

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2025; 14(1), 183-191

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: ayca.topalli@ieu.edu.tr (A. Topallı)

Geliş / Recieved: 04.04.2024 Kabul / Accepted: 17.11.2024 Yayımlanma / Published: 15.01.2025
doi: 10.28948/ngumuh.1465282

183

Comparison of machine learning methods for limited predictive maintenance

Kısıtlı kestirimci bakım için makine öğrenmesi yöntemlerinin kıyası

Timur Özkul1 , Ayça Topallı2,*

1,2 İzmir University of Economics, Electrical and Electronics Engineering Department, 35330, Balçova, İzmir, Türkiye

Abstract Özet

Predictive maintenance has gained increasing attention

recently with the availability of sensors and connectivity of

equipment. Yet, it would be difficult to obtain a wide range

of data, especially with legacy devices. This paper describes

an intelligent method for predicting a near future condition

using the past information for an environment in which data

are limited to the alarm logs from industrial machinery. Since

machine learning methods are proven to be efficient in

classification tasks using time series data, three of them are

selected to predict an alarm two hours in advance using the

past occurrences. These methods are neural networks,

random forests, and extreme gradient boosting. The

performances of these three methods are compared, and it is

aimed to find the optimal configuration among hyper-

parameter values. According to the obtained results, extreme

gradient boosting gives the highest F1-score of 0.767 with

number of trees equal to 500, maximum depth of 128, and an

input window of alarm occurrences from the last day. This

work consists of a comparative study aiming to identify the

best machine learning method for alarm predictions, which

potentially provides important insights into the operation and

maintenance of machinery, bringing the possibility of

considerable cost reductions.

 Kestirimci bakım, duyaçların varlığı ve teçhizatların

bağlanabilirliği ile son zamanlarda artan bir ilgi elde etmiştir.

Yine de, özellikle eski cihazlardan geniş çapta veri elde

etmek zor olabilir. Bu makale, verilerin endüstriyel bir

düzenekten alınan alarm kayıtları ile sınırlı olduğu bir ortam

için, geçmiş bilgileri kullanarak yakın gelecekteki bir

durumu öngören akıllı bir yöntemi tanımlamaktadır. Makine

öğrenmesi yöntemlerinin zaman dizisi verileri kullanarak

sınıflandırma yapma işlerinde etkili olduğu kanıtlanmış

olduğundan, sinir ağları, rassal orman ve aşırı eğim arttırma

olarak seçilen üç yöntem, bir alarmın ve aynı makinenin

kaydettiği diğer alarmların geçmiş oluşumlarından, o alarmı

iki saat önceden tahmin etmek üzere eğitilmiştir. Bu üç

yöntemin performansları kıyaslanmış ve hiper-parametre

değerleri arasından en iyi yapılandırmayı bulmak

hedeflenmiştir. Elde edilen sonuçlara göre, aşırı eğim

arttırma, 500 ağaç sayısı, 128 azami derinlik ve son günden

alarm oluşumları girdi penceresi ile 0.767 olan en yüksek F1

puanını vermektedir. Bu çalışma, makinelerin işlemesi ve

bakımı hakkında potansiyel olarak önemli anlayışlar

sağlayan ve dikkate değer masraf azaltma imkânları sunan

alarm öngörüleri için en iyi makine öğrenmesi yöntemini

belirlemeyi hedefleyen kıyaslamalı bir araştırmadan

oluşmaktadır.

Keywords: Machine learning, Neural networks, Predictive

maintenance, Random forest, Extreme gradient boosting

 Anahtar kelimeler: Makine öğrenmesi, Sinir ağları,

Kestirimci bakım, Rassal orman, Aşırı eğim arttırma

1 Introduction

Even a decade ago, time-based maintenance, which relies

on scheduled maintenance and repairs, was dominant and the

idea of Predictive Maintenance (PdM) was newly emerging.

For example, bath-tub curve estimation was used for many

years for machinery maintenance and replacement planning;

but in fact, it is based not on any scientific concepts or

engineering principles, but only intuitive and empirical

knowledge [1]. The traditional maintenance strategies were

time-consuming, costly and caused unplanned downtime due

to unexpected breakdowns. Moreover, they are becoming

increasingly outdated and less functional due to the growing

safety and reliability requirements [2].

PdM technologies on the other hand, can reduce cost and

downtime, prevent faults, and optimize maintenance policy.

Using intelligent sensors, systems can be reliably monitored

in real-time, and maintenance activities can be planned

effectively. Therefore PdM, which involves predicting the

next failure so that preventive measures can be applied in

advance, has been receiving increasing attention in the

academy and in the industry over the last decade. In this

Industrial Internet of Things (IIoT) era, especially with the

COVID-19 breakout, PdM is of increasing importance [3].

Industry 4.0 permits different kinds of devices from

diverse departments of plants to log various measurements.

Hence, big data analytics plays a vital role. Processing and

then analysing these data provide important knowledge and

information for administrative decisions, such as machine

fault prevention, spare parts inventory reduction,

improvement in operator safety, etc. [4].

Global challenges and very competitive markets create

pressure to deliver better solutions. Players can be successful

in such a realm only by developing AI driven tools, and using

data-oriented decision making algorithms [5]. Machine

https://orcid.org/0009-0002-8828-7271
https://orcid.org/0000-0001-7712-5790

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

184

Learning (ML) is a powerful method that is able to process

multi-dimensional data, and to identify intricate relationships

existing within data [6]. With a properly chosen ML method,

an effective system can be designed to detect failures, raise

alarms, and warn the authorized personnel in industrial

environments.

There are, however, some issues with the PdM, such as

the difficulty of connecting sensors to legacy machinery, or

remotely accessing sensor measurements. In such cases, the

existing alarm logs raised by legacy systems can be utilized,

since they still carry valuable and reliable information. In

this context, analysing the alarm logs may support limited

PdM environments in many domains [7]. By predicting the

alarms by ML in advance, corrective actions can be taken

and potential faults can be prevented [8], [9].

There has been an increasing interest in the PdM and

alarm prediction in recent years, some of these studies can be

found in [10], [11], [12]. There are also comprehensive

literature reviews on this subject, for example, Carvalho et

al. review ML based PdM literature systematically with their

compatibility and performance results [4]. Baptista et al.

report about the risk of failure prediction, in which artificial

intelligence approaches outperform statistical approaches

[13]. Similarly, Bousdekis et al. give a literature review on

dynamic decision making for PdM, covering the period

between 2013 and 2018 and focuses on maintenance

planning and scheduling, optimization, and reliability and

degradation-based decision making [14]. Their review

reveals an increasing preference for automated and real-time

decision making algorithms.

Neural Networks (NNs) are frequently applied in many

industrial areas, such as predictive control [15] and soft

sensing [16]. For a multi-label classification task to forecast

rare alarms generated by dairy product packing machines,

Pezze et al. propose a deep learning-based approach with

Recurrent Neural Networks (RNNs) and transformers, a

popular natural language processing architecture [17]. Their

environment allows them to use only past alarm logs for the

prediction of any alarm occurrence. They utilize the same

dataset [18], also used in this study.

Kolokas et al. give a comparison of NNs with some other

ML approaches used for fault detection in an industrial

device using sensor data [19]. Biswal and Sabareesh collect

wind turbine vibration data and use NNs to classify the state

characteristics as healthy or defective [20]. Their results

show 92.6% accuracy. Zhu et al. predict probabilities of

alarm occurrences, given the previous alarms based on an N-

gram model [21].

There are also studies in the literature on PdM with

Random Forest (RF) modelling. Prytz et al. propose the use

of RF to predict repairs in the automotive sector for

numerous vehicle parts [22]. Kulkarni et al. use an RF model

to detect faults in cooling and cold storage systems with an

89% accuracy [23]. Santos et al. detect faults in squirrel-cage

induction motors, such as winding short circuits with RF

[24]. Paolanti et al. introduce an RF algorithm to classify

states of the industrial machinery using various sensor data

[25]. Su and Huang develop a system in their research to

detect hard disk drive faults in real-time using RF models

trained with historical data [26].

Extreme Gradient Boosting (XGBoost) is also attracting

more attention in this area. The aim of the study presented

by Ayvaz and Alpay is to predict possible production line

faults realistically before occurrence [5]. The authors explore

multiple ML methods and compare these using a real-world

dataset of motion, speed, weight, temperature, electrical

current, vacuum, and air pressure sensor readings from a

range of equipment. Their evaluation results indicate that the

PdM successfully identifies the indicators of possible faults

and prevents halts in production. In their tests, RF and

XGBoost appear to outperform other algorithms. They

integrated the best performing ML model into the production

system in a personal care goods factory.

Steurtewagen and Poel implement an XGBoost model to

predict and diagnose machinery breakdowns [27]. The

model is trained with sensor and manual report data, and

enriched with Shapley values [28]. The aim was to prove that

statistical methods and appropriate data handling improve

the significance of ML in the diagnostic aspect.

In this study, where only the alarm logs are available

from an industrial premise, the occurrence of an alarm is

predicted two hours in advance, using the past occurrence

information of that alarm, and others. In order to do so, three

different ML approaches are considered: NNs, RFs, and

XGBoost. To find the best method and best configuration for

this task, several models are constructed and trained with

different hyper-parameters, and results are compared.

To the best of authors' knowledge, there is no study

similar to the one presented here that compares different ML

techniques for alarm prediction. There is only one other work

[17] done with the same dataset [18]; but in that work, very

rarely occurred alarms are predicted in eight hours output

window. This means that both selected alarms and the time

frame are different there. Therefore, it is not possible to

compare it directly with this study. For a general comparison

of the previous studies, Table 1 is prepared.

Table 1. Summary of the similar studies

Work Task Method
Data

Source

[5] Production line faults prediction
RF,

XGBoost
Sensors

[13] Fault event prediction ARMA
Historical
data

[15] Predictive control for parking NN Sensors

[17] Rare alarms prediction RNN Alarms
[19] Fault detection NN Sensors

[20] Wind tribune defect detection NN Sensors

[21] Alarm prediction N-gram Alarms
[22] Automative parts repair prediction RF Sensors

[23]
Cooling and cold storage systems

fault detection
RF Sensors

[24]
Squirrel-cage induction motors

fault detection
RF Sensors

[25]
Industrial machinery state
classification

RF Sensors

[26] Hard disk drive fault detection RF
Historical

data

[27]
Machinery breakdown prediction

and diagnose
XGBoost Sensors

This
work

Alarm prediction
NN, RF,
XGBoost

Alarms

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

185

The format of the rest of the paper is as follows. Section

2 introduces the methodology proposed in this study. Results

and discussions are given in Section 3. Conclusions are

included in Section 4. The article should include main titles

such as Abstract, Introduction, Material and methods,

Results and discussion, Conclusions and References.

2 Material and methods

The aim of this current work is to use several different

ML methods to predict whether a specific alarm of a specific

machine would occur in the following two hours using only

information on the past alarm occurrences. The most

common ML algorithm in the literature conducted between

2009 and 2018 is Random Forest (RF), followed by Neural

Network (NN) based methods, Support Vector Machines

(SVM), and k-means [4]. Therefore in this study, NNs, RFs,

and XGBoost are selected as three different ML methods.

Then the results are compared to find the most appropriate

method and structure.

In this section, the data analysis method and these three

ML methods are explained.

2.1 Data analysis

The dataset used in this work is publicly available and

can be obtained via IEEE Dataport [17]. It consists of a time

series of alarms recorded by a packaging equipment in an

industrial location. The original raw data shown in Table 2

has three columns: the timestamp of the alarm occurrence,

the alarm number, and the ID number of the machine that the

alarm occurs. These data come from 20 separate machines

from different plants. Alarms, logged by these machines

during 16 months between 21 February 2019 10:16 and 17

June 2020 03:53, are of 154 distinct types. A total of 444.834

unique data with a highly unbalanced distribution are

recorded.

Table 2. The original raw data

Timestamp Alarm Machine

21.02.2019 10:16 139 3

21.02.2019 10:18 139 3

… … …

17.06.2020 03:53 138 0

Table 3 gives the IDs of five machines with the most

alarm occurrences. It is seen that the machine with ID

number 6 has the greatest alarm log; therefore, it was

selected for further analysis, as a larger amount of data brings

more richness in terms of quality and accuracy. As seen in

Table 3, there are 59,357 alarms recorded for Machine 6 that

are used as data points during machine learning.

Table 3. Top five machines with the most alarm occurrences

Machine Number of Alarms

6 59.357

7 50.568

10 49.670

3 42.387

13 37.022

Furthermore, the five alarms most frequently logged by

Machine 6 are alarms 98, 26, 11, 137, and 29, as shown in

Figure 1. Out of 154 distinct alarms, 69 occurred in Machine

6 during the period considered. One alarm every ten minutes,

on average, is logged by Machine 6.

Figure 1. Distribution of alarms logged by machine 6

For each of these five alarms, the percentages of the

occurrences for the next two hours for each hour of the day

are calculated, i.e., whether or not that alarm will occur at

least once during the following two hours for any given time.

The same operation is repeated for four and eight hours, and

the results are shown in Table 4.

It is seen in Table 4 that Alarm 98 was activated 49.37%

of the time in the following two hours. This means that it

occurs during the next two hours in almost one half of the

time; but not in the other half. This is a behaviour very close

to an even distribution. For the following four and eight

hours, however, this balance is lost. When the duration

increases, the probability of the alarm occurring also

increases. This phenomenon is also true for the other alarms

in Table 4. It is well known that when the data distribution is

imbalanced, ML classification performance tends to show

bias towards the bigger class, and during the ML phase, it is

important to use a balanced data from each case of the output

class. Therefore, the selected dataset used in this work is

Alarm 98 of Machine 6 with the following two-hours as the

prediction interval.

Table 4. Top five alarm occurrences for the next two, four,

and eight hours for machine 6

Alarm Next 2-hour Next 4-hour Next 8-hour

98 49.37% 67.06% 82.93%

26 32.92% 47.17% 64.70%

11 49.04% 67.26% 83.48%

137 41.41% 58.83% 77.04%

29 16.60% 26.89% 42.15%

2.2 Machine learning models

In the field of PdM, the most preferred ML models are

NN, RF, and XGBoost; therefore, these models are also

selected for application to the alarm log dataset in this work.

For all these ML models, the dimension of the input vector

is 69, since Machine 6 logged 69 different alarms out of a

total of 154 in the current dataset. However, it is not possible

to precisely know the optimum window length of the past

alarm occurrences as the model's input. Since it is a hyper-

parameter, three different lengths for past windows are

considered: one day, one week, and one month. During these

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

186

intervals, the number of occurrences of each alarm are

calculated and given as inputs to each model. Therefore, each

input component corresponds to the number of occurrences

during the past window frame of a particular alarm, which

could be either zero or a positive number. Zero means that

the corresponding alarm never occurred in that window. The

output is fixed for all methods: the probability of the

occurrence of Alarm 98 in the next two hours. A prediction

greater than 50% is considered as indicating that the alarm

will occur.

For the implementation and evaluations of the models,

Google's Colab environment is used in conjunction with

Python programming language and Keras ML libraries. The

evaluation metrics used are accuracy, precision, recall, and

F1-score. Accuracy is defined as the proportion of the

correctly classified alarm occurrences, either as

“occurrence” or “no occurrence” over the test set, , as given

in Equation (1), where TP is the true positives (the number

of correctly classified “occurrence”), TN is the true negatives

(the number of correctly classified “no occurrence”), FP is

the false positives (the number of incorrectly classified

“occurrence”), and FN is the false negatives (the number of

incorrectly classified “no occurrence”).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1)

Precision, as shown in Equation (2), is the ratio of correct

classifications as “occurrence” over the total number

classifications as “occurrence”.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
 (2)

Recall (Equation (3)) is calculated as the ratio of correct

classifications as “occurrence” over the total number of

occurrences.

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
 (3)

Finally, F1-score is the harmonic mean of the precision

and recall as given in Equation (4).

𝐹1 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

=
(𝑇𝑃)

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)

(4)

2.2.1 Neural networks (NN)

NNs, inspired by biological neurons, are composed of

intelligent and interconnected processing units. These

connections have associated weights, which are updated at

each training step via gradient descent algorithm, called

backpropagation [19]. Since NNs have multiple layers, as the

phrase deep learning suggests, training takes place at

different levels of hierarchy, allowing them to learn very

complex relations between the input and output variables. An

NN structure is shown in Figure 2.

Figure 2. NN architecture

In this architecture, input variables are denoted by the

vector x, the desired output or ground truth is represented by

d, and the predicted value of d by the NN model is shown as

y. Since alarm prediction is a binary classification problem,

the model output consists of a single variable. The forward

propagation equations (Equation (5) and (6)) give the neuron

outputs. According to the terms used in Figure 2, the neuron

output zi
[l] is calculated as shown in Equation (5) where 𝑖 =

1, 2, . . . , 𝑛𝑙 and 𝑙 = 1, 2, . . . , 𝐿 and 𝑙 represents the layer

number, 𝑤𝑖𝑗 represents weights between the 𝑖𝑡ℎ neuron and

the 𝑗𝑡ℎ input 𝑢𝑗, 𝑏𝑖 represents the bias associated with the 𝑖𝑡ℎ

neuron, 𝑛𝑙−1 represents the number of neurons in the

(𝑙 − 1)𝑡ℎ layer, 𝑛𝑙 represents the number of neurons in the

𝑙𝑡ℎ layer, and L represents the number of layers.

𝑧𝑖
[𝑙]

= ∑ 𝑤𝑖𝑗
[𝑙]

⋅ 𝑢𝑗
[𝑙−1]

𝑛𝑙−1

𝑗=1

+ 𝑏𝑖
[𝑙]

 (5)

Then this output is undergone to a nonlinear activation

function as shown in Equation (6) where 𝑎 can be a sigmoid,

reLU, tanh, etc. In these formulas, the input variable 𝑥𝑗 is

represented as 𝑢𝑗
[0]

, and the NN output 𝑦 as 𝑢[𝐿].

𝑢𝑖
[𝑙]

= 𝑎[𝑙](𝑧𝑖
[𝑙]

) (6)

The weight updates based on the gradient descent

algorithm are calculated by backward propagation equations,

as shown in Equation (7) and (8) where 𝛼 is the learning rate

and 𝐽 is the logistic regression cost function to be minimized

given in Equation (9).

𝑤𝑖𝑗
[𝑙]

= 𝑤𝑖𝑗
[𝑙]

− 𝛼
𝜕𝐽

𝜕𝑤𝑖𝑗
[𝑙]

 (7)

𝑏𝑖
[𝑙]

= 𝑏𝑖
[𝑙]

− 𝛼
𝜕𝐽

𝜕𝑏𝑖
[𝑙]

 (8)

𝐽 = −[𝑑 ∙ log(𝑦) + (1 − 𝑑) ∙ log(1 − 𝑦)] (9)

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

187

2.2.2 Random forests (RF)

RF, originally proposed by Breiman in the 2000's, is a

supervised learning algorithm [29]. It consists of a predictor

ensemble of decision trees (DTs) that grow in randomly

selected subspaces of data. RF combines the output of those

DTs to reach a unique result [30].

DTs start with a basic question, constituting the root

node, from where a series of questions make up the decision

nodes. The tree acts as a means to split the data in the best

way possible. Questions fitting the criteria follow the “True”

branch and the others follow the alternate “False” path. The

final decision arrived after answering the questions is

denoted as the leaf node, as shown in Figure 3.

Figure 3. DT structure where RF algorithm is based on

DTs are prone to bias or overfitting. To overcome these

problems in the random forest algorithm, an ensemble is

formed from multiple decision to predict more accurate

results, since the individual trees are uncorrelated with each

other. Predictions of ensemble DTs are collected to find the

most suitable result.

In the bagging (a.k.a. bootstrap aggregation) ensemble

method, a data from the training set is chosen randomly and

the corresponding result is found. This procedure is repeated

multiple times where selection of the same data samples is

allowed (selection with replacement). The majority of the

results give the final estimate for the classification type tasks

[29]. In this way, variance is reduced in noisy datasets.

RF algorithm creates an uncorrelated collection of DTs.

It is different from DTs such a way that while DTs consider

all the possible feature splits, RFs only select a subset of

those features randomly. This ensures DTs used to be low

correlated, yielding to less risk of overfitting. The number of

trees and their depth (i.e., node levels) are the main hyper-

parameters.

RFs can adapt themselves to the nonlinearities existing in

the data, and can make more accurate predictions than linear

regression methods.

2.2.3 Extreme gradient boosting (XGBoost)

XGBoost is a modified and improved version of decision

trees, optimized for speed and performance [31]. It is a

scalable, sparsity-aware algorithm for data with high degrees

of dimensionality and correlation [32].

Similar to RF, XGBoost also utilizes multiple DTs,

however it combines them in a different way. In this

approach, weak models are improved by brought together to

create a collectively strong model. The boosting process is

repeated several times where each new model attempts to

correct the errors of the combined ensemble of previous

models.

At each boosting step, an observation weight for the next

model is calculated based on the gradient of the error with

respect to the prediction. Then the new model acts in the

direction minimizing the prediction error, hence the name of

the algorithm. XGBoost iteratively train an ensemble of DTs

and the final prediction is a weighted sum of all of the tree

predictions.

This iterative boosting process helps minimise the bias

hence addressing the underfitting issues, whereas RF’s

bagging deals with the variance and overfitting. As it reduces

the error in each iteration, XGBoost also prioritises the

points which are harder to predict, thus improving accuracy.

This process in general results in a fine-tuned model that

performs well on unseen data, which also helps with

overfitting, when incorporated with tuned L1 and L2

regularization hyperparameters and other techniques such as

cross-validation. This sequential decision tree building sets

XGBoost apart from RF since RF trains each branch

independently and then aggregates the results with a chosen

method. This allows XGBoost to improve accuracy by

focusing on specific errors made.

As for the impact on the overall speed, XGBoost also

performs efficiently. This is mainly related to its ability to

decrease the overall training time by involving parallel

computation when building the decision trees [33]. The

overall speed and efficiency can be further improved using

other hyperparameters such as shrinkage, maximum depth,

tree growth limit and regularization. As mentioned before,

being a sparsity-aware algorithm also impacts the speed

since it allows skipping over missing or zero entries in the

dataset, therefore increasing the performance.

Alongside the given hyperparameters, a substantial

amount of hyperparameters exist within the scope of

XGBoost, while also allowing the customization of the loss

function. This allows a more flexible and optimized

approach to the problem at hand, allowing access to a

balanced viewpoint in terms of speed and computational

complexity. When coupled with the property of XGBoost

being resilient against datasets with outliers, it allows a

reliable and robust solution for a variety of datasets some of

which may also include impacting elements such as noise.

When compared to RF in terms of model complexity, in

some cases as a consequence of RF growing trees fully it

may lead to models with increased complexity whereas

XGBoost can stop the tree growth by using the pruning

method leading to another method of preventing overfitting.

However, it must be kept in mind that false tuning XGBoost

may also result in it being an unnecessarily complex model.

3 Results and discussions

All models constructed in this work were re-run multiple

times and five-fold results were obtained. The averages for

different configurations are calculated and given below. The

data in each training are divided into training and test sets, as

90% and 10%, respectively, as the most common split used

in the literature.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

188

Figure 4. Initial tree of XGBoost

Results for the NN model are shown in Table 5 for three

different past window openings of the inputs. The selected

number of hidden layers is two with 100 neurons in each.

The following are used in all networks: Adam optimizer,

binary cross-entropy loss function, and 0.1 dropout. The

learning rate is taken as 0.01.

Table 5. Results with NN

 Last Day Last Week Last Month

Average
Accuracy

0.655 0.615 0.579

Average

Precision
0.676 0.645 0.650

Average Recall 0.588 0.487 0.321

Average F1-

score
0.629 0.555 0.430

According to the F1-scores given in Table 5, the most

successful configuration is the one with the past day inputs.

This means that alarms occurred earlier than one day do not

have significant effect on the current alarm, but the ones

logged during the last 24-hours should be taken into account.

Table 6 presents the best results for RF models for each

past window scheme. Three different amounts of trees are

used: 300, 500, and 1000. The maximum depth options are

32, 64, and 128.

Table 6. Results with RF

 Last Day Last Week Last Month

Number of Trees 500 1000 1000

Maximum Depth 64 128 128

Average Accuracy 0.762 0.746 0.708

Average Precision 0.743 0.712 0.710

Average Recall 0.768 0.759 0.754

Average F1-score 0.756 0.735 0.731

Although the results are close in the RF model, the F1-

score of 0.756 shows that the best configuration for the RF

case is the model with the alarm occurrence numbers during

the last day as inputs, which is a consistent result with the

NN case.

The same number of trees and maximum depth

configurations of the RF case are used for the XGBoost

models, and the results are shown in Table 7. Again, the F1-

score of 0.767 indicates that the most effective input is the

number of alarm occurrences of the last day, as compared to

the last week or month. This result is also aligned with the

previous NN and RF models, showing that the alarm

occurrences during the last day are of the most importance.

The very first decision tree following the first five

branches created for the XGBoost algorithm is given in

Figure 4 for visualization purposes.

Table 8 summarizes the evaluation figures for the best

models of NN, RF, and XGBoost. Among these three,

XGBoost provides the greatest F1-score (0.767). This result

is expected since it is known in the literature that XGBoost

outperforms other similar methods such as NN and RF.

Table 7. Results with XGBoost

 Last Day Last Week Last Month

Number of Trees 500 1000 1000

Maximum Depth 64 128 128

Average Accuracy 0.769 0.770 0.752

Average Precision 0.753 0.741 0.735

Average Recall 0.781 0.789 0.758

Average F1-score 0.767 0.764 0.746

Table 8. Comparison between NN, RF and XGBoost

 NN RF XGBoost

Average Accuracy 0.655 0.762 0.769

Average Precision 0.676 0.743 0.753

Average Recall 0.588 0.768 0.781

Average F1-score 0.629 0.756 0.767

Accuracy graphs for a single run for each method can

also be seen in Figure 5.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

189

Figure 5. Accuracy logs for each model

In addition to having the greatest accuracy among the

given three models, XGBoost also has the lowest runtimes,

thus being the most efficient one. RF runtime ranges from 49

seconds to 96 seconds for a single case, whereas NN varies

between 87 seconds to 133 seconds. On the other hand,

XGBoost spans from 21 seconds to 40 seconds.

4 Conclusions

This paper presents a performance comparison among

three different ML methods, namely NN, RF, and XGBoost

for a PdM related binary classification problem. The task is

to predict an alarm condition from past information.

The system output is the predicted probability of an alarm

occurrence, whether it will be triggered in the following two

hours or not; and the inputs are the number of occurrences

for each alarm during a past period. Three windows are

considered for the past values: last day, last week, and last

month.

The obtained training results show that the ML model

using the XGBoost algorithm gives the best F1-score of

0.767 with number of trees equal to 500 and maximum depth

of 128 for the alarm prediction task.

The study is based on a real-world dataset from a packing

industry, in which distinct alarms are logged by multiple

machines. Since unanticipated faults and breakdowns in

industry may cause high costs, it is of great importance for

companies to foresee problems in advance and to take the

necessary precautions. Integrating ML algorithms with PdM

yields considerable cost reduction. In this respect, ML-

powered alarm prediction has a significant business value

and it is important to identify and select the most suitable ML

method, as proposed here.

In this study, the model depends on the alarm logs alone;

hence, it can be applied to legacy equipment, to which it is

impossible to apply typical PdM approaches with rich sensor

measurements, and therefore, data are limited.

Rapid developments in the Industry 4.0 era make it

increasingly easy to benefit from data-driven, ML-based

decision systems. Future work should consider the same

problem with other ML approaches such as recurrent neural

networks or LSTM, as well as the three methods

aforementioned, for comparison of results. This current work

was conducted without the information about the importance

level of the different machines and different alarms; a more

meaningful machine and alarm selection could be achieved

with support from a domain expert. Data distribution may

change according to the alarm selected, which may lead to a

different ML method being considered.

Conflict of interest

The authors declare that there is no conflict of interest.

Similarity rate (iThenticate): 12%

References

[1] H.M. Hashemian and W.C. Bean, State-of-the-Art

Predictive Maintenance Techniques, IEEE Trans.

Instrum. Meas., 60, 3480–3492, 2011. https://doi.org/

10.1109/tim.2009.2036347.

[2] K.T.P. Nguyen and K. Medjaher, A new dynamic

predictive maintenance framework using deep learning

for failure prognostics, Reliability Engineering &

System Safety, 188, 251–262, 2019. https://doi.org/

10.1016/j.ress.2019.03.018.

[3] I.J. Akpan, E.A.P. Udoh and B. Adebisi, Small

business awareness and adoption of state-of-the-art

technologies in emerging and developing markets, and

lessons from the COVID-19 pandemic, Journal of

Small Business & Entrepreneurship, 34, 123–140,

https://doi.org/%2010.1109/tim.2009.2036347
https://doi.org/%2010.1109/tim.2009.2036347
https://doi.org/%2010.1016/j.ress.2019.03.018
https://doi.org/%2010.1016/j.ress.2019.03.018

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

190

2020. https://doi.org/10.1080/08276331.2020.182018

5.

[4] T.P. Carvalho, F.A.A.M.N. Soares, R. Vita, R. da P.

Francisco, J.P. Basto and S.G.S. Alcalá, A systematic

literature review of machine learning methods applied

to predictive maintenance, Computers & Industrial

Engineering, 137, 106024, 2019. https://doi.org/

10.1016/j.cie.2019.106024.

[5] S. Ayvaz and K. Alpay, Predictive maintenance system

for production lines in manufacturing: A machine

learning approach using IoT data in real-time, Expert

Systems with Applications, 173, 114598, 2021. https://

doi.org/10.1016/j.eswa.2021.114598.

[6] T. Wuest, D. Weimer, C. Irgens and K.-D. Thoben,

Machine learning in manufacturing: advantages,

challenges, and applications, Production &

Manufacturing Research, 4, 23–45, 2016. https://

doi.org/10.1080/21693277.2016.1192517.

[7] W. Li, H. Li, S. Gu and T. Chen, Process fault diagnosis

with model- and knowledge-based approaches:

Advances and opportunities, Control Engineering

Practice, 105, 104637, 2020. https://doi.org/10.1016

/j.conengprac.2020.104637.

[8] Y. He, C. Gu, Z. Chen and X. Han, Integrated

predictive maintenance strategy for manufacturing

systems by combining quality control and mission

reliability analysis, International Journal of Production

Research, 55, 5841–5862, 2017. https://doi.org/10.

1080/00207543.2017.1346843.

[9] W. Yu, T. Dillon, F. Mostafa, W. Rahayu and Y. Liu,

A Global Manufacturing Big Data Ecosystem for Fault

Detection in Predictive Maintenance, IEEE Trans. Ind.

Inf., 16, 183–192, 2020. https://doi.org/10.1109/tii.201

9.2915846.

[10] O. Güler, Turbofan motorlarının kestirimci bakımında

makine öğrenimi algoritmaları performanslarının

karşılaştırılması, NOHU J. Eng. Sci., 13, 1, 99–106,

2024. https://doi.org/doi: 10.28948/ngumuh.1266541.

[11] G. Dorgo and J. Abonyi, Sequence Mining Based

Alarm Suppression, IEEE Access, 6, 15365–15379,

2018. https://doi.org/10.1109/access.2018.2797247.

[12] E. Ruschel, E.A.P. Santos and E. de F.R. Loures,

Industrial maintenance decision-making: A systematic

literature review, Journal of Manufacturing Systems,

45, 180–194, 2017. https://doi.org/10.1016/j.jmsy.201

7.09.003.

[13] M. Baptista, S. Sankararaman, Ivo.P. de Medeiros, C.

Nascimento Jr., H. Prendinger and E.M.P. Henriques,

Forecasting fault events for predictive maintenance

using data-driven techniques and ARMA modeling,

Computers & Industrial Engineering, 115, 41–53,

2018. https://doi.org/10.1016/j.cie.2017.10.033.

[14] A. Bousdekis, K. Lepenioti, D. Apostolou and G.

Mentzas, Decision Making in Predictive Maintenance:

Literature Review and Research Agenda for Industry

4.0, IFAC-PapersOnLine, 52, 607–612, 2019. https://

doi.org/10.1016/j.ifacol.2019.11.226.

[15] J.-H. Shin, H.-B. Jun and J.-G. Kim, Dynamic control

of intelligent parking guidance using neural network

predictive control, Computers & Industrial

Engineering, 120, 15–30. 2018 https://doi.org/10.10

16/j.cie.2018.04.023.

[16] S. Gomes Soares and R. Araújo, An on-line weighted

ensemble of regressor models to handle concept drifts,

Engineering Applications of Artificial Intelligence, 37,

392–406, 2015. https://doi.org/10.1016/j.engappai.201

4.10.003.

[17] D.D. Pezze, C. Masiero, D. Tosato, A. Beghi and G.A.

Susto, FORMULA: A Deep Learning Approach for

Rare Alarms Predictions in Industrial Equipment, IEEE

Trans. Automat. Sci. Eng., 19, 1491–1502, 2022.

https://doi.org/10.1109/tase.2021.3127995.

[18] D. Tosato, D. Dalle Pezze, C. Masiero, G.A. Susto and

A. Beghi, Alarm logs of industrial packaging machines,

2020. https://doi.org/10.21227/NFV6-K750.

[19] N. Kolokas, T. Vafeiadis, D. Ioannidis and D.

Tzovaras, Forecasting faults of industrial equipment

using machine learning classifiers, 2018 Innovations in

Intelligent Systems and Applications (INISTA), 2018.

https://doi.org/10.1109/inista.2018.8466309.

[20] S. Biswal and G.R. Sabareesh, Design and

development of a wind turbine test rig for condition

monitoring studies, 2015 International Conference on

Industrial Instrumentation and Control (ICIC), 2015.

https://doi.org/10.1109/iic.2015.7150869.

[21] J. Zhu, C. Wang, C. Li, X. Gao and J. Zhao, Dynamic

alarm prediction for critical alarms using a probabilistic

model, Chinese Journal of Chemical Engineering, 24,

881–885, 2016. https://doi.org/10.1016/j.cjche.2016.0

4.017.

[22] R. Prytz, S. Nowaczyk, T. Rögnvaldsson and S.

Byttner, Predicting the need for vehicle compressor

repairs using maintenance records and logged vehicle

data, Engineering Applications of Artificial

Intelligence, 41, 139–150, 2015. https://doi.org/10.10

16/j.engappai.2015.02.009.

[23] K. Kulkarni, U. Devi, A. Sirighee, J. Hazra and P. Rao,

Predictive Maintenance for Supermarket Refrigeration

Systems Using Only Case Temperature Data, 2018

Annual American Control Conference (ACC), 2018.

https://doi.org/10.23919/acc.2018.8431901.

[24] T. dos Santos, F.J.T.E. Ferreira, J.M. Pires and C.

Damasio, Stator winding short-circuit fault diagnosis in

induction motors using random forest, 2017 IEEE

International Electric Machines and Drives Conference

(IEMDC), 2017. https://doi.org/10.1109/iemdc.2017.8

002350.

[25] M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E.

Frontoni and J. Loncarski, Machine Learning approach

for Predictive Maintenance in Industry 4.0, 2018 14th

IEEE/ASME International Conference on Mechatronic

and Embedded Systems and Applications (MESA),

2018. https://doi.org/10.1109/mesa.2018.8449150.

[26] C.-J. Su and S.-F. Huang, Real-time big data analytics

for hard disk drive predictive maintenance, Computers

& Electrical Engineering, 71, 93–101, 2018.

https://doi.org/10.1016/j.compeleceng.2018.07.025.

https://doi.org/10.1080/08276331.2020.182018%205
https://doi.org/10.1080/08276331.2020.182018%205
https://doi.org/%2010.1016/j.cie.2019.106024
https://doi.org/%2010.1016/j.cie.2019.106024
https://doi.org/10.1016%20/j.conengprac.2020.104637
https://doi.org/10.1016%20/j.conengprac.2020.104637
https://doi.org/10.%201080/00207543.2017.1346843
https://doi.org/10.%201080/00207543.2017.1346843
https://doi.org/10.1109/tii.201%209.2915846
https://doi.org/10.1109/tii.201%209.2915846
https://doi.org/doi:%2010.28948/ngumuh.1266541
https://doi.org/10.1109/access.2018.2797247
https://doi.org/10.1016/j.jmsy.201%207.09.003
https://doi.org/10.1016/j.jmsy.201%207.09.003
https://doi.org/10.1016/j.cie.2017.10.033
https://doi.org/10.10%2016/j.cie.2018.04.023
https://doi.org/10.10%2016/j.cie.2018.04.023
https://doi.org/10.1016/j.engappai.201%204.10.003
https://doi.org/10.1016/j.engappai.201%204.10.003
https://doi.org/10.1109/tase.2021.3127995
https://doi.org/10.21227/NFV6-K750
https://doi.org/10.1109/inista.2018.8466309
https://doi.org/10.1109/iic.2015.7150869
https://doi.org/10.1016/j.cjche.2016.0%204.017
https://doi.org/10.1016/j.cjche.2016.0%204.017
https://doi.org/10.10%2016/j.engappai.2015.02.009
https://doi.org/10.10%2016/j.engappai.2015.02.009
https://doi.org/10.23919/acc.2018.8431901
https://doi.org/10.1109/iemdc.2017.8%20002350
https://doi.org/10.1109/iemdc.2017.8%20002350
https://doi.org/10.1109/mesa.2018.8449150
https://doi.org/10.1016/j.compeleceng.2018.07.025

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191

T. Özkul, A. Topallı

191

[27] B. Steurtewagen and D. Van den Poel, Adding

interpretability to predictive maintenance by machine

learning on sensor data, Computers & Chemical

Engineering, 152, 107381, 2021. https://doi.org/10.10

16/j.compchemeng.2021.107381.

[28] L.S. Shapley, 17. A Value for n-Person Games,

Contributions to the Theory of Games (AM-28),

Volume II, 307–318, 1953. https://doi.org/10.1515/97

81400881970-018.

[29] L. Breiman, Machine Learning 45, 5–32, 2001.

https://doi.org/10.1023/a:1010933404324.

[30] C. Strobl, J. Malley and G. Tutz, An introduction to

recursive partitioning: Rationale, application, and

characteristics of classification and regression trees,

bagging, and random forests., Psychological Methods,

14, 323–348, 2009. https://doi.org/10.1037/a0016973.

[31] T. Chen and C. Guestrin, XGBoost, Proceedings of the

22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2016. https://

doi.org/10.1145/2939672.2939785.

[32] D. Nielsen, Tree Boosting With XGBoost - Why Does

XGBoost Win ‘Every’ Machine Learning

Competition? Master Thesis, Norwegian University of

Science and Technology, Department of Mathematical

Sciences, Norway, 2016.

[33] H. Belyadi and A. Haghighat, Supervised learning, in

Machine Learning Guide for Oil and Gas Using

Python, Gulf Professional Publishing, 2021, pp. 169-

295. https://doi.org/10.1016/B978-0-12-821929-4.000

04-4.

https://doi.org/10.10%2016/j.compchemeng.2021.107381
https://doi.org/10.10%2016/j.compchemeng.2021.107381
https://doi.org/10.1515/97%2081400881970-018
https://doi.org/10.1515/97%2081400881970-018
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1037/a0016973
https://doi.org/10.1016/B978-0-12-821929-4.000%2004-4
https://doi.org/10.1016/B978-0-12-821929-4.000%2004-4

	1 Introduction
	2 Material and methods
	2.1 Data analysis
	2.2 Machine learning models
	2.2.1 Neural networks (NN)
	2.2.2 Random forests (RF)
	2.2.3 Extreme gradient boosting (XGBoost)

	3 Results and discussions
	4 Conclusions
	Conflict of interest
	Similarity rate (iThenticate): 12%
	References

