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Abstract  Özet 

Predictive maintenance has gained increasing attention 

recently with the availability of sensors and connectivity of 

equipment. Yet, it would be difficult to obtain a wide range 

of data, especially with legacy devices. This paper describes 

an intelligent method for predicting a near future condition 

using the past information for an environment in which data 

are limited to the alarm logs from industrial machinery. Since 

machine learning methods are proven to be efficient in 

classification tasks using time series data, three of them are 

selected to predict an alarm two hours in advance using the 

past occurrences. These methods are neural networks, 

random forests, and extreme gradient boosting. The 

performances of these three methods are compared, and it is 

aimed to find the optimal configuration among hyper-

parameter values. According to the obtained results, extreme 

gradient boosting gives the highest F1-score of 0.767 with 

number of trees equal to 500, maximum depth of 128, and an 

input window of alarm occurrences from the last day. This 

work consists of a comparative study aiming to identify the 

best machine learning method for alarm predictions, which 

potentially provides important insights into the operation and 

maintenance of machinery, bringing the possibility of 

considerable cost reductions. 

 Kestirimci bakım, duyaçların varlığı ve teçhizatların 

bağlanabilirliği ile son zamanlarda artan bir ilgi elde etmiştir. 

Yine de, özellikle eski cihazlardan geniş çapta veri elde 

etmek zor olabilir. Bu makale, verilerin endüstriyel bir 

düzenekten alınan alarm kayıtları ile sınırlı olduğu bir ortam 

için, geçmiş bilgileri kullanarak yakın gelecekteki bir 

durumu öngören akıllı bir yöntemi tanımlamaktadır. Makine 

öğrenmesi yöntemlerinin zaman dizisi verileri kullanarak 

sınıflandırma yapma işlerinde etkili olduğu kanıtlanmış 

olduğundan, sinir ağları, rassal orman ve aşırı eğim arttırma 

olarak seçilen üç yöntem, bir alarmın ve aynı makinenin 

kaydettiği diğer alarmların geçmiş oluşumlarından, o alarmı 

iki saat önceden tahmin etmek üzere eğitilmiştir. Bu üç 

yöntemin performansları kıyaslanmış ve hiper-parametre 

değerleri arasından en iyi yapılandırmayı bulmak 

hedeflenmiştir. Elde edilen sonuçlara göre, aşırı eğim 

arttırma, 500 ağaç sayısı, 128 azami derinlik ve son günden 

alarm oluşumları girdi penceresi ile 0.767 olan en yüksek F1 

puanını vermektedir. Bu çalışma, makinelerin işlemesi ve 

bakımı hakkında potansiyel olarak önemli anlayışlar 

sağlayan ve dikkate değer masraf azaltma imkânları sunan 

alarm öngörüleri için en iyi makine öğrenmesi yöntemini 

belirlemeyi hedefleyen kıyaslamalı bir araştırmadan 

oluşmaktadır. 

Keywords: Machine learning, Neural networks, Predictive 

maintenance, Random forest, Extreme gradient boosting  

 Anahtar kelimeler: Makine öğrenmesi, Sinir ağları, 

Kestirimci bakım, Rassal orman, Aşırı eğim arttırma 

1 Introduction 

Even a decade ago, time-based maintenance, which relies 

on scheduled maintenance and repairs, was dominant and the 

idea of Predictive Maintenance (PdM) was newly emerging. 

For example, bath-tub curve estimation was used for many 

years for machinery maintenance and replacement planning; 

but in fact, it is based not on any scientific concepts or 

engineering principles, but only intuitive and empirical 

knowledge [1]. The traditional maintenance strategies were 

time-consuming, costly and caused unplanned downtime due 

to unexpected breakdowns. Moreover, they are becoming 

increasingly outdated and less functional due to the growing 

safety and reliability requirements [2]. 

PdM technologies on the other hand, can reduce cost and 

downtime, prevent faults, and optimize maintenance policy. 

Using intelligent sensors, systems can be reliably monitored 

in real-time, and maintenance activities can be planned 

effectively. Therefore PdM, which involves predicting the 

next failure so that preventive measures can be applied in 

advance, has been receiving increasing attention in the 

academy and in the industry over the last decade. In this 

Industrial Internet of Things (IIoT) era, especially with the 

COVID-19 breakout, PdM is of increasing importance [3]. 

Industry 4.0 permits different kinds of devices from 

diverse departments of plants to log various measurements. 

Hence, big data analytics plays a vital role. Processing and 

then analysing these data provide important knowledge and 

information for administrative decisions, such as machine 

fault prevention, spare parts inventory reduction, 

improvement in operator safety, etc. [4]. 

Global challenges and very competitive markets create 

pressure to deliver better solutions. Players can be successful 

in such a realm only by developing AI driven tools, and using 

data-oriented decision making algorithms [5]. Machine 

https://orcid.org/0009-0002-8828-7271
https://orcid.org/0000-0001-7712-5790


 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(1), 183-191 

T. Özkul, A. Topallı 

 

184 

Learning (ML) is a powerful method that is able to process 

multi-dimensional data, and to identify intricate relationships 

existing within data [6]. With a properly chosen ML method, 

an effective system can be designed to detect failures, raise 

alarms, and warn the authorized personnel in industrial 

environments. 

There are, however, some issues with the PdM, such as 

the difficulty of connecting sensors to legacy machinery, or 

remotely accessing sensor measurements. In such cases, the 

existing alarm logs raised by legacy systems can be utilized, 

since they still carry valuable and reliable information. In 

this context, analysing the alarm logs may support limited 

PdM environments in many domains [7]. By predicting the 

alarms by ML in advance, corrective actions can be taken 

and potential faults can be prevented [8], [9]. 

There has been an increasing interest in the PdM and 

alarm prediction in recent years, some of these studies can be 

found in [10], [11], [12]. There are also comprehensive 

literature reviews on this subject, for example, Carvalho et 

al. review ML based PdM literature systematically with their 

compatibility and performance results [4]. Baptista et al. 

report about the risk of failure prediction, in which artificial 

intelligence approaches outperform statistical approaches 

[13]. Similarly, Bousdekis et al. give a literature review on 

dynamic decision making for PdM, covering the period 

between 2013 and 2018 and focuses on maintenance 

planning and scheduling, optimization, and reliability and 

degradation-based decision making [14]. Their review 

reveals an increasing preference for automated and real-time 

decision making algorithms. 

Neural Networks (NNs) are frequently applied in many 

industrial areas, such as predictive control [15] and soft 

sensing [16]. For a multi-label classification task to forecast 

rare alarms generated by dairy product packing machines, 

Pezze et al. propose a deep learning-based approach with 

Recurrent Neural Networks (RNNs) and transformers, a 

popular natural language processing architecture [17]. Their 

environment allows them to use only past alarm logs for the 

prediction of any alarm occurrence. They utilize the same 

dataset [18], also used in this study. 

Kolokas et al. give a comparison of NNs with some other 

ML approaches used for fault detection in an industrial 

device using sensor data [19]. Biswal and Sabareesh collect 

wind turbine vibration data and use NNs to classify the state 

characteristics as healthy or defective [20]. Their results 

show 92.6% accuracy. Zhu et al. predict probabilities of 

alarm occurrences, given the previous alarms based on an N-

gram model [21]. 

There are also studies in the literature on PdM with 

Random Forest (RF) modelling. Prytz et al. propose the use 

of RF to predict repairs in the automotive sector for 

numerous vehicle parts [22]. Kulkarni et al. use an RF model 

to detect faults in cooling and cold storage systems with an 

89% accuracy [23]. Santos et al. detect faults in squirrel-cage 

induction motors, such as winding short circuits with RF 

[24]. Paolanti et al. introduce an RF algorithm to classify 

states of the industrial machinery using various sensor data 

[25]. Su and Huang develop a system in their research to 

detect hard disk drive faults in real-time using RF models 

trained with historical data [26]. 

Extreme Gradient Boosting (XGBoost) is also attracting 

more attention in this area. The aim of the study presented 

by Ayvaz and Alpay is to predict possible production line 

faults realistically before occurrence [5]. The authors explore 

multiple ML methods and compare these using a real-world 

dataset of motion, speed, weight, temperature, electrical 

current, vacuum, and air pressure sensor readings from a 

range of equipment. Their evaluation results indicate that the 

PdM successfully identifies the indicators of possible faults 

and prevents halts in production. In their tests, RF and 

XGBoost appear to outperform other algorithms. They 

integrated the best performing ML model into the production 

system in a personal care goods factory. 

Steurtewagen and Poel implement an XGBoost model to 

predict and diagnose machinery breakdowns [27]. The 

model is trained with sensor and manual report data, and 

enriched with Shapley values [28]. The aim was to prove that 

statistical methods and appropriate data handling improve 

the significance of ML in the diagnostic aspect.  

In this study, where only the alarm logs are available 

from an industrial premise, the occurrence of an alarm is 

predicted two hours in advance, using the past occurrence 

information of that alarm, and others. In order to do so, three 

different ML approaches are considered: NNs, RFs, and 

XGBoost. To find the best method and best configuration for 

this task, several models are constructed and trained with 

different hyper-parameters, and results are compared. 

To the best of authors' knowledge, there is no study 

similar to the one presented here that compares different ML 

techniques for alarm prediction. There is only one other work 

[17] done with the same dataset [18]; but in that work, very 

rarely occurred alarms are predicted in eight hours output 

window. This means that both selected alarms and the time 

frame are different there. Therefore, it is not possible to 

compare it directly with this study. For a general comparison 

of the previous studies, Table 1 is prepared. 

 

Table 1. Summary of the similar studies 

Work Task Method 
Data 

Source 

[5] Production line faults prediction 
RF, 

XGBoost 
Sensors 

[13] Fault event prediction ARMA 
Historical 
data 

[15] Predictive control for parking NN Sensors 

[17] Rare alarms prediction RNN Alarms 
[19] Fault detection NN Sensors 

[20] Wind tribune defect detection NN Sensors 

[21] Alarm prediction N-gram Alarms 
[22] Automative parts repair prediction RF Sensors 

[23] 
Cooling and cold storage systems 

fault detection 
RF Sensors 

[24] 
Squirrel-cage induction motors 

fault detection 
RF Sensors 

[25] 
Industrial machinery state 
classification 

RF Sensors 

[26] Hard disk drive fault detection RF 
Historical 

data 

[27] 
Machinery breakdown prediction 

and diagnose 
XGBoost Sensors 

This 
work 

Alarm prediction 
NN, RF, 
XGBoost 

Alarms 
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The format of the rest of the paper is as follows. Section 

2 introduces the methodology proposed in this study. Results 

and discussions are given in Section 3. Conclusions are 

included in Section 4. The article should include main titles 

such as Abstract, Introduction, Material and methods, 

Results and discussion, Conclusions and References. 

2 Material and methods 

The aim of this current work is to use several different 

ML methods to predict whether a specific alarm of a specific 

machine would occur in the following two hours using only 

information on the past alarm occurrences. The most 

common ML algorithm in the literature conducted between 

2009 and 2018 is Random Forest (RF), followed by Neural 

Network (NN) based methods, Support Vector Machines 

(SVM), and k-means [4]. Therefore in this study, NNs, RFs, 

and XGBoost are selected as three different ML methods. 

Then the results are compared to find the most appropriate 

method and structure.  

In this section, the data analysis method and these three 

ML methods are explained. 

2.1 Data analysis 

The dataset used in this work is publicly available and 

can be obtained via IEEE Dataport [17]. It consists of a time 

series of alarms recorded by a packaging equipment in an 

industrial location. The original raw data shown in Table 2 

has three columns: the timestamp of the alarm occurrence, 

the alarm number, and the ID number of the machine that the 

alarm occurs. These data come from 20 separate machines 

from different plants. Alarms, logged by these machines 

during 16 months between 21 February 2019 10:16 and 17 

June 2020 03:53, are of 154 distinct types. A total of 444.834 

unique data with a highly unbalanced distribution are 

recorded. 

 

Table 2. The original raw data 

Timestamp Alarm Machine 

21.02.2019 10:16 139 3 

21.02.2019 10:18 139 3 

… … … 

17.06.2020 03:53 138 0 

 

Table 3 gives the IDs of five machines with the most 

alarm occurrences. It is seen that the machine with ID 

number 6 has the greatest alarm log; therefore, it was 

selected for further analysis, as a larger amount of data brings 

more richness in terms of quality and accuracy. As seen in 

Table 3, there are 59,357 alarms recorded for Machine 6 that 

are used as data points during machine learning. 

 

Table 3. Top five machines with the most alarm occurrences 

Machine Number of Alarms 

6 59.357 

7 50.568 

10 49.670 

3 42.387 

13 37.022 

Furthermore, the five alarms most frequently logged by 

Machine 6 are alarms 98, 26, 11, 137, and 29, as shown in 

Figure 1. Out of 154 distinct alarms, 69 occurred in Machine 

6 during the period considered. One alarm every ten minutes, 

on average, is logged by Machine 6. 

 

 

Figure 1. Distribution of alarms logged by machine 6 

 

For each of these five alarms, the percentages of the 

occurrences for the next two hours for each hour of the day 

are calculated, i.e., whether or not that alarm will occur at 

least once during the following two hours for any given time. 

The same operation is repeated for four and eight hours, and 

the results are shown in Table 4. 

It is seen in Table 4 that Alarm 98 was activated 49.37% 

of the time in the following two hours. This means that it 

occurs during the next two hours in almost one half of the 

time; but not in the other half. This is a behaviour very close 

to an even distribution. For the following four and eight 

hours, however, this balance is lost. When the duration 

increases, the probability of the alarm occurring also 

increases. This phenomenon is also true for the other alarms 

in Table 4. It is well known that when the data distribution is 

imbalanced, ML classification performance tends to show 

bias towards the bigger class, and during the ML phase, it is 

important to use a balanced data from each case of the output 

class. Therefore, the selected dataset used in this work is 

Alarm 98 of Machine 6 with the following two-hours as the 

prediction interval. 

 

Table 4. Top five alarm occurrences for the next two, four, 

and eight hours for machine 6 

Alarm Next 2-hour Next 4-hour Next 8-hour 

98 49.37% 67.06% 82.93% 

26 32.92% 47.17% 64.70% 

11 49.04% 67.26% 83.48% 

137 41.41% 58.83% 77.04% 

29 16.60% 26.89% 42.15% 

 

2.2 Machine learning models 

In the field of PdM, the most preferred ML models are 

NN, RF, and XGBoost; therefore, these models are also 

selected for application to the alarm log dataset in this work. 

For all these ML models, the dimension of the input vector 

is 69, since Machine 6 logged 69 different alarms out of a 

total of 154 in the current dataset. However, it is not possible 

to precisely know the optimum window length of the past 

alarm occurrences as the model's input. Since it is a hyper-

parameter, three different lengths for past windows are 

considered: one day, one week, and one month. During these 
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intervals, the number of occurrences of each alarm are 

calculated and given as inputs to each model. Therefore, each 

input component corresponds to the number of occurrences 

during the past window frame of a particular alarm, which 

could be either zero or a positive number. Zero means that 

the corresponding alarm never occurred in that window. The 

output is fixed for all methods: the probability of the 

occurrence of Alarm 98 in the next two hours. A prediction 

greater than 50% is considered as indicating that the alarm 

will occur. 

For the implementation and evaluations of the models, 

Google's Colab environment is used in conjunction with 

Python programming language and Keras ML libraries. The 

evaluation metrics used are accuracy, precision, recall, and 

F1-score. Accuracy is defined as the proportion of the 

correctly classified alarm occurrences, either as 

“occurrence” or “no occurrence” over the test set, , as given 

in Equation (1), where TP is the true positives (the number 

of correctly classified “occurrence”), TN is the true negatives 

(the number of correctly classified “no occurrence”), FP is 

the false positives (the number of incorrectly classified 

“occurrence”), and FN is the false negatives (the number of 

incorrectly classified “no occurrence”). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

 

Precision, as shown in Equation (2), is the ratio of correct 

classifications as “occurrence” over the total number 

classifications as “occurrence”. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
 (2) 

 

Recall (Equation (3)) is calculated as the ratio of correct 

classifications as “occurrence” over the total number of 

occurrences. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
 (3) 

 

Finally, F1-score is the harmonic mean of the precision 

and recall as given in Equation (4). 

 

𝐹1 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

=
(𝑇𝑃)

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 

(4) 

 

2.2.1 Neural networks (NN) 

NNs, inspired by biological neurons, are composed of 

intelligent and interconnected processing units. These 

connections have associated weights, which are updated at 

each training step via gradient descent algorithm, called 

backpropagation [19]. Since NNs have multiple layers, as the 

phrase deep learning suggests, training takes place at 

different levels of hierarchy, allowing them to learn very 

complex relations between the input and output variables. An 

NN structure is shown in Figure 2. 

 

 

Figure 2. NN architecture 

 

In this architecture, input variables are denoted by the 

vector x, the desired output or ground truth is represented by 

d, and the predicted value of d by the NN model is shown as 

y. Since alarm prediction is a binary classification problem, 

the model output consists of a single variable. The forward 

propagation equations (Equation (5) and (6)) give the neuron 

outputs. According to the terms used in Figure 2, the neuron 

output zi
[l] is calculated as shown in Equation (5) where 𝑖 =

1, 2, . . . , 𝑛𝑙  and 𝑙 = 1, 2, . . . , 𝐿 and 𝑙 represents the layer 

number, 𝑤𝑖𝑗  represents weights between the 𝑖𝑡ℎ neuron and 

the 𝑗𝑡ℎ input 𝑢𝑗, 𝑏𝑖 represents the bias associated with the 𝑖𝑡ℎ 

neuron, 𝑛𝑙−1 represents the number of neurons in the 

(𝑙 − 1)𝑡ℎ layer, 𝑛𝑙 represents the number of neurons in the 

𝑙𝑡ℎ layer, and L represents the number of layers. 

 

𝑧𝑖
[𝑙]

= ∑ 𝑤𝑖𝑗
[𝑙]

⋅ 𝑢𝑗
[𝑙−1]

𝑛𝑙−1

𝑗=1

+ 𝑏𝑖
[𝑙]

   (5) 

 

Then this output is undergone to a nonlinear activation 

function as shown in Equation (6) where 𝑎 can be a sigmoid, 

reLU, tanh, etc. In these formulas, the input variable 𝑥𝑗 is 

represented as 𝑢𝑗
[0]

, and the NN output 𝑦 as 𝑢[𝐿]. 

 

𝑢𝑖
[𝑙]

= 𝑎[𝑙](𝑧𝑖
[𝑙]

) (6) 

 

The weight updates based on the gradient descent 

algorithm are calculated by backward propagation equations, 

as shown in Equation (7) and (8) where 𝛼 is the learning rate 

and 𝐽 is the logistic regression cost function to be minimized 

given in Equation (9). 

 

𝑤𝑖𝑗
[𝑙]

= 𝑤𝑖𝑗
[𝑙]

− 𝛼
𝜕𝐽

𝜕𝑤𝑖𝑗
[𝑙]

 (7) 

 

𝑏𝑖
[𝑙]

= 𝑏𝑖
[𝑙]

− 𝛼
𝜕𝐽

𝜕𝑏𝑖
[𝑙]

 (8) 

 

𝐽 =  −[𝑑 ∙ log(𝑦) + (1 − 𝑑) ∙ log(1 − 𝑦)] (9) 
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2.2.2 Random forests (RF) 

RF, originally proposed by Breiman in the 2000's, is a 

supervised learning algorithm [29]. It consists of a predictor 

ensemble of decision trees (DTs) that grow in randomly 

selected subspaces of data. RF combines the output of those 

DTs to reach a unique result [30]. 

DTs start with a basic question, constituting the root 

node, from where a series of questions make up the decision 

nodes. The tree acts as a means to split the data in the best 

way possible. Questions fitting the criteria follow the “True” 

branch and the others follow the alternate “False” path. The 

final decision arrived after answering the questions is 

denoted as the leaf node, as shown in Figure 3. 

 

 
 

Figure 3. DT structure where RF algorithm is based on 

 

DTs are prone to bias or overfitting. To overcome these 

problems in the random forest algorithm, an ensemble is 

formed from multiple decision to predict more accurate 

results, since the individual trees are uncorrelated with each 

other. Predictions of ensemble DTs are collected to find the 

most suitable result. 

In the bagging (a.k.a. bootstrap aggregation) ensemble 

method, a data from the training set is chosen randomly and 

the corresponding result is found. This procedure is repeated 

multiple times where selection of the same data samples is 

allowed (selection with replacement). The majority of the 

results give the final estimate for the classification type tasks 

[29]. In this way, variance is reduced in noisy datasets.  

RF algorithm creates an uncorrelated collection of DTs. 

It is different from DTs such a way that while DTs consider 

all the possible feature splits, RFs only select a subset of 

those features randomly. This ensures DTs used to be low 

correlated, yielding to less risk of overfitting. The number of 

trees and their depth (i.e., node levels) are the main hyper-

parameters. 

RFs can adapt themselves to the nonlinearities existing in 

the data, and can make more accurate predictions than linear 

regression methods. 

2.2.3 Extreme gradient boosting (XGBoost) 

XGBoost is a modified and improved version of decision 

trees, optimized for speed and performance [31]. It is a 

scalable, sparsity-aware algorithm for data with high degrees 

of dimensionality and correlation [32]. 

Similar to RF, XGBoost also utilizes multiple DTs, 

however it combines them in a different way. In this 

approach, weak models are improved by brought together to 

create a collectively strong model. The boosting process is 

repeated several times where each new model attempts to 

correct the errors of the combined ensemble of previous 

models. 

At each boosting step, an observation weight for the next 

model is calculated based on the gradient of the error with 

respect to the prediction. Then the new model acts in the 

direction minimizing the prediction error, hence the name of 

the algorithm. XGBoost iteratively train an ensemble of DTs 

and the final prediction is a weighted sum of all of the tree 

predictions.  

This iterative boosting process helps minimise the bias 

hence addressing the underfitting issues, whereas RF’s 

bagging deals with the variance and overfitting. As it reduces 

the error in each iteration, XGBoost also prioritises the 

points which are harder to predict, thus improving accuracy. 

This process in general results in a fine-tuned model that 

performs well on unseen data, which also helps with 

overfitting, when incorporated with tuned L1 and L2 

regularization hyperparameters and other techniques such as 

cross-validation. This sequential decision tree building sets 

XGBoost apart from RF since RF trains each branch 

independently and then aggregates the results with a chosen 

method. This allows XGBoost to improve accuracy by 

focusing on specific errors made. 

As for the impact on the overall speed, XGBoost also 

performs efficiently. This is mainly related to its ability to 

decrease the overall training time by involving parallel 

computation when building the decision trees [33]. The 

overall speed and efficiency can be further improved using 

other hyperparameters such as shrinkage, maximum depth, 

tree growth limit and regularization. As mentioned before, 

being a sparsity-aware algorithm also impacts the speed 

since it allows skipping over missing or zero entries in the 

dataset, therefore increasing the performance. 

Alongside the given hyperparameters, a substantial 

amount of hyperparameters exist within the scope of 

XGBoost, while also allowing the customization of the loss 

function. This allows a more flexible and optimized 

approach to the problem at hand, allowing access to a 

balanced viewpoint in terms of speed and computational 

complexity. When coupled with the property of XGBoost 

being resilient against datasets with outliers, it allows a 

reliable and robust solution for a variety of datasets some of 

which may also include impacting elements such as noise. 

When compared to RF in terms of model complexity, in 

some cases as a consequence of RF growing trees fully it 

may lead to models with increased complexity whereas 

XGBoost can stop the tree growth by using the pruning 

method leading to another method of preventing overfitting. 

However, it must be kept in mind that false tuning XGBoost 

may also result in it being an unnecessarily complex model. 

3 Results and discussions 

All models constructed in this work were re-run multiple 

times and five-fold results were obtained. The averages for 

different configurations are calculated and given below. The 

data in each training are divided into training and test sets, as 

90% and 10%, respectively, as the most common split used 

in the literature. 
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Figure 4. Initial tree of XGBoost 

 

Results for the NN model are shown in Table 5 for three 

different past window openings of the inputs. The selected 

number of hidden layers is two with 100 neurons in each. 

The following are used in all networks: Adam optimizer, 

binary cross-entropy loss function, and 0.1 dropout. The 

learning rate is taken as 0.01.  

 

Table 5. Results with NN 

 Last Day Last Week Last Month 

Average 
Accuracy 

0.655 0.615 0.579 

Average 

Precision 
0.676 0.645 0.650 

Average Recall 0.588 0.487 0.321 

Average F1-

score 
0.629 0.555 0.430 

 

According to the F1-scores given in Table 5, the most 

successful configuration is the one with the past day inputs. 

This means that alarms occurred earlier than one day do not 

have significant effect on the current alarm, but the ones 

logged during the last 24-hours should be taken into account. 

Table 6 presents the best results for RF models for each 

past window scheme. Three different amounts of trees are 

used: 300, 500, and 1000. The maximum depth options are 

32, 64, and 128. 

 

Table 6. Results with RF 

 Last Day Last Week Last Month 

Number of Trees 500 1000 1000 

Maximum Depth 64 128 128 

Average Accuracy 0.762 0.746 0.708 

Average Precision 0.743 0.712 0.710 

Average Recall 0.768 0.759 0.754 

Average F1-score 0.756 0.735 0.731 

 

Although the results are close in the RF model, the F1-

score of 0.756 shows that the best configuration for the RF 

case is the model with the alarm occurrence numbers during 

the last day as inputs, which is a consistent result with the 

NN case. 

The same number of trees and maximum depth 

configurations of the RF case are used for the XGBoost 

models, and the results are shown in Table 7. Again, the F1-

score of 0.767 indicates that the most effective input is the 

number of alarm occurrences of the last day, as compared to 

the last week or month. This result is also aligned with the 

previous NN and RF models, showing that the alarm 

occurrences during the last day are of the most importance. 

The very first decision tree following the first five 

branches created for the XGBoost algorithm is given in 

Figure 4 for visualization purposes. 

Table 8 summarizes the evaluation figures for the best 

models of NN, RF, and XGBoost. Among these three, 

XGBoost provides the greatest F1-score (0.767). This result 

is expected since it is known in the literature that XGBoost 

outperforms other similar methods such as NN and RF. 

 

Table 7. Results with XGBoost 

 Last Day Last Week Last Month 

Number of Trees 500 1000 1000 

Maximum Depth 64 128 128 

Average Accuracy 0.769 0.770 0.752 

Average Precision 0.753 0.741 0.735 

Average Recall 0.781 0.789 0.758 

Average F1-score 0.767 0.764 0.746 

 

Table 8. Comparison between NN, RF and XGBoost 

 NN RF XGBoost 

Average Accuracy 0.655 0.762 0.769 

Average Precision 0.676 0.743 0.753 

Average Recall 0.588 0.768 0.781 

Average F1-score 0.629 0.756 0.767 

 

Accuracy graphs for a single run for each method can 

also be seen in Figure 5. 
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Figure 5. Accuracy logs for each model 

 

In addition to having the greatest accuracy among the 

given three models, XGBoost also has the lowest runtimes, 

thus being the most efficient one. RF runtime ranges from 49 

seconds to 96 seconds for a single case, whereas NN varies 

between 87 seconds to 133 seconds. On the other hand, 

XGBoost spans from 21 seconds to 40 seconds. 

4 Conclusions  

This paper presents a performance comparison among 

three different ML methods, namely NN, RF, and XGBoost 

for a PdM related binary classification problem. The task is 

to predict an alarm condition from past information. 

The system output is the predicted probability of an alarm 

occurrence, whether it will be triggered in the following two 

hours or not; and the inputs are the number of occurrences 

for each alarm during a past period. Three windows are 

considered for the past values: last day, last week, and last 

month. 

The obtained training results show that the ML model 

using the XGBoost algorithm gives the best F1-score of 

0.767 with number of trees equal to 500 and maximum depth 

of 128 for the alarm prediction task. 

The study is based on a real-world dataset from a packing 

industry, in which distinct alarms are logged by multiple 

machines. Since unanticipated faults and breakdowns in 

industry may cause high costs, it is of great importance for 

companies to foresee problems in advance and to take the 

necessary precautions. Integrating ML algorithms with PdM 

yields considerable cost reduction. In this respect, ML-

powered alarm prediction has a significant business value 

and it is important to identify and select the most suitable ML 

method, as proposed here. 

In this study, the model depends on the alarm logs alone; 

hence, it can be applied to legacy equipment, to which it is 

impossible to apply typical PdM approaches with rich sensor 

measurements, and therefore, data are limited. 

Rapid developments in the Industry 4.0 era make it 

increasingly easy to benefit from data-driven, ML-based 

decision systems. Future work should consider the same 

problem with other ML approaches such as recurrent neural 

networks or LSTM, as well as the three methods 

aforementioned, for comparison of results. This current work 

was conducted without the information about the importance 

level of the different machines and different alarms; a more 

meaningful machine and alarm selection could be achieved 

with support from a domain expert. Data distribution may 

change according to the alarm selected, which may lead to a 

different ML method being considered.  
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