
Figure 1 The feature selection scheme. 
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FS algorithms are divided into three as supervised, 

semi-supervised, and unsupervised, in terms of the 

use of class information. Unsupervised Feature 

Selection (UFS) algorithms have three significant 

supremacies: (i) they are unbiased, (ii) they can 

process data even when prior knowledge is 

unavailable, and (iii) they can decrease over-fitting in 

contrast to supervised ones [1]. FS algorithms are 

separated into four basic approaches: filter, wrapper, 

hybrid, and embedded, according to the selection 

strategy of features [4].  

Figure 2 shows the categorization of the feature 

selection methods in terms of the use of class 

information and the selection strategies. 

 

 
 

Figure 2 The categorization of the feature selection 

methods. 
 

The filter approach focuses on the intrinsic and 

statistical properties of data sets. Hence, they are 

rather fast in comparison to the other approaches. The 

wrapper technique is based on the machine learning 

algorithm selected. Therefore, they are slower than 

the filter approach. The hybrid strategy incorporates 

the filter and wrapper approaches. Finally, the 

embedded methods simultaneously perform the 

related learning task and feature selection. 

In the last decades, hundreds of remarkable UFS 

algorithms have been introduced. These 

unsupervised feature selection algorithms address 

troubles in the subfields such as big data, 

heterogeneous attributes, high-dimensional data sets, 

image processing, data clustering, categorical data 

sets, rule induction, text mining, and biomarker 

discovery. Besides, there exist various approaches 

employed to develop feature selection algorithms in 

the literature. These techniques are adaptive graph-

based approach, adaptive similarity learning, 

autoencoder, bio-inspired approach, clustering, 

differential evolution, Dirichlet process, 

discriminative analysis, extreme learning machine, 

graph representation, Gravitational Search 

Algorithm, hidden Markov model, Hilbert-Schmidt 

independence criterion, integer programming, 

Kolmogorov-Smirnov test, k-nearest neighbors, 

Laplace score, latent representation, Local Sensitive 

Dual Concept Learning, local structure learning, 

Locality Preserving Projection, manifold learning, 

matrix factorization, Maximal Information 

Compression Index, metaheuristic algorithms, metric 

learning, mutual information, nonparametric 

Bayesian mixture model, particle swarm 

optimization, principal component analysis, 

regression-based approach, self-representation 

learning, sparse learning, spectral learning, statistical 

learning, subspace learning, and symmetrical 

uncertainty. 

We categorize the unsupervised feature selection 

algorithms in the literature in terms of the techniques 

they have applied. Accordingly, in the context of 

neighborhood relationships, LS (Laplacian score for 

unsupervised feature selection) [5] uses the locality-

preserving capability by finding the nearest 

neighbors of each feature and thereby selects 

features. RNE (Robust Neighborhood Embedding) 

characterizes the local geometry of the data by linear 

coefficients that rebuild each point via k-nearest 

neighbors to get the weight matrix and it solves the 

model based on the Taxicab-norm through the 

alternation direction method of multipliers [6]. 

According to clustering approaches, MCFS (Multi-

Cluster Feature Selection) [7] conserves the multi-

cluster structure of the data by solving a sparse 

eigenproblem and a least-squares problem and thus 

selects relevant features. 

As for self-representation approaches, RSR 

(unsupervised feature selection method based on 

Regularized Self-Representation) [8] selects features 

by inducing low-rank representation in subspace 

clustering where any feature can be reproduced as the 

linear combination of other convenient features. 

DISR (feature selection method via Diversity-

Induced Self-Representation) [9] selects features by 

reducing redundant features based on diversity and 

the internal self-representation characteristic of 

features. In respect of the use of information-

theoretic approaches, IUFS (Information-theoretic 

Unsupervised Feature Selection) [10] aims to 

maximize the cooperation information between 

features selected by solving an optimization problem, 

searching local optima by a greedy approach. DUFS 

(Pairwise Dependence-based Unsupervised Feature 

Selection) [11] selects the dependent features by 

measuring the mutual information between features 

via a joint entropy and by solving an optimization 

problem. In terms of spectral learning, SPEC (the 

SPECtrum decomposition of the Laplacian matrix) 

[12] suggests a unified framework that relies on 

spectral graph theory for both unsupervised and 

supervised tasks. In point of random subspace 
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learning, SRCFS (unsupervised Feature Selection 

approach based on multi-Subspace Randomization 

and Collaboration) [13] carries out feature 

assessment in each random subspace by generating 

lots of them and subsequently merges the information 

from multiple subspaces to obtain an entire feature 

ranking vector. 

In terms of utilizing feature similarity, EUFSFC 

(Efficient Unsupervised Feature Selection method 

through Feature Clustering) [14] performs feature 

selection by extending the Fitness Proportionate 

Sharing clustering by two feature similarity criteria 

such as Maximal Information Compression Index 

and Symmetrical Uncertainty. 

With respect to the use of pseudo-labels, USFS 

(Unsupervised Soft-label Feature Selection) [15] 

focuses on alleviating the effect of noisy data and 

outliers, and the use of soft labels to be consistent 

with inexplicit data distribution. It uses an iterative 

approach to solve optimization problems.  

In this research, we present a fast and simple 

unsupervised feature selection algorithm. The 

proposed algorithm jointly considers the cumulative 

effect, symmetry, and deviation of the distribution, 

and it has obtained significant results on the training 

data used in the experiments. Finally, the prominent 

contributions of this paper are as follows: 

• The suggested algorithm runs quickly compared to 

the other methods and it is easy to implement.  

• Regardless of the classifiers and data domains, the 

offered method largely keeps yielding the highest 

classification accuracy on average as the number of 

selected features rises. 

• The presented method requires no parameter to 

operate. 

The rest of the sections are organized in the 

following: in Section 2, we describe our algorithm. In 

Section 3, we explain the experimental setup. We 

report in detail the results in Section 4. Lastly, we 

explain the conclusions of the paper in Section 5. 

 

2. Proposed Method  

In this section, we introduce our method based on 

the cumulative entropy [16] and Shannon entropy 

[17]. 

 

2.1 Description of the algorithm 

The proposed algorithm is composed of three 

stages. Given a training set 𝑋 = {𝑥𝑖}𝑖=1
𝑚 ⇒ 𝑥𝑖 =

(𝑥𝑖
(1)
, 𝑥𝑖

(2)
, … , 𝑥𝑖

(𝑑)
) ∈ ℝ𝑑 , 𝑖 = 1,… ,𝑚 , where 𝑚  is 

the number of instances and 𝑑  is the number of 

features. In the first stage, the cumulative entropy of 

each feature is computed by Eq (1) after finding their 

normal cumulative distribution function values given 

by Eq (2) for a continuous random variable 𝑥(𝑘) with 

a normal probability density function 𝑓𝑥(𝑘)(𝑥). 

𝐶𝐸(𝑥(𝑘)) = −∑ 𝐹 (𝑥𝑖
(𝑘)) log2 𝐹 (𝑥𝑖

(𝑘))𝑖  (1) 

𝐹(𝑥; 𝜇, 𝜎) =
1

2
(1 + 𝑒𝑟𝑓 (

𝑥−𝜇

𝜎√2
))   (2) 

where 𝑒𝑟𝑓(∙)  denotes the error function of the 

normal distribution and it is given by 

𝑒𝑟𝑓(𝑧) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑧

−∞
    (3) 

Subsequently, the features are sorted in ascending 

entropy order, Α = {𝑎𝑗|𝑎𝑗 ∈ {1,… , 𝑑},𝑤𝑎𝑗 ∈

𝐶𝐸(𝑥(𝑘)), 𝑘 ∈ {1,… , 𝑑}, 𝑗 ∈ {1,… , 𝑑},𝑤𝑎𝑗 ≤

𝑤𝑎𝑗+1}. The entropy of the cumulative distribution 

function specifies the number of bits required to 

represent the variables from the probability 

distribution to a random variable drawn. From 

another perspective, the frequent occurrence values 

of 𝑋 are represented by the least bits, while the sparse 

ones are expressed by more bits. Thus, the first stage 

of our algorithm relies on the assumption that a 

feature owning the least number of bits needed is of 

the greatest importance. 

In the second step, the Shannon entropy of the 

features is computed in terms of the symmetry in the 

distribution. To this end, we determine a border, 

according to the maximum of the three measures of 

central tendency (i.e., 𝑚𝑒𝑎𝑛, 𝑚𝑒𝑑𝑖𝑎𝑛, and 𝑚𝑜𝑑𝑒) 

and designate the 𝑚𝑒𝑎𝑛, the 𝑚𝑒𝑑𝑖𝑎𝑛, and the 𝑚𝑜𝑑𝑒 

as 𝑥(𝑘)̅̅ ̅̅ ̅, 𝑥(𝑘)̃ , and 𝑥(𝑘)̂ , respectively and denote the 

maximum of the three measures of central tendency 

as 

𝜌(𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑥(𝑘)̅̅ ̅̅ ̅, 𝑥(𝑘)̃ ,𝑥(𝑘)̂ )  (4) 

Next, we transform the original data set into a 

sparse matrix by using the function given by 

𝑢 (𝑥𝑖
(𝑘)) = {

0, 𝑥𝑖
(𝑘) < 𝜌(𝑘)

1, 𝑥𝑖
(𝑘) ≥ 𝜌(𝑘)

   (5) 

We compute the entropy of each feature on the 

transformed data set and sort them in descending 

entropy order. Thus, the features with the highest 

entropy are selected. The second stage aims to 

measure the entropy of the skewness of the 

distribution by Eq (6). 
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𝐻(𝑥(𝑘)) = −∑
|𝑢(𝑥(𝑘))=𝑣|

|𝑢(𝑥(𝑘))|
𝑙𝑜𝑔2

|𝑢(𝑥(𝑘))=𝑣|

|𝑢(𝑥(𝑘))|𝑣∈{0,1}  (6) 

According to the assumption in the second stage, 

the features with the highest entropy are of the 

greatest importance, namely, Β = {𝑏𝑗|𝑏𝑗 ∈

{1,… , 𝑑},𝑤𝑏𝑗 ∈ 𝐻(𝑥(𝑘)), 𝑘 ∈ {1,… , 𝑑}, 𝑗 ∈

{1,… , 𝑑},𝑤𝑏𝑗 ≥ 𝑤𝑏𝑗+1}. 

In the last stage, we fuse these two outputs (i.e., Α 

and Β sets) obtained from the first two stages. The 

outputs are in order of the importance of features. We 

obtain the ultimate order of features through the 

geometric mean of their positions as shown in Eq (7). 

𝑤𝑗=1,…,𝑑 = √∑ 𝑗𝟏𝛢𝑗(𝑗)𝑗 ∑ 𝑗𝟏𝛣𝑗(𝑗)𝑗   (7) 

𝟏𝛢𝑗(𝑗) = {
0, 𝛢𝑗 ≠ 𝑗

1, 𝛢𝑗 = 𝑗
    (8) 

Now, we describe the suggested unsupervised 

feature selection technique in Algorithm 1 and call it 

the Entropy-based Feature Selection (EFS). We are 

now ready to calculate the time complexity of the 

algorithm. In the first stage, the time complexity is 

𝑂(2𝑚𝑑 + 𝑑𝑙𝑜𝑔2𝑑) in the average or best case and 

𝑂(2𝑚𝑑 + 𝑑2) in the worst case. The second stage is 

calculated with time complexity 𝑂(3𝑚𝑑 + 𝑑𝑙𝑜𝑔2𝑑) 

in the average or best case and 𝑂(3𝑚𝑑 + 𝑑2) in the 

worst case. The last stage is calculated with time 

complexity 𝑂(1 + 𝑑𝑙𝑜𝑔2𝑑) in the best case, 𝑂(𝑑2 +

𝑑𝑙𝑜𝑔2𝑑)  in the average case, and 𝑂(2𝑑2)  in the 

worst case. Thus, the overall time complexity of the 

algorithm is found as 𝑂(5𝑚𝑑 + 3𝑑𝑙𝑜𝑔2𝑑 + 1) in the 

best case, 𝑂(5𝑚𝑑 + 3𝑑𝑙𝑜𝑔2𝑑 + 𝑑2) in the average 

case, and 𝑂(5𝑚𝑑 + 4𝑑2) in the worst case. To sum 

it up, the time complexity of the algorithm is linear 

when 𝑚 ≫ 𝑑 , linearithmic when 𝑑 ≫ 𝑚 , and 

quadratic when 𝑚 ≈ 𝑑  for the best case. The time 

complexity of the algorithm is linear when 𝑚 ≫ 𝑑 

and quadratic when 𝑑 ≫ 𝑚 or 𝑚 ≈ 𝑑 for the average 

case. The time complexity of the algorithm is linear 

when 𝑚 ≫ 𝑑 and quadratic when 𝑑 ≫ 𝑚 or 𝑚 ≈ 𝑑 

for the worst case. As a result, the running time of the 

algorithm ranges from linear to quadratic, bounding 

up with the input data. 

 

Algorithm 1 Entropy-based Feature Selection (EFS) 

 

Input  

𝑋 = {𝑥𝑖}𝑖=1
𝑚 ⟹ 𝑥𝑖 = (𝑥𝑖

(1), 𝑥𝑖
(2), … , 𝑥𝑖

(𝑑)) 

Output 

Ι ∈ ℝ𝑑: The ranked feature indicator vector 

1: Calculate the cumulative distribution function 

values 𝑃 ∈ ℝ𝑚×𝑑 of the input data 𝑋 by Eq (2). 

2: Calculate the cumulative entropy 𝑐 ∈ ℝ𝑑 of 𝑃 

by Eq (1). 

3: Sort 𝑐 in ascending order and calculate the 

feature indicator vector 𝑘 ∈ ℝ𝑑 for the first 

stage. 

4: Calculate the maximum of the three measures 

of central tendency 𝛒 ∈ ℝ𝒅 by Eq (4). 

5: Transform the original input data 𝑋 into an 

undirected binary graph 𝑇 ∈ ℝ𝑚×𝑑 by Eq (5). 

6: Calculate the Shannon entropy ℎ ∈ ℝ𝑑 of 𝑇 by 

Eq (6). 

7: Sort ℎ in descending order and calculate the 

feature indicator vector 𝑡 ∈ ℝ𝑑 for the second 

stage. 

8: Calculate the ranking vector 𝐫 ∈ ℝ𝒅 by Eq (7) 

taking the first feature indicator vector 𝑘 and 

the second feature indicator vector 𝑡 as an 

argument. 

9: return the ranked feature indicator vector Ι by 

sorting r in ascending order. 

 

2.2 Determination of the number of selected features 

We have derived a lower bound for determining 

the fitting number of the selected features as 

assessing the methods. To find the expression, we 

should make some assumptions. Accordingly, let 𝜖 

be the error rate of a classification algorithm on the 

whole input data. No classifiers that can learn cannot 

have a less accuracy rate than a random predictor. 

Then, let us delimit the accuracy rate of the 

classification algorithm by the accuracy rate of the 

random predictor. The accuracy rate of the majority 

predictor is equal to 𝑛 𝑚⁄ , where 𝑛 is the number of 

the majority class. The error rate of the majority 

predictor is 1 −
𝑛

𝑚
. Also, the error rate of a majority 

predictor on each feature is 1 −
𝑛

𝑚
. Now, let us 

assume that the features are independent of each 

other. In that case, the error rate is (1 −
𝑛

𝑚
)
𝑑′

 for the 

first 𝑑′ features. Accordingly, let us find 𝑑′  that 

satisfies the inequality given by Ineq (1). 

(1 −
𝑛

𝑚
)
𝑑′

≤ 𝜖     (1) 

Since (1 −
𝑛

𝑚
) ≤ 𝑒−𝑛 𝑚⁄ , we arrive at Ineq (2). 

−
𝑚

𝑛
𝑙𝑛 𝜖 ≤ 𝑑′     (2) 

The error rate of at least one classifier on an input 

data with at least 𝑑′  features that are intentionally 
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selected is approximately 𝜖 . Furthermore, the 

empirical results confirm this outcome, as well. In 

this respect, it is sufficient to use a few features while 

evaluating the UFS algorithms. 

In addition to the abovementioned situation, let us 

consider the features that any two UFS algorithms 

rank in descending importance order and try to 

calculate the similarity probability of the first 𝑘 

features of these two sets. Accordingly, the number 

of ordered arrangements of 𝑘  out of 𝑑  features is 

given by Eq (9). 

𝑃𝑘
𝑑 =

𝑑!

(𝑑−𝑘)!
     (9) 

The number of ordered arrangements of 𝑘 features 

is 𝑘!. Thus, the similarity probability of the first 𝑘 

features of these two sets is given by Eq (10). 

𝑃𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑘!(𝑑−𝑘)!

𝑑!
    (10) 

The results show that the similarity probability 

decreases as the number of features increases. 

Therefore, at most 𝑑 − 1 features can be selected to 

evaluate the UFS algorithms. Consequently, the 

number of features can be picked in the range of 

−
𝑚

𝑛
ln 𝜖 to 𝑑 − 1. In this study, we chose the number 

of features in the range of 1 to 15 to indicate the 

change in the lower bound. 

 

3. Experimental Setup 

In this section, we explain the methodology 

followed in this paper for analyzing the UFS methods 

used in the experiments. We perform the whole tests 

under ten-fold cross-validation and carry out each 

test ten times to be able to use different training data 

within each fold combination. The experiments have 

been performed in the MATLAB R2021a on an i7-

6700HQ CPU at 2.6 GHz with 16 GB of RAM on 

Windows 10 Pro (64-bit). 

In this study, twelve training sets from the 

different domains are used. Table 1 shows the 

descriptive information of the training sets. 

Table 2 shows a baseline, two conventional, and 

eight cutting-edge unsupervised feature selection 

algorithms used in the experiments. In Section 5, we 

show the empirical results in terms of classification 

by using Random Forest (RF), Classification and 

Regression Trees (CART), Support Vector Machine 

(SVM), k-Nearest Neighbors (KNN), and Naive 

Bayes (NB). Then, we put forth the results in terms 

of runtime. 

Table 1 The characteristics of the data sets used in experiments (m is the number of instances, d is the number of 

features, c is the number of classes, and r is the imbalance ratio) 
# Data set m d c r Domain 

1 cardiotocography2 2126 21 3 9.40 Medical 

2 climate model2 540 18 2 10.73 Climate 
3 colon3 62 2000 2 1.82 Biological 

4 connectionist bench2 208 60 2 1.14 Sonar 

5 diabetic retinopathy2 1151 19 2 1.13 Image 
6 dna4 3186 180 3 2.16 Biological 

7 ecoli-uni5 336 343 8 71.50 Biological 

8 flowmeterA2 87 36 2 1.49 Fault detection 
9 madelon2 2000 500 2 1.00 Artificial 

10 qsar biodegradation2 1055 41 2 1.96 Chemical 

11 vehicle2 846 18 4 1.10 Image 
12 wall following robot2 5456 24 4 6.72 Teleinformatics 

 

Table 2 The unsupervised feature selection techniques used in the experiments 

# Method Approach Category Technique 

1 All features — — — 
2 DISR6 Filter Multivariate Diversity and the internal self-representation 

3 DUFS7 Filter Multivariate Joint entropy 

4 IUFS6 Filter Multivariate 
The alternative conditional expectation and the generalized maximal 
correlation 

5 LS8 Filter Univariate Laplacian eigenmaps and LPP 

6 MCFS8 Filter Multivariate Spectral embedding and sparse learning 
7 RNE9 Filter Multivariate The locally linear embedding 

8 RSR6 Filter Multivariate Regularized self-representation 

 
2 https://archive.ics.uci.edu/ml/datasets/ 
3 https://jundongl.github.io/scikit-feature/datasets.html 
4 https://www.openml.org/d/40670 
5 https://github.com/wang-feifei/USFS-code/tree/master/Datasets 
6 https://github.com/CAU-AIR-Lab/DUFS/tree/main/programs 
7 https://github.com/CAU-AIR-Lab/DUFS 
8 http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html 
9 https://github.com/liuyanfang023/KBS-RNE 
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9 SRCFS10 Filter Multivariate Balanced multi-subspace randomization 

10 SPEC11 Filter Univariate Spectral graph theory 

11 USFS12 Filter Multivariate Soft-label learning 

 

4. Findings and Discussion 

In this section, we assess the performance of the 

offered algorithm through classification experiments. 

Figure 3 shows the change in the cumulative entropy 

of the features, depending on the number of 

instances. The entropy of the cumulative distribution 

function specifies the number of bits that need to 

characterize the variables from the probability 

distribution to a random variable drawn. From 

another perspective, the frequent occurrence values 

of 𝑋 are represented by the least bits, while the sparse 

ones are expressed by more bits. Thus, the first stage 

of our algorithm relies on the assumption that a 

feature owning the least number of bits needed is of 

the greatest importance. Figure 4 shows the change 

in the Shannon entropy of the symmetry of the 

distribution in each feature, depending on the number 

of instances. 

 

 
Figure 3 The variation of cumulative entropies of the features, in terms of the number of the instances 

 

 
Figure 4 The variation in the Shannon entropy of the symmetry of the distribution in each feature, in terms of the 

number of the instances 
 

 
10 https://github.com/huangdonghere/SRCFS 
11 https://github.com/matrixlover/LSLS 
12 https://github.com/wang-feifei/USFS-code 
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Figure 5 demonstrates the comparison results of 

the UFS methods according to the average of five 

classifiers on all the data sets. According to the 

results, EFS, IUFS, and LS have the statistically 

significant highest ACC with 0.783, 0.774, and 

0.771, respectively. USFS has the lowest ACC with 

0.695. In addition, EFS, IUFS, and LS exceed the 

baseline that has 0.765 of ACC. Finally, EFS, IUFS, 

and LS deliver the average highest ACC with 

statistical significance.  Figure 6 shows the average 

results of the UFS algorithms on all the classification 

experiments in terms of the average ACC and 

maximum ACC. From the results, EFS has the 

highest ACC with 0.748 in terms of Average and the 

highest ACC with 0.803 in terms of Maximum. 

Considering all features, the average ACC is 0.777. 

The second-best results belong to IUFS with 0.725 

and 0.783 in terms of Average and Maximum. 

Finally, the third-best results belong to LS with 0.712 

and 0.773 in terms of Average and Maximum. The 

results of EFS, IUFS, and LS are statistically more 

significant than others. 

 

 

 

 

 

 
Figure 5 The comparative results of the UFS methods according to the average of five classifiers on all the data sets 

 

 

 

 

 
Figure 6 The performance of the UFS algorithms in terms of Maximum and Average, considering the results belonging 

to the five classifiers on twelve data sets 
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Figure 7 The variation in the minimum error rate, in terms of the number of the features on the data sets (The horizontal 

black dashed lines denote the error rate of the whole input data. The vertical red dashed lines denote the number of the 

features obtained by Ineq. (2)). 

 

Figure 7 shows the variation in the minimum error 

rate, in terms of the number of features on the data 

sets. From the results, we can observe the 𝑑′ number 

of features whose error rate is close to the error rate 

of the whole input data and larger than the global 

minimum error rate depending on the number of the 

selected features. This is a lower bound. Besides, it is 

difficult to decide an upper bound for the optimum 

number of features, due to the unpredictable relations 

formed by the combination of features. But a global 

error rate can be searched through advancement in a 

certain step (i.e., an optimized iterative forward 

search) by starting from the lower bound. Thus, there 

is no need to check for all possible subsets. 
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According to the results, we can reach the minimum 

error rates in several steps by beginning from a lower 

bound. In other words, there is not mostly necessary 

to search for lots of features to arrive at the global 

minimum. The results on three high-dimensional data 

sets also verify this situation. However, we would 

like to underline that this situation cannot be 

generalized to all data sets, as well. Hence, we would 

like to state that an analysis of many features (e.g., 

𝑑 − 1) can be performed. 

Considering the results in more detail, the 

numerical results of the suggested algorithm against 

the state-of-the-art algorithms are shown in Table 3, 

Table 4, Table 5, Table 6, and Table 7. Table 3 shows 

the average classification accuracies in terms of the 

KNN classifier, and it shows that the proposed 

algorithm reaches the maximum accuracy in 5 out of 

12 data sets. Table 4 shows the average classification 

accuracies of the algorithms in terms of the NB 

classifier. This table demonstrates too likewise that 

the proposed algorithm attains the maximum 

accuracy in 5 out of 12 data sets. Table 5 

demonstrates the average classification accuracies of 

the algorithms using the CART classifier. This table 

points out that the proposed algorithm achieves the 

highest accuracy in 3 out of 12 data sets. Table 6 

exhibits the average classification accuracies 

obtained by the algorithms using the SVM classifier. 

This table also indicates that the proposed algorithm 

achieves higher accuracy compared to the others in 3 

out of 12 data sets. Finally, Table 7 contains the 

average classification accuracies of the algorithms in 

terms of the RF classifier. This table also 

demonstrates that the proposed algorithm obtains 

higher accuracies than the other algorithms in 4 out 

of 12 data sets. Considering the whole results in the 

five tables, the offered algorithm delivers the highest 

average accuracy in 20 out of 60 experiments. DISR 

has the highest average accuracy in 9 out of 60 

experiments. To sum up, the offered method 

succeeds the highest total average accuracy over all 

classifiers. 

 

 
Table 3 The results of average classification accuracy of the offered and cutting-edge algorithms (KNN classifier) 

Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.869 0.853 0.855 0.792 0.867 0.831 0.858 0.856 0.854 0.800 0.867 

2 0.878 0.861 0.852 0.882 0.869 0.865 0.866 0.853 0.878 0.865 0.860 

3 0.657 0.561 0.599 0.594 0.494 0.650 0.641 0.491 0.545 0.568 0.631 

4 0.748 0.695 0.736 0.737 0.727 0.555 0.697 0.702 0.680 0.571 0.727 

5 0.618 0.594 0.597 0.600 0.614 0.573 0.608 0.605 0.606 0.573 0.591 

6 0.654 0.626 0.322 0.591 0.636 0.321 0.265 0.468 0.264 0.534 0.291 

7 0.766 0.776 0.755 0.765 0.758 0.635 0.775 0.426 0.768 0.426 0.426 

8 0.632 0.526 0.499 0.580 0.722 0.517 0.499 0.504 0.759 0.761 0.498 

9 0.720 0.702 0.689 0.714 0.734 0.712 0.702 0.688 0.691 0.772 0.705 

10 0.737 0.768 0.745 0.713 0.704 0.724 0.765 0.766 0.530 0.485 0.724 

11 0.631 0.635 0.615 0.554 0.572 0.569 0.608 0.625 0.628 0.520 0.598 

12 0.845 0.837 0.847 0.880 0.887 0.858 0.872 0.847 0.859 0.870 0.856 

 

Table 4 The results of average classification accuracy of the offered and cutting-edge algorithms (NB classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.823 0.811 0.808 0.652 0.807 0.681 0.633 0.793 0.802 0.529 0.567 

2 0.922 0.917 0.918 0.929 0.914 0.918 0.919 0.913 0.925 0.918 0.920 

3 0.694 0.606 0.664 0.622 0.521 0.653 0.681 0.540 0.595 0.648 0.688 

4 0.616 0.621 0.653 0.640 0.629 0.577 0.580 0.633 0.619 0.586 0.667 

5 0.593 0.511 0.569 0.556 0.602 0.526 0.558 0.541 0.560 0.513 0.495 

6 0.810 0.804 0.519 0.744 0.807 0.553 0.519 0.752 0.519 0.519 0.519 

7 0.794 0.805 0.782 0.803 0.745 0.590 0.805 0.426 0.769 0.426 0.308 

8 0.583 0.512 0.505 0.560 0.592 0.510 0.503 0.515 0.590 0.594 0.495 

9 0.769 0.666 0.669 0.761 0.472 0.711 0.667 0.709 0.542 0.617 0.519 

10 0.748 0.617 0.649 0.680 0.603 0.737 0.566 0.675 0.541 0.615 0.733 

11 0.461 0.467 0.450 0.451 0.404 0.420 0.448 0.423 0.468 0.427 0.438 

12 0.547 0.490 0.507 0.555 0.503 0.557 0.492 0.482 0.559 0.436 0.456 

 

Table 5 The results of average classification accuracy of the offered and cutting-edge algorithms (CART classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.867 0.871 0.860 0.846 0.877 0.847 0.871 0.870 0.868 0.838 0.867 

2 0.894 0.867 0.860 0.888 0.869 0.872 0.872 0.865 0.884 0.876 0.872 

3 0.708 0.616 0.720 0.669 0.567 0.628 0.696 0.582 0.568 0.644 0.665 

4 0.648 0.639 0.668 0.671 0.650 0.559 0.620 0.653 0.626 0.571 0.682 

5 0.613 0.592 0.597 0.601 0.619 0.573 0.631 0.593 0.620 0.581 0.582 
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6 0.842 0.837 0.539 0.796 0.834 0.601 0.516 0.782 0.516 0.692 0.515 

7 0.776 0.784 0.756 0.768 0.767 0.651 0.770 0.426 0.775 0.426 0.426 

8 0.655 0.507 0.498 0.583 0.676 0.508 0.500 0.495 0.715 0.717 0.499 

9 0.878 0.706 0.702 0.854 0.636 0.840 0.730 0.733 0.679 0.762 0.649 

10 0.766 0.770 0.760 0.770 0.777 0.776 0.772 0.788 0.708 0.715 0.775 

11 0.657 0.663 0.662 0.654 0.608 0.642 0.653 0.650 0.651 0.596 0.660 

12 0.890 0.844 0.871 0.929 0.926 0.903 0.903 0.863 0.907 0.895 0.883 

 

Table 6 The results of average classification accuracy of the offered and cutting-edge algorithms (SVM classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.848 0.839 0.828 0.835 0.847 0.852 0.851 0.833 0.831 0.841 0.833 

2 0.923 0.921 0.921 0.934 0.915 0.918 0.920 0.917 0.926 0.917 0.925 

3 0.727 0.624 0.737 0.602 0.623 0.648 0.732 0.606 0.628 0.666 0.697 

4 0.666 0.616 0.684 0.657 0.664 0.617 0.580 0.650 0.632 0.646 0.677 

5 0.686 0.642 0.669 0.642 0.687 0.608 0.683 0.658 0.669 0.612 0.631 

6 0.842 0.835 0.541 0.802 0.836 0.598 0.519 0.776 0.519 0.692 0.519 

7 0.829 0.834 0.815 0.823 0.812 0.699 0.831 0.426 0.821 0.426 0.426 

8 0.595 0.518 0.505 0.569 0.598 0.515 0.489 0.513 0.602 0.601 0.496 

9 0.828 0.600 0.598 0.794 0.603 0.700 0.697 0.714 0.652 0.689 0.646 

10 0.793 0.782 0.783 0.782 0.767 0.801 0.806 0.797 0.712 0.698 0.794 

11 0.689 0.667 0.674 0.674 0.587 0.617 0.670 0.650 0.638 0.607 0.651 

12 0.568 0.525 0.552 0.622 0.612 0.571 0.576 0.558 0.584 0.587 0.589 

 

Table 7 The results of average classification accuracy of the offered and cutting-edge algorithms (RF classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.897 0.890 0.883 0.879 0.899 0.874 0.896 0.897 0.886 0.861 0.889 

2 0.917 0.909 0.908 0.915 0.903 0.910 0.909 0.905 0.914 0.906 0.910 

3 0.741 0.629 0.726 0.665 0.575 0.688 0.716 0.576 0.578 0.665 0.673 

4 0.717 0.698 0.731 0.740 0.723 0.613 0.684 0.694 0.679 0.618 0.728 

5 0.663 0.619 0.643 0.648 0.671 0.600 0.667 0.634 0.657 0.609 0.622 

6 0.847 0.841 0.554 0.802 0.837 0.606 0.524 0.786 0.524 0.690 0.532 

7 0.808 0.826 0.802 0.815 0.806 0.696 0.814 0.426 0.810 0.426 0.426 

8 0.706 0.515 0.498 0.618 0.738 0.510 0.503 0.497 0.774 0.780 0.496 

9 0.866 0.720 0.705 0.877 0.648 0.846 0.780 0.779 0.719 0.770 0.654 

10 0.807 0.812 0.799 0.812 0.813 0.814 0.818 0.824 0.714 0.727 0.814 

11 0.699 0.699 0.696 0.686 0.647 0.674 0.691 0.686 0.689 0.627 0.691 

12 0.912 0.887 0.901 0.937 0.935 0.918 0.924 0.898 0.922 0.916 0.910 

 
Considering the results in more detail in terms of 

maximum classification accuracy, the experimental results 

of the offered method against the cutting-edge algorithms 

are shown in Table 8, Table 9, Table 10, Table 11, and 

Table 12. Table 8 contains the maximum classification 

accuracies in terms of the KNN classifier, and this table 

also demonstrates that the suggested method and SPEC 

attain the maximum classification accuracy in 3 out of 12 

data sets. Table 9 exhibits the maximum classification 

accuracies in terms of the NB classifier, and it also points 

out that the offered method and DISR reach the maximum 

accuracy in 2 out of 12 data sets. Besides, IUFS and USFS 

have the highest maximum classification accuracy in 5 and 

3 out of 12 data sets, respectively. Table 10 shows the 

maximum classification accuracies of the algorithms using 

the CART classifier. This table demonstrates that the 

offered method and LS achieve the highest maximum 

classification accuracy in 2 out of 12 data sets. In addition, 

RSR and SRCFS have the highest maximum classification 

accuracy in 3 out of 12 data sets. Table 11 includes the 

average classification accuracies obtained by the 

algorithms using the SVM classifier. This table also 

indicates that the offered method reaches higher maximum 

accuracy compared to the others in 4 out of 12 data sets. 

Finally, Table 12 shows the maximum classification 

accuracies of the algorithms in terms of the RF classifier. 

The related table also shows that the proposed algorithm, 

LS, RNE, and SRCFS obtains higher maximum 

classification accuracies than the other algorithms in 2 out 

of 12 data sets. Additionally, IUFS has the highest 

maximum classification accuracy in 3 out of 12 data sets. 

Considering all the results in the five tables, the offered 

algorithm has the highest maximum classification 

accuracy in 13 out of 60 experiments. IUFS has the highest 

maximum accuracy in 11 out of 60 experiments. 

Consequently, the suggested method yields the highest 

total maximum classification accuracy over all classifiers. 

 

 

Table 8 The results of maximum classification accuracy of the offered and cutting-edge algorithms (KNN classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.902 0.883 0.919 0.858 0.902 0.875 0.894 0.886 0.903 0.872 0.916 

2 0.909 0.889 0.910 0.911 0.891 0.898 0.892 0.882 0.905 0.885 0.892 

3 0.765 0.623 0.706 0.674 0.534 0.789 0.729 0.595 0.650 0.677 0.752 

4 0.857 0.806 0.792 0.826 0.782 0.629 0.830 0.769 0.774 0.600 0.782 
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5 0.660 0.675 0.632 0.645 0.653 0.665 0.652 0.644 0.668 0.636 0.670 

6 0.821 0.777 0.530 0.743 0.815 0.452 0.369 0.731 0.368 0.745 0.415 

7 0.809 0.817 0.815 0.814 0.815 0.749 0.820 0.426 0.818 0.426 0.426 

8 0.700 0.572 0.510 0.590 0.823 0.551 0.521 0.533 0.865 0.867 0.532 

9 0.809 0.737 0.766 0.791 0.798 0.766 0.764 0.741 0.787 0.838 0.779 

10 0.776 0.809 0.798 0.758 0.783 0.788 0.806 0.806 0.746 0.754 0.807 

11 0.727 0.704 0.678 0.639 0.650 0.668 0.673 0.694 0.709 0.640 0.686 

12 0.924 0.888 0.896 0.935 0.929 0.928 0.923 0.891 0.934 0.937 0.924 

 

Table 9 The results of maximum classification accuracy of the offered and cutting-edge algorithms (NB classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.845 0.850 0.829 0.796 0.838 0.808 0.794 0.829 0.821 0.756 0.758 

2 0.939 0.935 0.939 0.949 0.923 0.949 0.947 0.934 0.946 0.943 0.950 

3 0.766 0.635 0.726 0.645 0.645 0.697 0.708 0.645 0.645 0.706 0.789 

4 0.655 0.663 0.679 0.736 0.681 0.620 0.620 0.690 0.636 0.632 0.694 

5 0.610 0.543 0.607 0.644 0.626 0.553 0.604 0.573 0.597 0.568 0.559 

6 0.865 0.865 0.520 0.826 0.861 0.606 0.519 0.800 0.519 0.519 0.519 

7 0.848 0.840 0.847 0.848 0.841 0.769 0.842 0.426 0.843 0.426 0.426 

8 0.615 0.548 0.515 0.571 0.619 0.543 0.511 0.546 0.609 0.616 0.536 

9 0.791 0.684 0.686 0.820 0.597 0.808 0.707 0.799 0.602 0.752 0.613 

10 0.763 0.734 0.720 0.737 0.696 0.767 0.728 0.745 0.667 0.692 0.784 

11 0.512 0.512 0.511 0.505 0.428 0.468 0.482 0.526 0.515 0.462 0.468 

12 0.599 0.536 0.591 0.622 0.573 0.619 0.574 0.533 0.598 0.502 0.522 

 

Table 10 The results of maximum classification accuracy of the offered and cutting-edge algorithms (CART classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.914 0.895 0.920 0.898 0.925 0.891 0.917 0.917 0.925 0.913 0.904 

2 0.910 0.906 0.908 0.913 0.890 0.914 0.912 0.906 0.911 0.906 0.915 

3 0.808 0.653 0.800 0.752 0.645 0.739 0.776 0.656 0.645 0.744 0.774 

4 0.725 0.703 0.688 0.747 0.681 0.606 0.681 0.749 0.666 0.608 0.731 

5 0.652 0.642 0.630 0.622 0.654 0.628 0.693 0.623 0.694 0.617 0.633 

6 0.894 0.888 0.626 0.839 0.892 0.637 0.523 0.845 0.521 0.835 0.521 

7 0.817 0.818 0.812 0.810 0.818 0.776 0.820 0.426 0.818 0.426 0.426 

8 0.713 0.542 0.514 0.596 0.758 0.541 0.511 0.519 0.814 0.810 0.534 

9 0.909 0.738 0.756 0.908 0.684 0.932 0.838 0.808 0.807 0.862 0.754 

10 0.810 0.806 0.811 0.802 0.820 0.810 0.815 0.828 0.805 0.794 0.805 

11 0.704 0.710 0.707 0.707 0.706 0.702 0.699 0.720 0.717 0.685 0.704 

12 0.951 0.896 0.959 0.991 0.995 0.972 0.994 0.915 0.966 0.994 0.963 

 

Table 11 The results of maximum classification accuracy of the offered and cutting-edge algorithms (SVM classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.895 0.877 0.887 0.890 0.888 0.885 0.890 0.879 0.883 0.884 0.867 

2 0.952 0.950 0.949 0.961 0.922 0.959 0.944 0.941 0.951 0.950 0.958 

3 0.798 0.663 0.824 0.694 0.705 0.713 0.811 0.756 0.660 0.805 0.763 

4 0.769 0.671 0.707 0.762 0.697 0.704 0.683 0.724 0.671 0.704 0.702 

5 0.724 0.729 0.726 0.706 0.723 0.727 0.723 0.714 0.728 0.724 0.727 

6 0.893 0.882 0.633 0.836 0.887 0.629 0.519 0.842 0.519 0.830 0.519 

7 0.869 0.874 0.870 0.869 0.871 0.818 0.873 0.426 0.871 0.426 0.426 

8 0.618 0.554 0.515 0.574 0.619 0.547 0.498 0.537 0.619 0.621 0.545 

9 0.868 0.626 0.598 0.856 0.672 0.845 0.805 0.885 0.782 0.793 0.810 

10 0.858 0.849 0.834 0.822 0.845 0.855 0.857 0.845 0.817 0.813 0.844 

11 0.761 0.794 0.777 0.794 0.774 0.790 0.793 0.765 0.774 0.741 0.793 

12 0.640 0.602 0.647 0.728 0.709 0.669 0.673 0.635 0.669 0.733 0.715 

 

Table 12 The results of maximum classification accuracy of the offered and cutting-edge algorithms (RF classifier) 
Data 

set 
Algorithm 

EFS DISR DUFS IUFS LS MCFS RNE RSR SRCFS SPEC USFS 

1 0.940 0.922 0.942 0.929 0.945 0.923 0.947 0.942 0.941 0.941 0.935 

2 0.932 0.925 0.927 0.936 0.918 0.928 0.930 0.927 0.931 0.931 0.931 

3 0.863 0.742 0.798 0.742 0.645 0.798 0.815 0.734 0.645 0.855 0.806 

4 0.829 0.791 0.764 0.837 0.767 0.709 0.788 0.788 0.767 0.702 0.786 

5 0.708 0.682 0.695 0.679 0.710 0.683 0.704 0.680 0.703 0.684 0.700 

6 0.904 0.891 0.663 0.845 0.902 0.659 0.553 0.862 0.548 0.844 0.576 

7 0.865 0.882 0.875 0.878 0.881 0.820 0.872 0.426 0.875 0.426 0.426 

8 0.776 0.567 0.525 0.639 0.844 0.556 0.516 0.533 0.889 0.887 0.544 

9 0.897 0.770 0.816 0.943 0.707 0.943 0.874 0.902 0.874 0.879 0.764 

10 0.858 0.862 0.864 0.845 0.858 0.855 0.869 0.869 0.833 0.805 0.855 

11 0.746 0.754 0.749 0.752 0.754 0.744 0.750 0.745 0.762 0.737 0.754 
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12 0.971 0.939 0.975 0.995 0.997 0.982 0.996 0.951 0.980 0.996 0.983 

 

Figure 8 shows the comparative results of the UFS 

methods in terms of running time. According to the 

average running time of the methods, EFS and LS are 

methods whose running times are under 1 second. In 

other words, they are the fastest unsupervised feature 

selection methods in comparison to the other 

methods. DISR and RNE slowly run on all the high-

dimensional data sets. SRCFS and SPEC slowly 

perform on data sets that have a large amount of data. 

MCFS, RSR, IUFS, DUFS, and USFS exhibit good 

performance in terms of running time. Consequently, 

EFS is the fastest UFS method. LS ranks second. 

Accordingly, EFS delivers success in terms of both 

accuracy rate and running time. 

 

Figure 8 The comparative results of the UFS methods in 

terms of average running time 

5. Conclusion 

In this paper, we suggest a new and fast filter-based 

unsupervised feature selection method called 

Entropy-based Feature Selection (EFS) based on a 

single-variable feature selection strategy. The 

proposed algorithm relies on both the Shannon 

entropy calculated by the symmetry of the 

distribution and the cumulative entropy of the 

distribution. 

Unsupervised feature selection algorithms aim to 

select the most useful features within a dataset. We 

evaluated the selected features using five well-known 

classifiers to measure accuracy rates. Among the 

sixty experiments conducted with features identified 

by EFS in classification results, the twenty 

experiments have achieved the highest average 

accuracy rates. After EFS, the DISR method obtained 

the highest average accuracy rates on nine datasets. 

EFS has an average running time of 0.08 seconds, 

making it faster than other unsupervised feature 

selection methods used in the experiments. The LS 

algorithm follows with an average running time of 

0.14 seconds. These low running times demonstrate 

that the method performs significantly faster on high-

dimensional datasets. 

Experimental tests on both an artificial dataset and 

eleven real-world datasets from different domains 

showed that EFS achieves high accuracy rates. 

Notably, EFS maintains high average and maximum 

accuracy rates even as the number of features 

increases. Future studies can explore EFS’s 

performance in a wider range of data and various 

application domains. Besides, the next work aims to 

measure EFS’s performance over the clustering 

problems. Additionally, comparative analyses with 

other feature selection methods can help better 

understand the algorithm’s competitive advantages. 

In-depth analyses of the data processed by EFS can 

provide valuable insights for understanding and 

improving the algorithm’s limitations. 
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