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Abstract
Aim: The aim of this study is to investigate the potential interactions between SARS-CoV-2 Spike protein variants and 
the host microbiota. While the Spike protein is known for its role in mediating viral entry into host cells, its impact 
on the host’s microbial communities remains unclear. Given the microbiota’s critical role in modulating immune 
responses and maintaining host homeostasis, understanding these interactions could provide new insights into disease 
progression and immune evasion mechanisms associated with COVID-19. By leveraging parameters extracted from the 
current literature and analyzing publicly available datasets, we seek to elucidate how these interactions might influence 
the severity of COVID-19 and the pathogenesis of emerging viral variants. This research may also highlight potential 
therapeutic targets for mitigating the effects of SARS-CoV-2 and its evolving forms.
Methods: This study investigates the interaction between Spike protein variants of SARS-CoV-2 and the host microbiota. 
To this end, the associations between various SARS-CoV-2 variants and different host factors derived from urban 
ecosystems have been statistically analyzed. Specifically, the influence of these host factors, which are linked to distinct 
microbiota compositions, on the interaction with Spike protein variants has been evaluated. A Bayesian Network 
approach has been employed for this analysis to model the complex relationships and dependencies among the host 
factors and microbiota compositions.
Results: This study investigates the interaction between Spike protein variants of SARS-CoV-2 and host factors. 
Hypothesis 1 (H1) posits that specific combinations of various host factors can explain the infectivity of SARS-CoV-2. 
The analyses reveal that 20 SARS-CoV-2 variants and mutants are significantly affected by various parameters (Table 
2), indicating that H1 cannot be rejected. Additionally, it is suggested that the connections mentioned in H1 indicate 
the presence of a carrier within the host, potentially the microbiome. Hypothesis 2 (H2) proposes that the microbiota 
serves as the primary carrier of host factors, influencing the selection of specific SARS-CoV-2 mutants. To test this 
hypothesis, a Bayesian Network was constructed (Figure 3), which identified the probabilistic relationships between 
potential microbiota compositions and Spike variants.
Conclusion: As a result, it is suggested that different Spike protein variants may be present in hosts with varying 
microbial compositions. Additionally, the microbiota could serve as a carrier that influences the selection of viral 
mutants in hosts within the population, potentially impacted by external factors such as environmental conditions and 
human interactions.
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Öz

Amaç:  Bu çalışmanın amacı, SARS-CoV-2 Spike proteini varyantları ile konak mikrobiotası arasındaki olası 
etkileşimleri araştırmaktır. Spike proteininin virüsün konak hücrelere girişini sağlamadaki rolü iyi bilinmesine 
rağmen, bu proteinin konak mikrobiyal topluluklar üzerindeki etkisi belirsizliğini korumaktadır. Mikrobiotanın 
bağışıklık yanıtlarını düzenlemede ve konak homeostazını sağlamadaki kritik rolü göz önüne alındığında, bu 
etkileşimlerin incelenmesi, COVID-19’un hastalık ilerleyişi ve bağışıklık kaçışı mekanizmaları hakkında yeni 
bilgiler sağlayabilir. Literatürdeki mevcut parametreler ve halka açık veri setleri kullanılarak bu etkileşimlerin 
COVID-19’un şiddeti ve ortaya çıkan virüs varyantlarının patogenezi üzerindeki etkileri araştırılmıştır. Bu araştırma 
aynı zamanda SARS-CoV-2 ve gelişen varyantlarının etkilerini hafifletmek için potansiyel terapötik hedef olarak 
mikrobiyotayı ortaya koymayı hedefler.
Yöntem: Bu çalışmada, SARS-CoV-2’nin Spike protein varyantları ile konak mikrobiota arasındaki etkileşim 
incelenmiştir. Bu amaçla, çeşitli SARS-CoV-2 varyantlarının kentsel ekosistemlerden elde edilen farklı konak 
faktörleriyle ilişkileri istatistiksel olarak analiz edilmiştir. Özellikle, bu konak faktörlerinin, farklı mikrobiota 
kompozisyonları ile olan etkileşimleri değerlendirilmiştir. Analiz için, konak faktörleri ile mikrobiota 
kompozisyonları arasındaki karmaşık ilişkileri ve bağımlılıkları modellemek amacıyla Bayesian Ağı yaklaşımı 
kullanılmıştır.
Bulgular: Bu çalışmada, SARS-CoV-2’nin Spike protein varyantları ile konak faktörleri arasındaki etkileşim 
incelenmiştir. Hipotez 1 (H1), çeşitli konak faktörlerinin belirli kombinasyonlarının SARS-CoV-2’nin enfektifliğini 
açıklayabileceğini öne sürmüştür. Analizler, 20 SARS-CoV-2 varyantı ve mutantının çeşitli parametrelerden önemli 
ölçüde etkilendiğini göstermiştir (Tablo 2). Bu sonuç, H1’in reddedilemeyeceğini ortaya koymaktadır. Ek olarak, 
H1’de belirtilen bağlantıların, konak içinde bir taşıyıcı olduğuna ve bunun mikrobiom olabileceğine işaret ettiği 
düşünülmektedir. Hipotez 2 (H2) ise, mikrobiotanın konak faktörlerini taşıyarak belirli SARS-CoV-2 mutantlarının 
seçimini etkileyen ana yapı olduğunu önermektedir. Bu hipotezi test etmek amacıyla oluşturulan Bayesian Ağı 
(Şekil 3) ile olası mikrobiota kompozisyonlarının Spike varyantları ile olasılıksal ilişkisi tespit edilmiştir. 
Sonuç: Sonuç olarak, farklı Spike protein varyantlarının farklı mikrobiyal kompozisyonlara sahip konaklarda 
bulunabileceği önerilmektedir. Ayrıca, mikrobiota, konaklardaki viral mutantların seçimini etkileyebilecek bir 
taşıyıcı rolü üstlenebilir; bu etki, çevresel koşullar ve insan etkileşimleri gibi dış faktörlerden etkilenebilir.
Anahtar Kelimeler: COVID-19, Mikrobiyom, Spike Proteini, Viral Varyant, Konak Faktörler

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is 
caused by the Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2), 
which is shared by many organisms such as 
bats, pigs, cats, and humans (World Health 
Organization, 2020). The SARS-CoV-2 virus 
belongs to the SARS-MERS viral family in 
the evolutionary pathway, and variants 
of these diseases have been seen before 
(Gorbalenya et al., 2020). SARS-CoV-2 is an 
RNA virus that belongs to the Nidovirales 
order and Coronaviridae family (Kahn, 
2020). SARS-CoV-2 is evolutionarily related 
to HCV-229E, NL63, OC43, and HKU1, which 
are viruses that cause common colds in 
15-30% of humans (Corman et al., 2019). 
Viruses belonging to the Nidovirales order 
exhibit similar structural features (Kahn, 
2020). Nidoviruses have few structural 

proteins and RNA as their genetic material, 
along with a lipid envelope that protects 
the genetic material from the environment 
(Kahn, 2020). All Nidoviruses contain a 
Nucleocapsid (N) protein that interacts 
with the Membrane protein (M); however, 
both structures and proteins vary among 
the viruses (Kahn, 2020; Wang et al., 
2020). The genome sizes vary among the 
Nidoviruses, while the genome structures 
remain similar. All genomes possess two 
large Open Reading Frames (ORFs) that 
hold the genetic information of proteins 
responsible for transcription regulation. The 
parts for structural proteins (such as M and 
N) are located in the genome near the ORFs 
(Kahn, 2020; Wang et al., 2020). The life 
cycle of SARS-CoV-2 consists of four stages: 
the attachment of the virus to the cell and 
transfer of genetic material, processing of 
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genetic material, assembly of viral proteins 
resulting from translation, and release of 
the unified virions from the cell (Zhou et 
al., 2020). The interaction of viral proteins 
with various host proteins has also been the 
subject of many studies (Zhou et al., 2020; 
Wang et al., 2020). SARS-CoV-2 proteins 
associate with certain host proteins, forming 
complexes that alter the virus’s effect on the 
host (Gorbalenya et al., 2020). For instance, a 
virus-host protein-protein interaction (PPI) 
formed by TOM-70 (a host cell membrane 
protein) and Orf-9b (a SARS-CoV-2 protein) 
exemplifies this type of relationship. Such 
SARS-CoV-2 virus-host protein interaction 
pathways can also be associated with 
MERS and SARS-CoV viruses, making them 
potential targets for drug development due 
to their shared patterns.

The SARS-CoV-2 genome consists of two ORF 
parts that encode non-structural proteins. 
In addition to the two ORFs, four structural 
gene regions carry the genetic information 
for the virus’s structural proteins (Zhou et 
al., 2020). In SARS-CoV-2, 16 nonstructural 
proteins (derived from the cleavage of the 
two large ORF proteins), four structural 
proteins (spike (S), envelope (E), membrane 
(M), and nucleocapsid (N)), and eight 
accessory proteins are present (Wang et al., 
2020). The polyproteins of Orf1a and Orf1b 
are cleaved into smaller non-structural 
proteins (NSPs). NSPs interact with each 
other to regulate gene expression, while the 
Membrane protein forms the virus’s lipid 
membrane. The Nucleocapsid protein links 
to the Membrane protein and encapsidates 
the RNA genome. The Envelope protein is 
an integral membrane protein that creates 
an ion channel and plays a role in the virus 
replication process. The Spike protein is 
the surface glycoprotein that mediates the 
attachment of host cells to the virus (Wang 
et al., 2020).

Spike protein is one of the most important 

structural proteins of SARS-CoV-2 (Walls 
et al., 2020). This protein recognizes 
and binds to the human host cell surface 
receptor angiotensin-converting enzyme-2 
(ACE2), providing entry into the cell. The 
host’s immune response is also triggered 
by the detection of the Spike protein 
(Walls et al., 2020). Moreover, the Spike 
protein determines the infectivity and 
transmissibility of the virus and is the 
major antigen inducer for the immune 
response (Zhou et al., 2020). Therefore, 
many vaccines have been designed to target 
the Spike protein (Wang et al., 2020). The 
Spike protein consists of two subunits: S1 
and S2. S1 is responsible for binding to ACE2 
receptors, and after this binding process, 
the S2 subunit facilitates fusion into the 
cell, allowing the virus’s genetic material to 
enter (Zhou et al., 2020). The cleavage of the 
S1 subunit from S2 is critical for infection; 
therefore, antibodies bind to the Spike 
protein to prevent cleavage and inhibit the 
virus’s fusion with the cell (Zhou et al., 2020).

SARS-CoV-2 exists as a haplotype in its host 
as an RNA virus, and Spike proteins can also 
be categorized through haplotype analysis 
(Korber et al., 2020). Haplotypes represent 
cumulative variations in genetic data on a 
single chromosome (Huang et al., 2020). In 
haplotype variations, a variant is dominant 
among the others, with these variants 
occurring at very low frequencies compared 
to the dominant haplotype (Huang et al., 
2020). Clusters of mutants surround this 
main haplotype, with sequence similarities 
ranging between 93% and 99% among the 
dominant haplotype (Huang et al., 2020). In 
other words, the haplotype distribution in a 
host displays a scenario where one haplotype 
is central to the viral population, with some 
mutants present around it. Computational 
experiments have been conducted to verify 
these facts using experimental data and 
specific software (Huang et al., 2020; Wang 
et al., 2020). These findings are applicable 
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to RNA viruses as well. Since RNA viruses 
exhibit low recombination levels and lack 
true diversity in the conserved regions of 
their genome, haplotype distributions are 
minimal, and mutations accumulate around 
one or two main haplotypes (Huang et al., 
2020; Wang et al., 2020). Consequently, 
these closely-related haplotypes in viral 
populations form viral quasispecies—
defined as the dynamic distribution of 
closely related but non-identical mutant and 
recombinant viral genomes—or, in other 
words, quasispecies represent viral groups 
within a population composed of haplotype 
variations (Huang et al., 2020). These 
quasispecies function as a unit of selection 
due to their variation (Huang et al., 2020; 
Wang et al., 2020).

There are two main causes of variation 
in a viral population: recombinations and 
mutations (Wang et al., 2022; Simon-Loriere 
& Holmes, 2011; Pérez-Losada et al., 2015). 
Even though mutations and recombination 
events are high in non-conserved regions, 
they are rare in conserved regions. In viral 
quasispecies, there is a dominant haplotype 
that shows very low recombination 
events in its evolutionary history, with 
many mutant types surrounding these 
major dominant haplotypes (Töpfer et al., 
2013). Specifically, they tend to identify 
haplotype probabilities—which represent 
the architecture of the viral population in 
a host—that shape host interactions. Spike 
protein is not an exception; the protein, along 
with SARS-CoV-2, is found in the host as a 
haplotype structure (Bui et al., 2022). Spike 
proteins are made up of small differences 
between different haplotypes that evolved 
from the same ancestor (Pérez-Losada et al., 
2015). The Receptor Binding Domain (RBD) 
of the Spike protein, which binds to human 
ACE2 receptors, is not a recent acquisition by 
recombination but rather an ancient gain that 
is common to bat viruses (Boni et al., 2020). 

Therefore, mutations (such as deletions 
and insertions), rather than recombination, 
have great importance in Spike protein (and 
SARS-CoV-2) evolution, generating Spike 
protein variants (Boni et al., 2020). As its 
evolution rate is similar across clades of 
SARS-CoV-2 variants, Spike protein is the 
major evolutionary driver, and SARS-CoV-2 
variants are largely categorized according 
to Spike protein variants (Pérez-Losada et 
al., 2015). In summary, the distribution of 
SARS-CoV-2 variants in the host aligns with 
our general understanding of viral haplotype 
and quasispecies structure.

Microbiomes, which can be defined as 
the assemblage of microbes in a host, are 
representatives of the diseases or health 
condition of the host (Marchesi & Ravel, 
2015). Microbiomes are key indicators of 
singular attributes directly related to the 
host (Bruijning et al., 2020), and genetic 
problems of the host can be detected from its 
microbiome content (Bresalier & Chapkin, 
2020). For instance, the effects of endocrine-
disrupting chemicals (EDCs) in the air 
can be observed in the lung microbiota of 
terrestrial animals (Segal & Blaser, 2014), 
and the gut microbiota is another target 
for EDCs (Kumar et al., 2020). Since human 
microbiomes are major representatives of 
the host’s attributes—such as diet, lifestyle, 
and medical record—as a whole (Scepanovic 
et al., 2019), changes in microbiome content 
can infer the evolutionary forces acting 
on the host (Bruijning et al., 2020). In 
microbiomes, ecological relations among 
species exist. The dominant species, also 
called founder species, alter the host’s 
biological reactions by providing certain 
chemicals (Trosvik & de Muinck, 2015). For 
instance, the presence of a species can alter 
the host’s immune response by triggering 
the production of more IgA, which affects the 
immune response, especially in respiratory 
areas, as the first line of immune defense 
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(Donaldson et al., 2018). The dominant 
species and other species change between 
health and disease conditions within a 
microbiome (Rinninella et al., 2019). There 
are many different characteristics of species 
within a microbiome. For example, dominant 
species are often in a positive relationship 
with other members of the microbiome, 
usually creating a mutualistic environment, 
while keystone species have a high number 
of both positive and negative relationships 
with other microbes. Keystone species are 
often found in low abundance but have 
a high number of ecological connections 
with other species in the microbiome 
(Trosvik & de Muinck, 2015). Moreover, it 
is known that the abundance of species in 
the intestinal microbiota is related to the 
diseases and clinical blood markers of the 
host organism (Manor et al., 2020). The 
microbial composition—viruses, fungi, and 
bacteria—in the microbiota contributes to 
many metabolic functions of the host and 
plays a role in many physiological processes, 
especially the immune response (Zheng 
et al., 2020). The term dysbiosis is used to 
describe situations where changes in the 
microbiota are directly related to a host’s 
illness (Rinninella et al., 2019). This term 
indicates that a microbiota community is 
directly related to a disease in the host, and 
when the host does not have this disease, the 
composition of the microbiota is significantly 
different from the disease state (Rinninella 
et al., 2019). To sum up, the microbiome 
is an area that has been studied under 
various conditions. The composition of the 
microbiota and the relative abundances of 
the organisms within it are related to both 
the disease and health conditions of the host 
(Shreiner et al., 2015).

Meta-community is a set of local 
communities that are linked by the dispersal 
of multiple potentially interacting species 
(Leibold et al., 2004), and a microbial 
meta-community is a variational set of 

local (e.g., in some host organisms or a 
geographic area) microbe communities 
(Miller et al., 2018). Microbiomes are key 
indicators of certain attributes that are 
directly related to the host. For instance, 
genetic problems can be detected from 
microbiome content, or the host’s lifestyle 
can be influenced by its microbiome. 
Human microbiota compositions show 
discontinuous rather than continuous 
variation of microbes; in other words, the 
microbes in the gut form certain clusters 
(Arumugam et al., 2011). These distinct 
microbial sets are called enterotypes, and 
three types of enterotypes—with different 
dominant species and different microbial 
compositions—have been identified in 
human microbiota (Arumugam et al., 2011). 
Enterotypes indicate a balanced relationship 
between the host and its microbiota 
(Arumugam et al., 2011; Christensen et 
al., 2018; Segal & Blaser, 2014). The most 
important characteristic of microbiota 
composition is the functional relationship 
among microbes, rather than which specific 
bacterium is present (Arumugam et al., 
2011). Microbiota shows phylogenetic 
variation at the genus and phylum levels 
among enterotypes and functional variation 
at the class level (Arumugam et al., 2011; 
Xiao et al., 2021; Costea et al., 2017). For 
instance, the Firmicutes and Bacteroides 
phyla are the most dominant species in 
the gut microbiota (Thursby & Juge, 2017). 
Although Bacteroides generally dominate 
the gut microbiome, in some enterotypes, 
Firmicutes can be the dominant organism 
(Trosvik & de Muinck, 2015; Arumugam et al., 
2011; Mobeen et al., 2018). Actinobacteria, 
the most common phylum after Firmicutes 
and Bacteroidetes, is considered a keystone 
taxon in the gut microbiota due to its 
extensive ecological network with other 
gut microbes (Trosvik & de Muinck, 2015). 
Proteobacteria, another common species 
in the human intestinal microbiome, 
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represents functional variation that occurs 
in the gut microbiome among different 
microbial compositions (Bradley & Pollard, 
2017). Microbes in the gut microbiota are 
exposed to selective forces from both host 
factors, such as diet and disease, and from 
other microbes in the gut (Scanlan, 2019). 
This explains why some low-abundance 
bacteria survive in the gut (Arumugam et al., 
2011). Every bacterium in the gut follows a 
different survival strategy, and typically, the 
most abundant function is associated with 
the most dominant type (Rinninella et al., 
2019; Loftus et al., 2021). However, since 
no single dominant species can provide all 
functions, the functional composition of 
different species is crucial for the microbiota 
(Arumugam et al., 2011; Mobeen et al., 2018; 
Banerjee et al., 2018). The composition of 
the human microbiome is influenced by 
many factors. For instance, human intestinal 
microbiota varies geographically (Mobeen 
et al., 2018), influenced by factors such 
as genetics, lifestyle, climate, diet, and 
altitude (Das et al., 2018). Nevertheless, 
despite the numerous factors affecting the 
microbiome, enterotype variations are 
believed to be independent of age, gender, 
BMI, and geography, though they are closely 
related to dietary habits (Arumugam et al., 
2011; Mobeen et al., 2018). Furthermore, 
the mucosal immune system, which plays 
a crucial role in immunity, can be affected 
by various factors. It is believed that this 
system can become dysregulated due to 
intestinal issues. Studies have also shown 
that the overall immune response is shaped 
by cross-talk between the gut and the lungs 
at the organismal level (Tulic et al., 2016). 
Several studies highlight the relevance of 
gut-lung microbiota cross-talk to COVID-19 
(Srinath et al., 2022). The microbiome is both 
affected by diseases and influences disease 
conditions. For example, microbiota has 
been linked to diseases such as rheumatoid 
arthritis, type 1 diabetes, inflammatory bowel 

disease (IBD), allergic diseases, systemic 
lupus erythematosus (SLE), skin-related 
autoimmune pathologies, neurological 
inflammatory diseases, and various types of 
cancer (Lazar et al., 2018). The composition 
of the microbiota also changes during 
COVID-19 (Yeoh et al., 2021). Viral infections 
in the respiratory tract and lungs can alter 
the gut microbiota by affecting its function 
and composition (Sencio et al., 2021), as 
the intestinal microbiota is associated with 
the lung microbiota, and changes in the 
lung microbiome can affect other microbial 
compositions (Dhar & Mohanty, 2020). 
Moreover, microbiota prevents pathogen 
invasion through various strategies, such 
as directly killing pathogens, supporting 
the host’s immune system, or competing for 
resources (Pickard et al., 2017).

Changes in ecosystems can first be observed 
in microorganisms, as they have a significant 
capacity for genomic alterations; thus, they 
are considered key indicators of ecosystem 
changes (Singh et al., 2010). Since SARS-CoV-2 
is a virus that has emerged from interactions 
between rural and urban areas and is shared 
among different organisms (Corman et al., 
2018), the COVID-19 pandemic serves as 
an example of the consequences of human-
wildlife interactions on a city-wide scale. In 
this context, there are numerous instances 
where variants of SARS-CoV-2 and host 
factors are linked (see Figure 1). 

Figure 1. A network representation of some linkages 
in the literature where Sars-CoV-2 variants and host 
factors are connected. 

In this study, we investigated the association 
of Sars-CoV-2 variants with both host factors 
and bacteria in the gut microbiota. For 
this, both classical statistical analyses and 
Bayesian Network, a probabilistic approach, 
were used. 
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METHODS

The study has 2 hypotheses:

H1: Specific combinations of various host 
factors can explain SARS-CoV-2 infectivity 
between variants and specific mutations on 
Spike protein.

H2: Microbiota is the main carrier of host 
factors inside the body which specific SARS-
CoV-2 mutant is selected by the host.

From the data obtained through the literature 
research for this study, it has been determined 
that many different parameters in human life 
are related to both microbiota and COVID-19 
(see Figure 1). To investigate these relations, 
a generative theoretical explanation was 
needed. As a result of the literature reviews, 
the relationship of microbiota with many 
parameters has been confirmed (see 
Table 1, Figure 1). Additionally, literature 
findings indicate that various parameters 
are associated with COVID-19, and it is 
known that COVID-19 causes changes in 
the host’s microbiota composition (see 
Table 1, Figure 1). However, it is essential to 
investigate how different variants and Spike 
protein mutations are tolerated by various 
microbiota. There is no other virus like SARS-
CoV-2 that provides detailed global data 
and the global distribution of its different 
mutants. Globally, the closest available data 
belongs to the SARS-MERS family, but even 
that does not come close to the breadth of 
data available for SARS-CoV-2 (Petrosillo et 
al., 2020). For this reason, the results of the 
study could not be tested with a second virus 
as a control group.

Table 1. Independent variables and their relations with 
COVID-19 and Microbiome via some examples from the 
literature
Independent variable: Relatedness with 

COVID-19 and/
or Microbiome:

Population size (in number) [84], [100]
Urbanization percentage of the population [100]–[103]

Deaths by indoor air pollution rates [104]

Deaths by outdoor air pollution rates [104]–[106]

Deaths by Covid-19 (in number) [107], [108]

GDP per capita [78], [109]

Gini index (income inequality) [79]

Conflict cases [79], [109]

Corporate Tax Rates -

Average Household Size: Number of members [110], [111]
Prevalence of Total Overweight Adults [112], [113]

Consumption of the Vegetable Oil [114], [115]
Consumption of the Animal Fat [115]–[117]

Consumption of Sugars [118], [119]

Prevalence of undernourishment by 
percentage

[120], [121]

Prevalence of Vitamin A deficiency [122]–[124]

Vitamin D status Around the World [125], [126]

The global prevalence of Zinc Deficiency [127]–[129]

Iodine Levels [69], [130]–[132]

Exposure to Solar UV Radiation [80], [133], [134]
Average temperature [82], [135]

Forest Area [136], [137]

Average Precipitation [138], [139]

Air Toxicity Levels [81], [140]
General Toxicity Levels  [141], [142]

CO2 Emissions per capita [143], [144]

Anemia in pregnant women [145], [146]

CANCER (For All Types of Cancer)  [147], [148]

Lung Cancer [149], [150]
Asthma [151], [152]
COPD [153], [154]
Pneumonia [155], [156]
NDCs (Non-communicable Diseases) [157], [158]

Diabetes [159], [160]
Diarrheal Diseases [161], [162]

Colorectal Cancer [163], [164]
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Figure 2. The Bayesian Belief Network for three nodes 
of countries, variant information, and microbiome 
content (Created by GeNIe 4.0 Academic).

The CoVariants section of the GISAID 
database was used to obtain data on city 
populations that are related to different 
mutants of Spike protein and variants of 
SARS-CoV-2. In this section, 58 countries 
were found with related information. 56 of 
58 countries have the relevant variant and 
mutant data were 32 selected for further 
analysis (Supplementary Material: ‘Data_
mutants’ & ‘Data_parameters’). 

A data file containing the data of all members 
of the parameter sets for the selected 
countries and the country names was 
created as a table analysis (Supplementary 
Material: ‘Data_parameters’). Each data 
column includes data from a single data 
source -only one web page or database- to 
provide consistency among data sets for the 
countries (Supplementary Material: ‘Data 
Sources_Variable Information’). If the data is 
unavailable in these sources the entry about 
this data was settled as NULL. These variables 
were used as independent variables for 
the analysis. The CoVariants / Per Variant 
section of the GISAID database was used to 
obtain mutant and variant data of countries. 
A data file containing the data of all mutants 
and variants on the GISAID database for the 
selected countries’ analysis (Supplementary 
Material: ‘Data_mutants’). The maximum 
frequency of mutants and variants for 
each country was used for the analysis as 
dependent variables. Stepwise regression 
analyses including all independent variables 
were performed to get the regression 
equations to describe the variance between 

frequencies of the variants of the virus. 

Using the significant results from this analysis 
(see Table 2 and Supplementary Material: 
‘Data_mutants’), the relationship between 
gut microbiota and SARS-CoV-2 mutants 
was represented by a Bayesian Network. As 
microbiota data, the bacterial distribution of 
gut microbiota from Mobeen’s (2018) study 
was used for seven countries (Indonesia, 
India, Japan, Sweden, USA, Italy, and Spain) 
(Mobeen et al., 2018). These countries 
provided the frequency distribution of four 
types of bacteria in the gut microbiome—
Bacteroides, Firmicutes, Actinobacteria, and 
Proteobacteria—which are common among 
various host microbiomes with functional 
effects. This distribution was used as prior 
probabilities in the Bayesian Belief Network, 
as Bayesian approaches are beneficial when 
data is limited, allowing the incorporation 
of prior knowledge (Bland & Altman, 1998). 
To connect the mutant data and microbiome 
data, the Bayesian approach was employed 
since the dataset is limited to the distribution 
of microbiomes across only seven countries. 
To construct the Bayesian Network, GeNIe 
4.0 Academic was used (see Figure 2).

RESULTS

Hypothesis 1 (H1): Specific combinations of 
various host factors can explain SARS-CoV-2 
infectivity between variants and specific 
mutations on Spike protein 

In H1, it was suggested that Spike protein 
mutants and SARS-CoV-2 variants could be 
affected by selected variables. As a result of 
the analysis, it was found that the 20 variants 
and mutants were affected by various 
parameters (Table 2). Therefore H1 cannot 
be rejected. 
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Table 2.  The results of stepwise regression analysis for different variants (predictors as the independent variables). 

Spike Mutation Predictors and Regression Results

20A.EU2 Predictors: Animal Fat. A regression equation was found (F(1,38)=7.446.,p<.010), with an adjusted R2 of .142 and R2=.164.

20A/S:154K No meaningful results.

20A/S:439K  Predictors: Urbanization, NDCs, Tax Rates . A regression equation was found (F(3,36)=10.117,p<.000), with an adjusted 
R2 of .412.

20A/S:478K No meaningful results.

20A/S:484K  No meaningful results.

20A/S:98F Predictors: Urbanization, Sunlight . A regression equation was found (F(2,37)=5.166,p<.011), with an adjusted R2 of .176.

20B/S:1122L No meaningful results.

20B/S:626S  No meaningful results.

20C/S:452R Predictors: Covid19 Mortalitiy, Anemi, Zinc Deficiency, Conflict Rate. A regression equation was found 
(F(4,35)=43.256,p<.000), with an adjusted R2 of .813.

20C/S:484K Predictors: Covid19 Mortality, Conflict Rate, Anemi, Diabet Air Toxicity, Tax Rates, Population Size, Sugar Consumption. A 
regression equation was found (F(8,31)=51.970,p<.000), with an adjusted R2 of .913.

20C/S:80Y No meaningful results.

20E (EU1)  Predictors: Sunlight . A regression equation was found (F(1,38)=8.619.,p<.006), with an adjusted R2 of .163 and R2=.185.

20H/501Y.V2  Predictors: Dierra, Household Size, GDP, Lung Cancer, Urbanization. A regression equation was found 
(F(5,34)=68.963,p<.000), with an adjusted R2 of .897. 

20I/501Y.V1  Predictors: Air Toxicity, Iodine Uptake. A regression equation was found (F(2,37)=13.647,p<.000), with an adjusted R2 
of .393. 

20J/501Y.V3 Predictors: Conflict Rate, Anemi, Zinc Deficiency, Iodine Uptake, Covid19 Mortality, Animal Fat, CO2, COPD, Vegetable Oil, 
O2 level, Population Size, Diabet . A regression equation was found (F(12,27)=38.240,p<.000), with an adjusted R2 of .920.

ORF1a:S3675  No meaningful results.

S:677H.Robin1 Predictors: Covid19 Mortality, Conflict Rates, Anemi, Diabet, Air Toxicity, Tax Rates, Population Size, Sugar Consumptio. A 
regression equation was found (F(8,31)=51.970,p<.000), with an adjusted R2 of .913.

S:677P.Pelican  Predictors: Covid19 Mortality  Conflict Rates, Anemi, Diabet, Air Toxicity, Tax Rates, Population Size, Sugar Consumption.A 
regression equation was found (F(8,31)=51.970,p<.000), with an adjusted R2 of .913.

S:H655  Predictors: Conflict Rate, Anemi, Zinc Deficieny, Iodine Uptake, Covid19 Mortality, Animal Fat, CO2, Gini Index. A regressi-
on equation was found (F(8,30)=31.829,p<.000), with an adjusted R2 of .866.

S:H69-  Predictors: Rainfall, Sunlight. A regression equation was found (F(2,36)=17.277,p<.000), with an adjusted R2 of .461.

S:K417 Predictors: Dierra, CO2, Lung Cancer, Animal Fat. A regression equation was found (F(4,34)=61.122, p<.000), with an 
adjusted R2 of .864.

S:L18 Predictors: Gini Index, Diabet, Indoor Air Pollution Deaths, NDCs, Conflict Rates, Anemi . A regression equation was found 
(F(6,32)=15.309, p<.000), with an adjusted R2 of .693.

S:E484  Predictors: Tax Rates, Anemi, Outdoor Air Pollution Deaths, Gini Index, GDP, COPD, Temperature, Dierra, Covid19 Morta-
lity. A regression equation was found (F(9,29)=48.014, p<.000), with an adjusted R2 of .918.

S:N501  No meaningful results.

S:P681 Predictors: Air Toxicty, Iodine Uptake, Anemi, Lung Cancer . A regression equation was found (F(4,34)=9.134, p<.000), 
with an adjusted R2 of .461.

S:Q677 Predictors: Population Size, Covid19 Mortality , BMI, Temperature, Vegetable Oil   . A regression equation was found 
(F(5,33)=17.842, p<.000), with an adjusted R2 of .689.

S:S477 Predictors: Cancer . A regression equation was found (F(1,37)= 10.097 p<.003), with an adjusted R2 of .193.

S:Y144- Predictors: Rainfall, Sunlight, Dierra, Pneume . A regression equation was found (F(4,34)= 14.290, p<.000), with an ad-
justed R2 of .583.

S:Y453F  Predictors: Lung Cancer, Vegetable Oil  . A regression equation was found (F(2,36)= 5.274, p<.010), with an adjusted R2 
of .184.

We suggest that these connections in Table 2 
between host factors and viral mutants need 
a carrier inside of the host and it can be a 
microbiome:

H2: Microbiota is the main carrier of host 
factors inside the body which specific SARS-
CoV-2 mutant is selected by the host.
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To test this hypothesis, a Bayesian Network 
was generated (Figure 3) and some of the 
outputs of the Network can be represented 
as Figure 5.

Figure 3. The proportion of variants is explained 
by independent variables. The separation in the 
proportions is based on adjusted R squares in Table 2 
(The graph is created by R, on RStudio).  

Figure 4. The independent variables of diabetes, tax 
rates, covid mortality rates, conflict rates, diabetes 
rates, air toxicity rates, and population size have the 
most entrants in the regression equations among the 
variants (The graph is created by R, on RStudio).

Figure 5.  Some outputs of Bayesian Belief Network. 
The Microbiome Content Table: A for Actinobacteria, 
B for Bacteroidetes, F for Firmicutes, and P for 
Proteobacteria; The Variant Information Table: D for 
20A.EU2, F for 20A/S:439K, I for 20A/S:98F, L for 
20C/S:452R, M for 20C/S:484K, O for 20E (EU1), P 
for 20H/501Y.V2, Q for 20I/501Y.V1, R for 20J/501Y.
V3, T for S:677H.Robin1, U for S:677P.Pelican, V for S: 
E484, W for S:H655, X for S:H69-, Y for S:K417, Z for 
S:L18, AB for S:P681, AC for S:Q677, AD for S:S477, 
AE for S:Y144-, AF for S:Y453F (The abbreviations are 
coherent Supplementary Material: ‘Data_mutants’).
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DISCUSSION

Many variants (as dependent variables) 
were related to the independent variables at 
various rates (see Table 2, Figure 3). Variants 
also show various relationships between 
parameters in the literature. For instance, 
the 20I/501Y.V1 variant emerged in the 
United Kingdom and spread globally (Liu et 
al., 2021). This variant was predominantly 
found in Europe. In human reconstituted 
bronchial epithelium, the 20I/501Y.V1 
variant replicates rapidly, contributing to 
its swift spread (Touret et al., 2021). This 
variant is also related to iodine uptake, 
which is linked to thyroid function. The gut 
microbiome plays several roles in influencing 
thyroid function, such as inhibiting thyroid-
stimulating hormone (TSH) or modulating 
the immune response (Knezevic et al., 2020). 
Moreover, Firmicutes and Bacteroides 
exhibit lower abundance in inflammatory 
bowel disease (IBD), a condition associated 
with iodine malabsorption (Knezevic et al., 
2020). Based on the results in Figure 5, this 
variant is more dependent on Actinobacteria 
than other variants. At this point, findings 
such as that polychlorinated biphenyls 
(PCBs), a banned air pollutant, reduce the 
composition of Actinobacteria in the gut 
microbiota (Popli et al., 2022) could be used 
as data to identify a link between this variant 
and air pollution, as shown in Table 2.

Dietary intake affects the human ACE2 
receptor, the main target of the Spike 
protein, by influencing gene expression 
(Horne & Vohl, 2020; Bhattacharya et al., 
2021). Therefore, changes in ACE2 structure 
due to dietary patterns can be linked to 
results such as animal fat, vegetable oil, 
sugar consumption, or malnutrition levels in 
various countries (see Table 2). Moreover, 
the mutation S: Y453F (see Table 2) 
enhances interaction with ACE, facilitating 
host adaptation (Ren et al., 2021). Even 
though studies on the relationship between 

gut microbiota content and obesity are 
controversial, there is some evidence that 
Actinobacteria composition increases in 
the gut microbiomes of laboratory animals 
during obesity (Clarke et al., 2012; Kim et al., 
2019). Our results show a high correlation 
between Actinobacteria, which has the 
highest relative abundance in Japan among 
the countries studied, and the S: Y453F 
mutant (see Figure 5). It is suggested that 
the Japanese diet promotes a healthy gut 
microbiome (Asano et al., 2020). Even though 
the adjusted R-squared value for this spike 
mutant is not highly descriptive (see Table 
2), the strong dependence on Actinobacteria 
in relation to this mutant (see Figure 5) may 
be linked to dietary habits that influence the 
host microbiome. Nevertheless, all these 
potential links need to be explored more 
thoroughly.

Moreover, chronic diseases are related to 
SARS-CoV-2 cases and their severity (Liu 
et al., 2020), and our results suggest that 
diabetes is the most common parameter as a 
disease among all the variants (see Figure 4). 
It is well known that SARS-CoV-2 is linked to 
the economy (Bloem & Salemi, 2021; Elgar 
et al., 2020), environmental conditions 
(Asyary & Veruswati, 2020; Travaglio et 
al., 2021; Xie & Zhu, 2020), and population 
structure (Connolly et al., 2020; Lulbadda et 
al., 2021), as shown in Table 2. The economic 
parameters observed in Table 2 could be due 
to the strong relationship between economic 
activities and viral diseases (Adda, 2016). 
Many mutants can be related to different 
parameters. For instance, the S: Y144 
mutation is another Spike protein mutation 
found in the 20I/501Y.V1 variant and other 
circulating variants, and it is associated with 
antibody escape (Focosi et al., 2021). This 
mutant has been linked to viral shedding in a 
patient in Washington (Avanzato et al., 2020), 
which is one of the largest metropolises in 
the United States. This city also experiences 
deaths due to increasing heat and excessive 
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ozone concentrations (Jackson et al., 2010). 
In this mutant’s regression equation, 
precipitation and sunlight are included as 
variables (see Table 2), and it also shows a 
high level of association with Actinobacteria 
(see Figure 5). Since gut microbiome 
composition is influenced by both genetic 
and environmental factors (Qin et al., 2022), 
carriers of environmental factors may 
be related to the microbiome, especially 
Actinobacteria. This species is a predominant 
bacterium in the Italian gut microbiome 
compared to other nations (Rinninella et al., 
2019), and infection and death rates from this 
Spike variant of SARS-CoV-2 are highest in 
Italy (Dawood et al., 2021). Another example 
is the S: H69 deletion in the Spike protein, 
which was sequenced mostly in Europe (Bal 
et al., 2021). This mutant occurs alongside 
others and is another example of immune 
escape, similar to S: Y144 (Meng et al., 2021). 
This mutant can also be associated with 
Actinobacteria (see Figure 5), suggesting a 
potential link between antibody escape and 
Actinobacteria (Tabib-Salazar et al., 2013) 
via this Spike mutant. In addition, the higher 
association rate with Actinobacteria may be 
related to the widespread use of probiotic 
supplements, which improve intestinal 
microbiota, particularly in Europe (Saxelin, 
2008). Moreover, this link cannot be observed 
solely through Actinobacteria. Firmicutes 
and Bacteroides are the dominant organisms 
in the gut microbiome and provide the 
majority of ecological relations within the 
human gut microbiota (Bradley & Pollard, 
2017). It is possible that mutants with 
high antibody escape rates may evade host 
immune defense depending on the presence 
of these species, as they are associated with 
immune responses (Donaldson et al., 2018; 
Peterson et al., 2015; Kosiewicz et al., 2011). 
Therefore, even though some connections 
exist in the literature, specifying the linkages 
between these multi-variable systems 
requires focused research. Additionally, 

the predictors of this mutant include 
rainfall and sunlight (see Table 2), so the 
main factor linking these external factors 
(sunlight and rainfall) and internal factors 
(antibody escape and Spike mutants) needs 
further exploration. The composition of the 
microbiota, particularly Actinobacteria, may 
be a mediating factor for the interaction of 
external and internal forces on the host.  	

Firmicutes and Bacteroides do not vary 
much within a certain range, but we see 
that Actinobacteria shows much more 
variation (see Figure 5) depending on each 
variant. This may be related to the fact that 
Actinobacteria is a keystone species (Trosvik 
& de Muinck, 2015), and the functional 
relationships of keystone species shape an 
entire ecosystem. Therefore, changes in 
Actinobacteria composition may have a more 
decisive influence on the differentiation of 
variants than other microbes. It can also be 
argued that variants and mutants that are 
not associated with Proteobacteria may be 
independent of functional diversity in gut 
microbes, as they show no relation with 
Proteobacteria. This could be due to the 
fact that Proteobacteria are responsible for 
functional diversity in the intestine (Bradley 
& Pollard, 2017).

This study has limitations. The distributions 
shown in Figure 5 are dominated by 
Firmicutes and Bacteroides, while 
Proteobacteria and Actinobacteria are low, 
because these four dominant species in the 
human gut microbiota are present in the 
host at a certain interval (Mobeen et al., 
2018). The small size of the data set used 
was accounted for by the Bayesian method, 
a probabilistic approach that allows for 
the interpretation of small data sets. Since 
the results presented here are the product 
of a probabilistic approach (see Figure 5), 
no significant differences are observed. 
However, the results obtained can help 
identify links between mutant variations and 
bacterial compositions. Another issue is that 
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the data used in this study covers the early 
days of COVID-19. Therefore, much of what 
this study addresses regarding virulence and 
spread involves mutants that emerged early 
in the pandemic. If a study with a broader 
time interval is conducted, this factor should 
be taken into account. It is likely that later 
on, the parameters relevant to COVID-19 
and virus mutants may have increased, and 
the relevance of these parameters and the 
mutants at hand may have changed. The 
main point that this study aims to emphasize 
is that the host microbiota can be, or at least 
one of the carriers of, external factors within 
the host’s body.

It is known that certain phyla variations are 
associated with various diseases, particularly 
in the intestinal microbiota. However, in 
some cases, variations that are not detected 
at the phylum level but are detected at the 
species level are also known to affect host 
status (Wakita et al., 2018). In this study, 
the geographic variations observed are at 
the phylum level, and two dominant phyla 
(Bacteroidetes and Firmicutes), one keystone 
phylum (Actinobacteria), and one phylum 
that influences the functional diversification 
of the microbiome (Proteobacteria) were 
analyzed. This is a limitation of the study, 
as only phylum-level analysis was possible 
with the available dataset. However, 
analyses at other levels, such as species 
or family, may be related to different host 
metabolic factors and functions. Therefore, 
researchers who wish to explore this topic 
should also consider the functional effects 
at different levels. The existence of a gut-
lung crosstalk system (Wakita et al., 2018) 
may also suggest that different respiratory 
viral mutants could affect the transmission, 
virulence, and immune response of the 
host, as different microbiota compositions 
are known to influence crosstalk networks. 
Although the results of this study do not 
conclusively establish this relationship, it 
remains a possibility. Since lung microbiota 

studies are usually conducted in laboratory 
environments isolated from the organism 
(Tulic et al., 2016), it may be necessary to 
perform and investigate such studies at the 
organismal level.

SARS-CoV-2 is in a highly advantageous 
position compared to other viruses in terms 
of both clinical data and the traceability of 
its mutants globally (Petrosillo et al., 2020). 
However, establishing a control group for 
this study may be necessary to study the 
viral mutant-microbiota relationship in 
detail and more meaningfully. In terms of 
in silico analysis, no comparable data, such 
as the relationship of COVID-19 with human 
factors, could be found for other viruses. 
Most comparison data remain within the 
axis of clinical data. Researchers who wish 
to investigate the viral mutant-microbiota 
relationship in more detail may consider 
establishing a comparable control group for 
the virus.

Additionally, there are challenges in 
making comprehensive comparisons 
among microbiome species. Understanding 
microbiota in terms of composition, 
diversity, and function is being studied, and 
it is thought that functional contributions 
are more important than species diversity 
in establishing microbiota composition. 
Ecological microbiota studies seek to 
understand specific gut microbiota 
functions in the pathways of host-
microbiome interactions. When studying 
microbial divergence within the microbiota, 
it is known that there is significant species 
diversity among humans at the species 
level. Functional diversity studies, on the 
other hand, focus on specific genes and 
functions performed by particular microbial 
compositions, based on the concept of 
forming a microbiota community grounded 
in functional roles within the microbial 
ecosystem rather than species-level 
diversity. While microbial composition may 
vary greatly between individuals in terms of 
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species diversity, there are not significant 
differences in terms of functionality. In other 
words, the functional diversity of the human 
microbiome has been highly conserved 
among individuals since the core functions 
in the microbiota play crucial roles in the 
host’s metabolic pathways (Lozupone et al., 
2012).

However, despite these opposing arguments, 
this study aims to highlight the potential 
link between the macro and micro worlds 
that needs to be explored. One of the most 
effective ways to investigate this is through 
a combination of bioinformatics and wet 
lab processes—identifying indicator 
microbes and mutants, which can be 
confirmed by field studies—and conducting 
comprehensive studies. This approach may 
help answer the question: What could be 
the selective forces in a construct that links 
host factors to the survival of variants? In 
other words, since external elements need 
to be maintained inside, and a favorable 
environment is essential for this, a dynamic 
system of relationships can be constructed 
through the internal and external flows of 
the host. Developing this understanding 
and collecting and interpreting data in this 
manner require theoretical frameworks that 
allow different types of data to be considered 
on the same plane, rather than merely 
inferring relationships between macro and 
micro by combining wet lab and informatics 
processes.

CONCLUSION

SARS-CoV-2 has advantages in clinical 
data and mutation tracking compared to 
other viruses. However, studying the viral 
mutant-microbiota relationship requires 
a control group, as existing analyses lack 
experimental validation. Researchers 
should consider establishing such a control 
group. Challenges exist in comprehensively 
assessing microbiota types, as functional 
contributions are more crucial than species 

diversity. Despite significant species-level 
diversity among individuals, the human 
microbiome’s functional diversity is largely 
preserved due to key metabolic roles. This 
study aims to explore the link between macro 
and micro worlds through a combination of 
bioinformatics and laboratory processes. 
Identifying indicator microbes and mutants 
could clarify selective factors influencing 
variant survival, emphasizing the need 
for theoretical frameworks that integrate 
diverse data types.
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