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Abstract 

Ascertaining and mapping soil nutrient data is crucial for governments to maintain soil health on farmlands. As part of the soil health 

card project, a total of 329 geo-referenced soil samples were collected from Thaticherla village, Anantapur mandal, Andhra Pradesh, 

India. These samples were analyzed for various soil properties such as soil pH, electrical conductivity (EC), organic carbon (OC), 

available nitrogen (N), available phosphorus (P), available potassium (K), available sulphur (S), DTPA extractable micronutrients (Fe, 

Mn, Zn, Cu), and hot water-soluble boron (B) at a depth of 0 to 15 cm. The results showed high variability (>35%) in coefficients of 

variation in Cu, EC, Zn, and B. The findings indicated positive correlation between Zn and Mn; N and OC; and OC and Zn. The data 

underwent logarithmic and Box-Cox transformations to achieve normalization. The ordinary kriging method was employed to analyze 

the spatial variability. The findings revealed that exponential model was appropriate for B, Fe, Mn, Zn, and OC; Gaussian for K; J-

Bessel for N; K-Bessel for Cu, P, and S; stable for EC and rational quadratic for pH, respectively. The analysis showed a strong to 

weak spatial dependency. In the study area, the spatial variability maps exhibited deficiencies of 97%, 96% and 40% for N, OC and 

Zn, respectively. Therefore, it is urgent to apply suitable manures and fertilizers in the study area to address these issues. The study 

area exhibited significant variation in spatial patterns, emphasizing the importance of implementing field-specific plans for soil health 

and environmental management. 
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Introduction 

Soil health is essential for food security, sustainable 

development, plants, animals, environment, and humans 

(Kibblewhite et al., 2007; Das et al., 2022; Behera et al., 

2023). The depletion of soil nutrients can have adverse 

impacts on crop productivity and soil health, emphasizing 

the necessity for implementing measures to sustain and 

improve soil health (Kumar and Babel, 2011). 

Implementing appropriate soil management strategies can 

effectively address various challenges, such as land 

degradation, global warming, hunger, and poverty Behera 

et al. (2023). Moreover, utilizing limited agricultural land 

in an efficient way is one of the best soil management 

practices (Vasu et al., 2021).The lack of essential 

nutrients in soil is a significant global concern, as it can 

have adverse effects on yield and plant growth (Abdel-

Mawgoud et al., 2011).The distribution of nutrients in soil 

can vary depending on several external and intrinsic 

factors such as rainfall, irrigation, soil type, fertilizer 

usage, climate, topography, human activities, parent 

material, physiography, and soil depth, which can impact 

ecosystems in various ways, and these factors may have 

effects in small agricultural areas (Bogunovic et al., 

2017a; Li et al., 2016; Esetlili et al., 2018). Farmers play 

a significant role in maintaining soil health, which 

requires a complete understanding of their soil's nutrient 

status and appropriate agricultural practices for 

maintaining health and profit. Thus, cultivating crops 

without access to information on soil nutrient distribution 

and proper management practices can lead to 

unsustainable yields. Also, soil analysis-based nutrient 

management recommendations have proven to be 

beneficial for farmers, increasing crop yield and 

productivity (Wani and Singh, 2021). 

Accurate maps representing the distribution of soil 

nutrient properties are important for farmers to reduce the 

costs of fertilizer use. Spatial variability of soil nutrients 

information may provide guidance to farmers for fertilizer 

recommendations (Jin and Jiang, 2002; Vasu et al., 2021) 

to specific fields to improve crop yields and sustainable 

land use development and planning (Reza et al., 2017; 

Eljebri et al., 2019; Chatterjee et al., 2015; Shukla et al., 

2020; Koç and Karayiğit, 2022; Ngabire et al., 2022). Soil 

fertility changes over time and space due to natural and 

human factors, and mapping nutrient variability in 

specific fields is one way to manage soil health. Kriging, 

a geostatistical technique, can predict nutrient values by 

minimizing estimation errors and accounting for spatial 

correlation, saving time, reducing costs, and minimizing 

pollution. Maps of soil nutrients are essential for precision 

agriculture, and geostatistical methods are reliable in 

modeling soil property variation with distance 

(Goovaerts, 1999; López-Granados et al., 2002; Denton et 

al., 2017). Numerous researchers have applied 
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geostatistics, particularly Kriging, which is widely 

employed for predicting nutrient levels (Goovaerts, 1999; 

Denton et al., 2017; López-Granados et al., 2002; Lipiec 

and Usowicz, 2018; Behera et al., 2023; Salem et al., 

2024). Ordinary Kriging (OK), an interpolation method, 

is commonly used to predict spatial distribution of soil 

nutrients (Sanad et al., 2024; Zhang et al., 2015; Tang et 

al., 2017; Saleh, 2018). Behera and Shukla (2015) 

observed significant differences in organic carbon, soil 

pH, and electrical conductivity. Furthermore, 

environmental factors employ a noteworthy impact on the 

spatial distribution of zinc in acidic soils across India 

(Behera et al., 2011). Several scholars applied 

geostatistics and OK interpolation to examine spatial 

variability for different research objectives in various soil 

types in diverse regions of India (Nogiya et al., 2024; 

Reza et al., 2017; Behera et al., 2018; Vasu et al., 2017; 

Bhunia et al., 2018; Verma et al., 2021; Behera et al., 

2023). 

National soil heath card project 

The Soil Health Card (SHC) project was initiated by 

government of India in 2015 to provide farmers with 

essential information to improve soil health, increase crop 

yields and farmers’ income (SHC, 2023). The SHC data 

collection and laboratory analysis was done in three 

phases during the year from 2015 to 2020.Some scholars 

have done research on SHC data for various purposes. The 

SHC initiative at National level may empower farmers 

through public-private partnerships and participation (Das 

et al., 2022). Patra et al. (2017) studied various levels of 

potassium (K) in the soil in various districts of India using 

SHC data. Niranjan et al. (2018) evaluated the 

effectiveness and awareness using SHC data. Reddy 

(2019) explored the challenges and opportunities for other 

countries in implementing the SHC project. Fitzpatrick et 

al. (2022) discussed the relationship between SHC and 

zero-budget natural farming. Morton et al. (2023) 

reported that SHC data of India indicate a strong positive 

relationship between children's height development and 

the availability of zinc in the soil, as well as between soil 

iron availability and haemoglobin levels. Some scholar’s 

generated spatial variability maps by applying IDW 

interpolation using SHC data (Pratibha et al. 2020; 

Velamala and Pant 2023; Velamala and Pant, 2024), 

however research on literature suggests that geostatistical 

analysis in particular kriging interpolation is best method. 

According to the literature review, geostatistical analysis 

for studying spatial variability in India, particularly in the 

Anantapur district of Andhra Pradesh, is either limited or 

unavailable in the literature. 

To fill the gap in this study investigated parameters of soil  

namely a) soil-macronutrients:-nitrogen (N), potassium 

(K), phosphorus (P), and secondary nutrient sulphur (S), 

b) soil-micronutrients:-copper (Cu), zinc (Zn), manganese

(Mn),boron (B), and iron (Fe), and c) soil-chemical

parameters:-organic carbon (OC), soil pH, and electrical

conductivity (EC), in the cultivated soils located at

Thaticherla village of Anantapur mandal, Andhra

Pradesh, India, it is a model village under SHC project of

the Indian government with objectives are: i) identify

characteristics and its relationships among various soil

properties, and ii) to generate and evaluate spatial

viability maps.

Data and methodology 

Study area 

The present area (Fig.1) is primarily comprised of red and 

black soils, with the soil composition being 

predominantly shallow and consisting of red sandy 

ferruginous loam. The farmers adopt monocropping as 

their agricultural practice, focusing on the cultivation of 

groundnuts, red gram, rice, and vegetables. The climate is 

tropical, characterized by hot and arid weather. On 

average, the study area experiences rainfall (annual) of 

553 mm (DES, 2019). 

Sampling and analysis 

A total of 329 soil samples were obtained from 

agricultural fields at a depth of 0 to 15 cm. These samples 

were sent to a designated public soil testing lab for air-

drying, processing, and nutrient analysis. A conductivity 

meter and a pH meter, respectively, were used to measure 

the EC and pH, using a 1:2.5 soil and water ratio (Jackson, 

1967). The soil OC content was estimated by Walkley and 

Black, 1934 method. The N was quantified using the 

alkaline KMnO4 technique (Subbiah and Asija, 1956), 

while P was extracted by 0.5 M sodium bicarbonate (pH 

8.5) solution and assessed using ascorbic acid method 

(Olsen et al., 1954). The K was extracted through a neutral 

ammonium acetate solution (pH7.0), and the flame 

photometry technique was employed to determine its 

availability (Hanway and Heidel, 1952). The S was 

extracted using a 0.15% CaCl2 solution (Williams and 

Steinbergs, 1959). Micronutrients such as Fe, Zn, Mn, and 

Cu were extracted using a 0.005 M DTPA 

(diethylenetriaminepentaacetic acid) (pH-7.3) solution 

(Lindsay and Norvell, 1978), and their concentration was 

measured through atomic absorption spectrophotometry. 

The availability of B was determined using the 

azomethine-H method, and a UV/VIS spectrophotometer 

was used for assessment (Gupta, 1967). The 

categorization of soil fertility for OC, K, P, and N was 

based on three levels: low, medium, or high. The soil S, 

B, Mn, Cu, Fe, and Zn were accurately interpreted as 

deficient or sufficient (Arora, 2002). 
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Fig. 1 Location map of study area 

Data Analysis  

Classical statistical analysis 

Present study examined 329 soil samples for 12 soil 

parameters. The study calculated descriptive statistics for 

these parameters, including the minimum (min), 

maximum (max), median, mean, kurtosis, skewness and 

correlation Pearson's correlation coefficients. The data 

was analyzed for outliers, and its normality was tested 

using statistical software packages such as IBM SPSS 

(version 28.0.1.1) and R Core Team (2023) in the 

windows environment. 

Data outliers’ detection 

The study area data outliers were dictated based on most 

commonly used formula given in the equation (1). 

x = (x̅ ± δ ∗ SD)  (Eq. 1) 

Where x̅ and SD are mean and standard deviation 

respectively, δ values range from 2 to 3 and y is outlier if 

it is lies more than δ standard deviations (Jones, 2019). 

According to the equation (1) and δ=3, the study area data 

did not find any outliers and considered n=329 

observations for this study. 

Data normality and Transformation 

The geostatistical analysis may be affected by distribution 

asymmetry, as environmental data often exhibits an 

asymmetric distribution (Barnett and Lewis, 1994; 

McGrath et al., 2004). In some cases, non-normality of the 

distribution (p>0.05) can impact the spatial variogram 

analysis of the dataset, leading to unsatisfactory results 

(McGrath et al., 2004; Kerry and Oliver, 2007; Goovaerts 

et al., 2005). One dimensional K-S-Test (Kolmogorov-

Smirnov) was utilized to examine data distribution, 

thereby ensuring accurate spatial interpolation. The 

kurtosis and skewness values are analyzed to determine if 

the data follows a normal distribution. In soil survey 

research, scholars employed data transformation 

techniques, such as the Box-Cox-Transformation (BCTN) 

and logarithmic transformation (LTN) methods, to bring 

data to normal-distribution (ND) (Bogunovic et al., 

2017b). Previous literature suggests that a logarithmic 

transformation is often applied when the data is positively 

skewed or has a skewness value greater than one (Webster 

and Oliver, 2001; McGrath et al., 2004 ;). However, a 

LTN may not always apply to every dataset (Fu et al., 

2013). Therefore, BCTN is recommended for improving 

normality (Box and Cox, 1964) in present study. Equation 

(2) illustrates the mathematical form of the BSTN.

𝑥(𝛼) = {

𝑥𝛼 − 1

𝛼
 , 𝑖𝑓  𝛼 ≠ 0

log(𝑥) , 𝑖𝑓  𝛼 = 0
 (𝐸𝑞. 2) 

Where, x is data to be transformed and αis transformation 

exponent its values range from –5 to 5 (Asar et al., 2017). 

If λ equals zero, the BSTN takes on a logarithmic form. 

The R-Language software (R Core Team, 2023) was 

utilized to compute the value of lambda (λ). Accordingly, 

LTN for EC and Cu and BCTN for remaining soil 

parameters applied. 

Geostatistical analysis 

The Geostatistical Assistant of ArcMap 10.8.3 is utilized 

to calculate semivariogram (SV) and ordinary-kriging 

(OK) interpolation to analyze the SV of soil properties in 

the study area. Equation (3) (Goovaerts, 1999; ESRI, 

2001) was used to calculate the SV. 

      γ(u)=
1

2𝑁(𝑢)
∑ [z(𝑎𝑖) - z(𝑎𝑖 + 𝑢) ]2  (Eq. 3) 

N(u)

i=1

Velamala and Pant / IJEGEO 11(3): 090-105 (2024) 
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Where z (𝑎𝑖) and z (𝑎𝑖 + 𝑢) are values of variables at

observed sample-locations𝑎𝑖 and 𝑎𝑖 + ℎ
respectively, γ(u) is the function of SV for u (lag 

distance), N(u) refers to the no. of pairs of points of 

samples separated by u (distance-of-lag). 

To assess the soil characteristics, an examination of the 

properties of Nugget (Nu), Partial Sill (PS), Sill (Si), and 

the range was conducted. The Nu value was obtained from 

the y-axis SV intercept, and the Si was identified as the 

point where model exhibited flattening. The range 

indicated the distance over which spatial correlation was 

present, and the partial sill denoted the disparity between 

Si and Nu. The spatial interdependence of individual soil 

properties was ascertained by evaluating the ratio between 

Nu and Si. The classification of the spatial dependency of 

each soil property was done based on the criteria 

recommended by Cambardella et al. (1994) as weak 

(>75%), moderate (25% to 75%), or strongly dependent 

(less than 25%). The most suitable SV model cannot be 

determined by a single, universal standard. To choose the 

best fit model, researchers use a variety of software 

packages that offer different parameters for evaluation, 

and they also depend on personal expertise. In this study, 

the geostatistical assistant of ArcMap10.8.3 software 

(ESRI) to assess eleven semivariogram models, namely 

Stable, K-Bessel, Hole Effect, Exponential, Spherical, 

Gaussian, J-Bessel, Circular, Tetraspherical, Rational 

Quadratic, and Penta spherical was utilized and selected 

the best-fit model. This study's approach to model 

selection and error validation is similar to other studies 

(Foroughifar et al., 2013). 

Ordinary Kriging 

Many researchers commonly employed the Ordinary 

Kriging (OK) method to estimate semivariogram 

parameters and create surface maps of soil properties. 

This technique is preferred because it provides reliable 

and unbiased predictions of unsampled sites while 

minimizing the effect of outliers (Cressie, 1993; Fu et al., 

2013; ESRI, 2001). The Ordinary Kriging interpolation is 

expressed in equation (4). 

 𝑋(𝑣0) = ∑ w𝑖  𝑋(𝑣𝑖) 

𝑛

𝑖=1

 (4) 

Here, unknown sampling point is X(𝑣0) determined by the

value of a known point Z(𝑣𝑖)and wi  is weight unknown

of the sampling point at ith location, with n representing 

the number of known observed values. 

Cross Validation 

In cross-validation, values are estimated by subtracting 

one sample at a time and calculating the value from 

remaining observations. This technique was applied to 

test the accuracy and performance of various 

semivariogram models for different soil properties. The 

models tested include K-Bessel, Circular, Tetra-spherical, 

Spherical, Penta-spherical, Exponential, Rational 

quadratic Gaussian, J-Bessel, Hole Effect, and Stable. 

Cross-validation techniques namely Root mean square 

standardized error (RMSSE), Root mean square error 

(RMSE), Mean standardized error (MSE) and Average 

standard error (ASE) equations for these techniques, as 

denoted by (5), (6), (7), and (8), are presented in Table 1 

to select the best-fitted model. These techniques were 

applied using the geostatistical assistant of ArcMap 

10.8.3. The best-fitted model was selected based on the 

results of cross-validation techniques. These techniques 

were employed in choosing best-fit models with low 

RMSE values, ensuring that ASE and RMSE values were 

almost equal, MSE values nearly to zero, and determining 

RMSSE values approximately to one. It noted that 

overestimation occurs when RMSEE exceeds one, while 

underestimation occurs when it is less than one (Yumin et 

al., 2022; ESRI, 2023; Reza et al., 2019). 

Table 1 The Statistical Indices used for assessment of models 

Index Equation 

Mean Square Error (MSE) 
MSE =

1

𝑛
∑ [

z*(𝑥𝑖) - z(𝑥𝑖)

𝜎2(𝑥𝑖)
]  (5) 𝑛

𝑖=1

Root Mean Square Error (RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑[z*(𝑥𝑖) - z(𝑥𝑖)]2

𝑛

𝑖=1

  (6) 

Root Mean Square Standardized Error (RMSSE) 𝑅𝑀𝑆𝑆𝐸 = √
1

𝑛
∑ [

z*(𝑥𝑖) - z(𝑥𝑖)

𝜎2(𝑥𝑖)
]

2
𝑛
𝑖=1       (7) 

Average Standard Error (ASE) 
𝐴𝑆𝐸 = √

1

𝑛
∑ 𝜎2(𝑥𝑖)

𝑛
𝑖=1    (8) 

Where z*(𝑥𝑖) , z(𝑥𝑖)  are estimated and observed values at a study area and 𝜎2(𝑥𝑖) 𝑖𝑠 𝑘𝑟𝑖𝑔𝑔𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒.

Results and Discussion 

Descriptive Statistics 

The details of classical statistics of study area (n=329) 

given in Table 2. The mean values of OC, EC, Cu, Zn, B, 

Mn, Fe, pH, S, P, N, and K are 

0.289,0.331,0.658,0.725,0.996,4.114,4.773,7.496,29.348

,32.216,181.453 and 337.064, respectively. Among these, 

the highest is for K (337.064), and the lowest means for 

OC (0.289). The mean and median values are almost equal 

for pH and OC compared to the other parameters. 

According to Wilding (1985), variability in the CV% is 
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classified as moderate (15%-35%), high (above 35%), and 

low (below 15%). The CV% of pH, N, P, Fe, OC, K, S, 

Mn, B, Zn, EC, and Cu are 0.06, 0.21, 0.24, 0.31, 0.32, 

0.33, 0.33, 0.34, 0.39, 0.51, 0.55 and 0.69. These results 

indicate that pH was low; N, P, Fe, OC, S, K, and Mn were 

moderate; Cu, EC, Zn, and B had high variability. 

Because of the logarithmic scale of soil proton 

concentration, studies from all around the world have 

documented low CV values in soil Ph (Bhunia et al., 2018; 

Behera et al., 2021; Li et al., 2019). Among the 

micronutrients, Fe and Cu have low (0.31%) and high 

(0.69%) variability, respectively. Micronutrient fertilizers 

are used to improve soil health and productivity, but the 

quantity is affected by multiple factors such as parent 

material, pH, rainfall, and organic matter (Dimkpa and 

Bindraban, 2016). Therefore, it is essential to understand 

these factors to develop effective soil health management 

strategies. 

Table 2 Classical statistics (n=329) for study area soil properties 

Soil parameter Minimum Maximum Mean Median SD CV% 

N 128 295 181.453 172 37.705 0.21 

P 15 48 32.216 32 7.797 0.24 

K 152 670 337.064 325 110.896 0.33 

pH 6.25 8.21 7.496 7.53 0.418 0.06 

EC 0.1 0.812 0.331 0.28 0.181 0.55 

OC 0.1 0.56 0.289 0.28 0.091 0.32 

B 0.18 1.93 0.996 0.96 0.393 0.39 

Zn 0.04 1.779 0.725 0.678 0.373 0.51 

Fe 0.342 6.85 4.773 4.916 1.461 0.31 

Mn 0.586 6.904 4.114 3.894 1.411 0.34 

Cu 0.113 1.82 0.658 0.512 0.452 0.69 

S 14 47 29.348 28 9.625 0.33 
N= Available N (kg ha-1), P= Available P (kg ha-1), K= Available K (kg ha-1), pH= Soil pH, EC= Electrical conductivity (dSm-1), OC= 
Organic Carbon (%), B= Hot Water-Soluble B (mg kg-1) Zn= DTPA Extractable Zn (mg kg-1), Fe= DTPA Extractable Fe (mg kg-1), 
Mn= DTPA Extractable Mn (mg kg-1), Cu= DTPA Extractable Cu (mg kg-1), S= 0.15% CaCl2 Extractable S (mg kg-1), SD-Standard 
deviation and CV-Coefficient Variation. 

Data transformation 

After examining the raw data (Table 3), the soil 

characteristics N, EC, OC, Zn, Cu, K, and B had an 

asymmetrical right-skewed shape distribution, and pH 

and Fe had an asymmetrical left-skewed distribution. In 

contrast, P, Mn, and S had a symmetrical distribution. 

Skewness of N, EC, and Cu was more than one, and all 

the soil parameters analyzed had p-values below 0.001. 

The range of kurtosis values observed for the studied soil 

properties was between -1.024 and 1.426. These results 

indicate soil parameters of the study area not exhibited a 

normal distribution, thus necessitating data 

transformation before conducting geostatistical analysis. 

The data of the study area was analyzed using logarithmic 

transformation. Afterward, a normality test was applied, 

which showed that only soil EC passed the test with a p-

value of 0.181. The use of LTN significantly reduced the 

high skewness and kurtosis. Also, the values of p for the 

other parameters improved, except for Cu. A Box-Cox 

transformation is applied to reduce skewness and bring it 

closer to zero to address this issue. 

The BSTN was employed for all soil parameters (except 

soil EC) to select a suitable power parameter (Lambda=λ) 

and skewness nearer to zero. After the BSTN, normality 

tests passed for N, K, pH, Zn, and Fe. Furthermore, 

skewness, kurtosis, and p-values were reduced further, 

except for soil P (p=0.002) and Boron (p = 0.17). Even 

after applying LTN and BSTN, the normality test did not 

pass for soil P, B, Mn, OC, Cu, and S. Also, p-values for 

these soil parameters improved to more than 0.001, except 

for soil OC (p=0). After applying LTN for Soil EC and 

BSTN for N, K, pH, Zn, and Fe, the dataset of the study 

area exhibited normality and improved kurtosis and 

skewness values. The K-S test values have improved 

compared to the original raw data. Despite undergoing 

BSTN and natural LTN, the datasets of the study area still 

do not exhibit a normal distribution. Zhang et al. (2005 

and 2008) have observed that environmental data often 

exhibit distributions that are not normal or log-normal but 

previous studies (McGrath and Zhang, 2003; Zhang, 

2006) suggest that the data will closely approximate 

normality. Similar findings have also been reported by Fu 

et al., 2010; and Bogunovic et al., 2017b. Therefore, the 

transformed dataset of the study area can be effectively 

analyzed using geostatistical analysis. 

The relationships between different soil parameters were 

analyzed using Pearson's correlation coefficient (Table 4). 

Positive correlation identified between N and OC 

(r=0.167), similar findings were observed by Chatterjee et 

al. (2015), OC and Zn (r=0.15), similar results found by 

Behera et al. (2011). The soil organic carbon (OC) has 

direct impact on physical, biological, and chemical 

properties which directly affects soil nutrients and crops. 

Zn and Mn (r=0.186), and Fe and Cu (r=0.153) showed 

positive correlations. Negative correlations were also 

found between K and organic OC (r=-0.147), K and Zn 

(r=-0.170), EC and Fe (r=-0.145), Zn and Fe (r=-0.334), 

Zn and Cu (r=-0.206), and Mn and Cu (r=-0.208) at 

p<0.01. Additionally, negative correlations were found 

between P and Cu (r=-0.132) and Zn and S (r=-0.117) at 

p<0.05. This study highlights the lack of correlation 

between Soil pH, and B with other soil parameters. 
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Table 3 Skewness, kurtosis and normality test results of Kolmogorov–Smirnov of raw, log transformed and Box–Cox transformed data 

Soil 

Parameter 

Raw data Log-Transformed Box-Cox Transformed 

Skewness Kurtosis 

K-S test

Skewness Kurtosis 

K-S test Power 

Parameter 

(Lambda=λ) 

Skewness Kurtosis 

K-S test

D-

Statistic 
p statistic p 

D-

Statistic 
p 

N 1.223 3.897 0.17 < .001 0.823 3.051 0.13 0.00004 -1.92 0.078 -0.564 0.06 0.174 

P 0.097 2.619 0.11 < .001 -0.6482 3.663 0.082 0.0232 0.8 -0.02 -0.29 0.1 0.002 

K 0.618 3.219 0.09 < .001 -0.232 2.708 0.51 0 0.26 -0.014 -0.293 0.07 0.072 

pH -0.353 2.837 0.06 < .001 -0.503 3.12 0.068 0.00084 2 -0.21 -0.357 0.07 0.077 

EC 1.138 3.683 0.14 < .001 0.024 2.4 0.042 0.181 

OC 0.851 4.386 0.14 < .001 -0.44 4.02 0.15 0 0.34 0.018 0.778 0.13 0 

B 0.814 3.194 0.14 < .001 -0.3 3.5 0.74 0.053 0.22 -0.003 0.1  .085 0.017 

Zn 0.965 3.872 0.08 < .001 -0.867 5.22 0.76 0.0411 0.38 0.012 0.187 0.04 0.701 

Fe -0.676 2.96 0.1 < .001 -2.39 11.513 0.19 0 1.59 -0.225 -0.707 0.07 0.075 

Mn -0.009 2.499 0.11 < .001 -1.395 6.099 0.16 0 0.95 -0.057 -0.439  0.11 0.001 

Cu 1.217 3.199 0.25 < .001 0.427 2.2877 0.13 < .001 -0.34 0.046 -0.579 0.13 0.004 

S 0.147 1.973 0.1 < .001 -0.37 2.16 0.1 0.0019 0.59 -0.06 -1.007 0.09 0.015 

N= Available N (kg ha-1), P= Available P (kg ha-1), K= Available K (kg ha-1), pH= Soil pH, EC= Electrical conductivity (dSm-1), OC= Organic Carbon (%), B= Hot Water-Soluble B (mg 
kg-1) Zn= DTPA Extractable Zn (mg kg-1), Fe= DTPA Extractable Fe (mg kg-1), Mn= DTPA Extractable Mn (mg kg-1), Cu= DTPA Extractable Cu (mg kg-1), S= 0.15% CaCl2 Extractable 
S (mg kg-1) and  K-S test - Kolmogorov Smirnov test. Note - Transformed Data used for interpolation are given in Bold. 

Table 4 Pearson’s correlation coefficient among soil properties in the study area 

Soil parameter N P K pH EC OC B Zn Fe Mn Cu S 

N - 

P -0.050 - 

K -0.008 0.020 - 

pH -0.095 0.060 0.017 - 

EC -.192** -0.020 -0.004 0.089 - 

OC .167** -0.003 -.147** 0.056 -0.046 - 

B 0.030 -0.059 -0.088 0.014 -0.050 0.005 - 

Zn 0.010 0.042 -.170** 0.054 -0.021 .150** 0.032 - 

Fe 0.003 0.051 0.047 -0.088 -.145** 0.011 -0.010 -.334** - 

Mn -0.096 0.107 0.040 -0.002 0.023 -0.053 -0.027 .186** -.0153** - 

Cu 0.016 -.132* -0.053 -0.017 0.069 -0.108 0.073 -.206** .153** -.208** - 

S -0.079 0.029 -0.016 0.023 0.069 -0.101 -0.087 -.117* -0.035 0.052 0.064 - 

*. Correlation is significant at the 0.05 level (1-tailed), **. Correlation is significant at the 0.01 level (1-tailed) N= Available N (kg ha-1), P= Available P (kg ha-1), K= Available K (kg 
ha-1), pH= Soil pH, EC= Electrical conductivity (dSm-1), OC= Organic Carbon (%), B= Hot Water-Soluble B (mg kg-1) Zn= DTPA Extractable Zn (mg kg-1), Fe= DTPA Extractable Fe 
(mg kg-1), Mn= DTPA Extractable Mn (mg kg-1), Cu= DTPA Extractable Cu (mg kg-1), S= 0.15% CaCl2 Extractable S (mg kg-1) 
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Geostatistical Analysis 

The analysis of classical statistics alone cannot determine 

spatial variability of soil nutrients necessary to utilize 

semivariance function to assess these characteristics. The 

results of the semivariogram examination are given in 

Table 5. Scholars have conducted several studies to 

determine the most suitable models for different soil 

parameters. The results indicate suitable model was 

exponential for B, Zn, OC, Fe, and Mn, with distances of 

538.93, 689.84, 760, 1283.6, and 3972 meters, 

respectively and it was recognized as the most appropriate 

for properties of soil (Vieira and Gonzalez, 2003). The 

model of Gaussian for soil K at a distance of 1236 meters. 

K-Bessel model was the best fit for P, Cu, and S, with

ranges from 598.43, 1332.5, and 1838 meters,

respectively. J-Bessel model was the most suitable for

describing Soil N, with a distance of 850.59 meters. The

stable model for soil EC, while the rational-quadratic

model appropriate for soil pH, with ranges of 2573.8 and

621.24 meters, respectively. The Gaussian model has

been identified as the best model for soil parameter K, as

observed in other studies conducted by Abbas et al.

(2023.The exponential model is the most effective for Zn,

as indicated by Laekemariam et al. (2018). Hegde et al.

(2019) confirmed that the exponential model also works

well for Mn and Fe. Furthermore, Reza et al. (2016),

Hegde et al. (2019) provided evidence for the

effectiveness of the exponential model for OC. The K-

Bessel model has received support from Tripathi et al.

(2015) for soil P and Shukla et al. (2020) for Sulphur (S).

The range is used to ascertain an attribute's similarity

range. This study displays (Table 5) the ranges of various

soil parameters, including B, P pH, Zn, OC, N, Fe, K, Cu,

S, EC, and soil Mn are 538.93, 598.43, 621.24, 689.84,

760, 850.59, 1236, 1283.6, 1332.5, 1838, 2573.8, and

3972 meters, respectively. In this study, the value of a

high range of Soil Mn results was in line with Tamburi et

al. (2020). The range vary in this study area might be due

to factors including parent material, ecological processes,

climatic conditions, soil management practices, and

anthropogenic factors (López-Granados et al., 2002).

The percentage of Nugget (Nu) and Sill (Si) was 

examined to ascertain the spatial relationship of soil 

properties. Cambardella et al. (1994) classified spatial 

dependence as weak (above 0.75), moderate (between 

0.25 and 0.75), and strong dependency (below 0.25). In 

the current study, the results (Table 5) found strong for N, 

Cu, and S, moderate for P, and a weak spatial distribution 

for B, Fe, OC, pH, EC, Mn, K, and Zn. The similar results 

for strong and moderate spatial dependency recorded by 

Tagore et al. (2015), and Verma et al. (2021), 

respectively. The weak spatial dependency of Soil pH was 

also reported by Behera et al. (2018). The Soil EC 

findings are consistent with Abdu et al. (2023). The soil 

Mn and OC had weak spatial dependencies, supported by 

Vasu et al. (2021). The spatial dependence is classified 

according to a number of factors. The inherent soil 

characteristics of topography, minerals, and agricultural 

techniques of fertilization and irrigation are the causes of 

the strong spatial dependency (Gökmen et al., 2023). The 

combination of internal elements like parent material and 

soil texture and external variables like fertilizer and 

irrigation cause moderate spatial dependence (Vasu et al., 

2017). Weak dependence and a high percentage of nugget 

(Nu) and sill (Si) ratio are caused by activities of humans, 

soil and crop management practices (Vasu et al., 2016; 

Vasu et al., 2021; Gökmen et al., 2023). A lower 

percentage of nugget (Nu) and sill (Si) indicate that 

topography, parent material, and climate are structural 

elements that influence spatial variability. 

The nugget (Nu) effect for N, OC, Cu, and S was the 

lowest, indicating low variance in the study area among 

soil parameters. It implies similar and different values for 

near and distant observations. The results (Table 5 and 

Fig. 2) show the soil properties B, P, pH, Zn, OC, and N 

have a spatial correlation that extends up to a distance of 

0.5 kilometres. Fe, K, Cu, and S exhibit a spatial 

correlation range from one to 2.5 kilometres. EC and Mn 

show a spatial correlation range from 2.5 to 3.9 kilometres 

and no correlation beyond these distances. It is advisable 

to use a sampling interval smaller than half of the range 

(Kerry et al., 2010) to ensure accurate sampling, the range 

of spatial autocorrelation for soil nutrients extends from 

0.5 to 3.9 kilometres, indicating the presence of ecological 

processes operating at different scales. Hence, a sampling 

strategy employing a distance of 0.2 kilometres is 

appropriate for examining the spatial distribution. 

Cross validation and comparing models 

The study conducted cross-validation techniques such as 

MSE, ASE, RMSE, and RMSSE (Table 5) to select the 

best models based on accuracy. The results indicated that 

the ASE and RMSE values were generally similar, except 

for soil K. The MSE values were close to zero, while the 

RMSEE ranged from 0.91 to 1. Based on the accuracy of 

the cross-validation techniques, the K-Bessel, Circular, J-

Bessel, Spherical, Tetraspherical, Hole Effect, Pent 

spherical, Exponential, Stable, Gaussian, and Rational 

Quadratic models were found to be the best. 

Spatial variability maps 

The twelve soil properties were mapped using OK 

interpolation (Figure 3). The pH levels (Figure 3a) ranges 

between 6.5 and 8.5. Approximately 47.76% of the soil 

had a pH within the normal range (6.5-7.5), which is best 

for crop growth and 42.08% of the soil had a slightly 

alkaline pH (7.5-8.5), requiring specific management 

strategies for crop cultivation. 
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Fig. 2 Semivariograms with fitted models for soil properties, (a) Soil pH, (b) EC (dSm-1), (c) Organic Carbon (%) (d) Available N 

(kg ha-1), (e) Available P (kg ha-1), (f) Available K (kg ha-1), (g) 0.15% CaCl2 Extractable S (mg kg-1), (h) DTPA Extractable Zn (mg 

kg-1), (i) DTPA Extractable Cu (mg kg-1), (j) DTPA Extractable Fe (mg kg-1), (k) DTPA Extractable Mn (mg kg-1), (l) Hot Water 

Soluble B (mg kg-1) 

This variation due to multiple factors, including the 

geological conditions, the composition of the soil, and the 

inconsistent application of fertilizers and manures (Kumar 

et al., 2019).Similar findings were also found in 

Tatrakallu-village, Anantapur-district, and Andhra 

Pradesh-state (Sashikala et al., 2019).About 40% of soil 

EC values are less than 0.25 dSm-1, 45% of the area had 

values between 0.25 and 0.5 dSm-1, and 15% had values 

between 0.51 and 0.81 dSm-1(Fig. 3b).The soil in the 

study region was found to be non-saline and similar 

results reported by Sashikala et al. (2019) and Gorji et al. 

(2019). 

The OC varied from low to medium levels (Fig. 3c). 

Approximately 96% area exhibited lower OC values (< 

0.50%), and 4% had medium values (0.50 -0.75%). The 

results revels that a significant portion of study area had a 

low OC content. According to Kumar et al. (2019) OC is 

poor generally in sub-humid soils in India, with an 

average value of 0.5%. In this study, the low organic 

carbon content may be due to inadequate crop 

management practices, biomass production (Nadal-

Romero et al., 2016), low rainfall, and high temperatures 

(Kumar and Babel, 2011). Similar findings were also 

observed in the soils of the dry zone of Andhra Pradesh 

State under semi-arid conditions (Sashikala et al., 2019). 

Therefore, it is recommended to incorporate composts or 

animal manures, introduce legumes, and implement green 

manuring practices in the present research area to enhance 

OC content to improve soil health (Chan, 2008). 

Figure 3d shows that the majority, around 97%, of the 

study area had critically low levels of available nitrogen. 

The southeastern part had sufficient nitrogen for soil 

management practices. This low availability of nitrogen 

could be due to various factors such as semi-arid 

conditions, low rainfall, and low application of nitrogen 

fertilizers, organic manures, excess temperature and 

geology (Moharana et al., 2017; Kumar et al. (2019; 

Sashikala et al. (2019). In Fig.3e, it was observed that the 

western and eastern parts had a significant amount (79%) 

of P (> 25). This could be attributed to excessive use of 

fertilizers and low rainfall and low rainfall. The northwest 

and south parts had a moderate level (21%) of P (10–25). 

Similar findings were observed by Moharana et al. (2017) 

and Sashikala et al. (2019). The K (Fig. 3f) map reveals 

that southern and southwestern parts (30%) had a medium 

(120–280) and 70% had a high level of K (> 280), which 

implies a supply of accessible K in the study area. The 

current research area had enough S accessible, with a 

concentration of more than 10.0 mg kg-1(Fig. 3g), it 

ensures a sufficient amount of S for plants growth.  

The map in Fig. 3h shows that zinc deficiency was 

present in 40% of the western, southwestern, and 

eastern parts, with levels below 0.6. The remaining 60% 

of the area had sufficient zinc levels, with values above 

0.6.

(l) 

(i) 
(j) 

(k)

The village of Tatrakallu-Village in Andhra Pradesh 
State was found to have zinc deficiency as reported by 
Sashikala et al., 2019.The study area's soils are alkaline, 
and low soil OC could be the reason for low Zn. 
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Table 5 The semivariogram models for soil properties and cross-validation errors 

Soil 

parameter 
Best fitted Model Nugget Parcel Sill Sill Nugget/Sill Range (Meters) 

Spatial 

Dependency 

Cross Validation Errors 

RMSE ASE MSE RMSSE 

N J-Bessel 0 0 0 0.00 850.59 Strong 38.17 38.16 -0.035 1 

P K-Bessel 7.3 8.21 15.51 0.47 598.43 Moderate 7.98 7.96 -0.007 1 

K Gaussian 2.29 0.032 2.322 0.99 1236 Weak 113.79 116.62 -0.013 0.98 

pH Rational Quadratic 8.93 0.58 9.51 0.94 621.24 Weak 0.43 0.42 0 1 

EC Stable 0.28 0 0.28 1.00 2573.8 Weak 0.18 0.19 -0.002 0.94 

OC Exponential 0.04 0 0.04 1.00 760 Weak 0.09 0.09 -0.002 1 

B Exponential 0.159 0 0.159 1.00 538.93 Weak 0.41 0.42 -0.011 0.99 

Zn Exponential 0.19 0.02 0.21 0.90 689.84 Weak 0.38 0.38 -0.022 0.99 

Fe Exponential 11.74 0 11.74 1.00 1283.6 Weak 1.51 1.67 0.008 0.91 

Mn Exponential 1.74 0 1.74 1.00 3972 Weak 1.45 1.45 0.002 1 

Cu K-Bessel 0 0.4 0.4 0.00 1332.5 Strong 0.46 0.46 -0.047 1 

S K-Bessel 0 6.35 6.35 0.00 1838 Strong 9.86 9.56 -0.008 1.03 

N= Available N (kg ha-1), P= Available P (kg ha-1), K= Available K (kg ha-1), pH= Soil pH, EC= EC (dSm-1), OC= Organic Carbon (%), B= Hot Water-Soluble B (mg kg-1) Zn= 

DTPA Extractable Zn (mg kg-1), Fe= DTPA Extractable Fe (mg kg-1), Mn= DTPA Extractable Mn (mg kg-1), Cu= DTPA Extractable Cu (mg kg-1), S= 0.15% CaCl2 Extractable S 

(mg kg-1) 

(a) (b) (c ) (d)
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(e ) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3 Spatial Distribution of Soil Properties, (a) Soil pH, (b) EC (dSm-1), (C) Organic Carbon (%), (d) Available N (kg ha-1), (e) Available P (kg ha-1), (f) Available K (kg ha-1), (g) 0.15% CaCl2 

Extractable S (mg kg-1), (h) DTPA Extractable Zn (mg kg-1), i) DTPA Extractable Cu (mg kg-1), (j) DTPA Extractable Fe (mg kg-1), (k) DTPA Extractable Mn (mg kg-1), (l) Hot Water Soluble B (mg 

kg-1)  
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The excessive use of NPK fertilizers without 

incorporating micronutrients, has worsened the deficiency 

of zinc (Arunachalam et al., 2013). Studies by Shukla et 

al. (2014) and Arunachalam et al. (2013) report that in 

India, zinc shortage was found in 43% of 97,464 and 

48.5% of 256,000 soil samples, respectively. Insufficient 

zinc availability in the soil has led to suboptimal crop 

yields and reduced nutritional value (Khan et al., 2022). 

This study's findings are consistent with the generally low 

micronutrient content of Indian soil. These issues 

highlight the pressing need to take proactive measures to 

protect soil and human health (Das et al., 2022). 

Regarding soil Cu content (Fig. 3i), the study showed that 

99% of the regions within the study area have adequate 

levels (> 0.2), and only 1% of the area exhibits low Cu 

concentration (<0.2). The study reveals that 35% of 

northern, southern, central, and eastern regions exhibits a 

deficiency in soil Fe, with levels below 4.5 (Fig 3j). 

Conversely, around 65% of the area shows satisfactory 

levels of Fe, with values above 4.5 mg kg−1. This 

insufficiency in Fe content negatively impacts growth of 

crops. The water stress condition in India is the main 

cause of low levels of Fe (Sashikala et al., 2019). The 

study reveals that Mn levels were adequate (>2.0) in 94% 

of the study area, while only 6% of the region had levels 

below the desired threshold (<2.0) (Fig 3k). The results 

suggested sufficient levels across the study area, with 

some areas in the northern region displaying lower than 

ideal Mn concentrations. Additionally, the study revealed 

that 95% of the study area had sufficient hot water-soluble 

B content (> 0.5), while only 5% of the area had lower B 

concentrations (< 0.5) (Fig. 3l). The surface map indicated 

sufficient B content in most areas, but the east, west, 

south, and southwest displayed deficiency. Various land 

management techniques, such as the use of fertilizers, 

have resulted in different soil property distribution 

patterns in the research region (Sharma et al., 2011). 

These patterns are depicted through geographical maps 

that show significant differences in soil properties across 

the region. Policymakers and farmers can benefit from the 

study's findings by adopting site-specific soil nutrient 

management techniques, such as improved soil organic 

matter and targeted nutrient supplementation. This 

approach can help maximize agricultural production and 

mitigate specific deficiencies. 

Conclusion 

The study found that the coefficient of variation was high 

in copper (Cu) and low in soil pH. A positive association 

was found between N and OC, Zn and Mn, and OC and 

Zn, indicating a positive correlation. The data was 

normalized using Log and Box-Cox transformations. The 

ordinary Kriging interpolation is an effective 

geostatistical technique for generating soil nutrient 

distribution maps. The study concluded that the 

exponential model was suitable for B, Fe, Mn, Zn, and 

OC. The Gaussian and J-Bessel are best-fit-model for 

potassium (K) and Nitrogen (N) respectively. The K-

Bessel model was suitable for Cu, P, and S. Stable and 

rational quadratic models best fitted models for EC and 

pH, respectively. The study area identified that it has a 

strong to weak spatial dependency. The present study area 

identified significant deficiencies of 96% and 97% in 

organic carbon and available nitrogen, respectively. The 

study suggests that it is essential to consider specific 

nutrient deficiencies when applying manures and 

fertilizers to improve crop production and maintain health 

of soils. These results can help to create field-specific 

plans for making informed decisions regarding the 

environment, soil, and human health. Governments and 

policymakers must prioritize the issues discussed in this 

research to ensure the achievement of sustainable 

development. 
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