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Elementary proof of Funahashi’s theorem
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ABSTRACT. Funahashi established that the space of two-layer feedforward neural networks is dense in the space of
all continuous functions defined over compact sets in n-dimensional Euclidean space. The purpose of this short survey
is to reexamine the proof of Theorem 1 in Funahashi [3]. The Tietze extension theorem, whose proof is contained in
the appendix, will be used. This paper is based on harmonic analysis, real analysis, and Fourier analysis. However,
the audience in this paper is supposed to be researchers who do not specialize in these fields of mathematics. Some
fundamental facts that are used in this paper without proofs will be collected after we present some notation in this
paper.
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1. INTRODUCTION

The goal of this survey is to prove the following theorem due to Funahashi using theorems
on uniform convergence in harmonic analysis and real analysis:

Theorem 1.1 (Theorem 1 in Funahashi [3]). Let ϕ(t) be a non-constant, bounded, increasing, and
continuous function on R, and let K ⊂ Rn a compact set. Let ε > 0 and f(x) be a continuous
real-valued function on K. Then there exists a natural number N1 and real constants ck, θk, wkj

(1 ≤ k ≤ N1, 1 ≤ j ≤ n) such that

(1.1) max
x∈K

∣∣∣f(x)− f̃(x)
∣∣∣ < ε

holds, where

f̃(x) =

N1∑
k=1

ckϕ

 n∑
j=1

wkjxj − θk

 , (x = (x1, x2, . . . , xn) ∈ Rn).

Mathematically, Theorem 1.1 can be understood as a theorem on uniform approximation.
Uniform approximation is important when we consider the change of the limit and integration
over compact sets. It is also important in the field of numerical analysis.

We say that f̃(x) belongs to the space of two-layer feedforward neural networks generated
by ϕ(t). In the branch of the neural network, ϕ(t) is called (0-)sigmoidal.

The field of artificial neural networks (or neural networks in short) began in 1943 when Mc-
Culloch and Pitts demonstrated that a combination of neuron-like computational units could
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perform any logical operations [8]. Following this seminal work, in 1958, Rosenblatt formu-
lated a single-layer neural network called a perceptron inspired by information processing in
the central nervous system [11]. As a neuron emits an action potential when the sum of synap-
tic inputs exceeds the threshold, a perceptron performs a classification task by computing its
activation according to a weighted sum of multiple inputs. Two notable theoretical analyses
of the perceptron included the convergence theorem and the counting theorem; the former
guarantees that a perceptron can learn a decision boundary when a training set is linearly sep-
arable [10], and the latter estimates the number of training points that a perceptron can learn
[2]. Despite these conceptual and theoretical developments, interest in neural networks waned
in the 1970s after Minksy and Pepert suggested that a perceptron cannot perform non-linear
operations as simple as exclusive or (XOR) [9]. A multilayer neural network could realize such
non-linear functions, but no learning algorithms were known to train a multilayer neural net-
work.

The field of neural networks was revived in the early 1980s when the backpropagation algo-
rithm was invented to train multilayer neural networks [13]. Errors in the output units propa-
gate backward to hidden units, and the weights connected to hidden units are updated accord-
ing to the backpropagated errors. The backpropagation algorithm allows a multilayer network
to learn from any training set of non-linear relations. Introducing hidden units in a multilayer
network resulted in two significant consequences. First, the multilayer neural network can find
latent representations in hidden layers related to, but not the same as, network inputs and out-
puts. Such latent representations allow for abstraction and dimensional reduction of network
input. Second, a multilayer network with hidden layers approximates arbitrary continuous
mapping from input to output. The universal approximation theorem states that a multilayer
network composed of at least one hidden layer can approximate any continuous function if
the number of hidden units is large enough and the parameters (weights and thresholds) are
appropriately adjusted.

A future historian might call the 21st century the century of neural networks. Since the sem-
inal work of Krizhevsky et al. outperformed conventional image classification approaches in
the ImageNet classification competition [7], deep neural networks prevail in various practical
applications. Despite empirical success, the deep-network approach is counterintuitive from
the point of view of conventional machine learning [14]. Although deep neural networks have
billions or trillions of tunable weight parameters, the networks hardly overfit to training data
and can generalize well to test data not used for training. Also, we do not understand theoret-
ically the advantages of stacking many layers, so designing a deep neural network is still an
art of trial and error rather than science. The lack of theoretical understanding of deep neural
networks impedes a systematic and optimal network structure design for a given application.

This survey revisits Funahashi’s proof of the universal approximation theorem [3]. The
theorem justified the training of neural networks using arbitrary input-output mappings and
played a crucial role in developing neural networks in the 1980s. We think it is essential to
reexamine Funahashi’s proof for multilayer neural networks with a single hidden layer to gain
insight into how we can generalize the theorem to the case of deep neural networks. The the-
orem is also instrumental in guiding recent physiological experiments. A single neuron is not
like a perceptron of linear separation as previously hypothesized, but can operate as a multi-
layer neural network that takes advantage of the non-linearity of synaptic input in dendritic
trees [4, 1]. By depositing Funahashi’s theorem in an accessible way, this survey aims to medi-
ate a deeper understanding of deep neural networks and the brain.

Theorem 1.1 seems to cover bounded functions. However, if we use some linear combina-
tions, then Theorem 1.1 can cover more functions. Let ReLU(t) = max(0, t) be the rectified
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linear unit. Although ReLU(t) is not a bounded function, the function ϕ(t) = ReLU(t − 1) −
ReLU(t) falls within the scope of Theorem 1.1. Therefore, the conclusion of Theorem 1.1 is true
even for the case of ϕ(t) = ReLU(t). The same applies to the function ϕ(t) = ReLU(t)k. In [5, 6],
the authors replaced the max-norm with Banach lattices and generalized the condition on ϕ(t).
Going through a similar argument, one can generalize the results in [5, 6] to the n-dimensional
case.

Here, we collect the notation and the preliminary facts in this paper.
(1) The set N0 consists of all non-negative integers.
(2) Given x,w ∈ Rn, we write the Euclidean inner product by x · w. We also write ∥x∥ =√

x · x.
(3) Given R > 0, we write B(R) = {x ∈ Rn : ∥x∥ < R}.
(4) Let E ⊂ Rn be a measurable set. The characteristic function χE(x) is defined by

χE(x) =

{
1, (x ∈ E)

0, (x /∈ E)
.

Furthermore, |E| is the Lebesgue measure of E.
(5) Let E ⊂ Rn be a measurable set that satisfies |E| > 0 and 1 ≤ p ≤ ∞. The Lebesgue

space Lp(E) consists of all measurable functions f(x) on E satisfying ∥f∥Lp(E) < ∞,
where

∥f∥Lp(E) =


(∫

E

|f(x)|p dx
)1/p

, (1 ≤ p <∞)

ess.supx∈E |f(x)|, (p = ∞)

.

If f(x) ∈ L1(E), then we say that f(x) is integrable over E. If E = Rn, then we merely
say that f(x) is integrable.

(6) Let f(x) be a function defined in Rn. The closure of the set {x ∈ Rn : f(x) ̸= 0} is said
to be the support of f(x) and denoted by suppf .

(7) The set C(Rn) is the set of all continuous functions in Rn. In addition, the set Cc(Rn) is
the set of all f ∈ C(Rn) satisfying that suppf is compact.

(8) The set C∞(Rn) is the set of all infinitely differentiable functions on Rn. In addition,
the set C∞

c (Rn) is the set of all f ∈ C∞(Rn) whose support is compact.
(9) The Schwartz class S(Rn) consists of all functions f ∈ C∞(Rn) satisfying∑

α∈Nn
0 ,j∈N0,|α|+j≤N

sup
x∈Rn

(1 + |x|)j |∂αf(x)| <∞

for all N ∈ N0, where we write

|α| = α1 + α2 + · · ·+ αn, ∂αf(x) =
∂|α|f

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(x)

for α = (α1, α2, . . . , αn) ∈ Nn
0 .

(10) Given a complex number z, we can uniquely write z = x+ iy, where x, y ∈ R. We write
Re(z) = x with this in mind.

(11) Given a function f(x) on Rn, we formally define the Fourier transform by

F [f ](w) = f̂(w) =

∫
Rn

f(x)e−ix·w dx (w ∈ Rn).

Then the inverse Fourier transform is defined by

F−1[f ](x) = (2π)−n

∫
Rn

f(w)eix·w dw (x ∈ Rn).
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Let f(x) ∈ C∞
c (Rn). A fundamental result on Fourier analysis is that the convergence of the

limits

F [f ](w) = lim
R→∞

∫
B(R)

f(x)e−ix·w dx, F−1[f ](x) = (2π)−n lim
R→∞

∫
B(R)

f(w)eix·w dw

take places uniformly over w ∈ Rn and that these operators satisfies

F−1[Ff ](x) = f(x).

In the rest of this section, we recall a famous theorem in general topology, which plays a
vital role in proving the main theorem.

Theorem 1.2 (Tietze extension theorem). Let f : K → R be a continuous function defined over a
compact set K ⊂ Rn. Then there exists g(x) ∈ Cc(Rn) such that g(x) = f(x) on K.

We will give a self-contained proof of Theorem 1.2 as an appendix in Section 3. See [12] for
the proof of the theorem in general topological spaces.

2. PROOF OF THE MAIN THEOREM

The next lemma is used to get some information from the function ϕ(t).

Lemma 2.1 (Lemma 1 in Funahashi [3]). Let ϕ(t) be the same function as Theorem 1.1. Then there
exist constants δ, α > 0 such that ψ(t) ∈ L1(R) and that ψ̂(1) ̸= 0, where

ψ(t) = ϕ(t/δ + α)− ϕ(t/δ − α).

In particular, ψ(t) is real-valued because ϕ(t) is real-valued.

Proof. Let L,L′ > 0 be large numbers. Note that ψ(t) is non-negative since ϕ(t) is increasing.
Furthermore,∫ L

−L′
ψ(t) dt = δ

∫ L/δ+α

−L′/δ+α

ϕ(s) ds− δ

∫ L/δ−α

−L′/δ−α

ϕ(s) ds

= δ

∫ L/δ+α

L/δ−α

ϕ(s) ds− δ

∫ −L′/δ+α

−L′/δ−α

ϕ(s) ds ∈ [0, 4δα sup |ϕ|].

Thus, since L,L′ > 0 are arbitrary, ψ(t) is integrable.
It remains to show that ψ̂(1) ̸= 0 for some suitable choice of δ > 0. If ψ̂(1) = 0 for all δ > 0,

then we would have F [ϕ(· + α) − ϕ(· − α)] = 0. Thus, ϕ(t + α) = ϕ(t − α). Putting u = t − α,
we have ϕ(u) = ϕ(u + 2α). This means that ϕ(t) is a periodic function with period 2α. From
the periodicity and the assumption that ϕ(t) is increasing, ϕ(t) is a constant on [0, 2α]. Again,
from the periodicity, ϕ(t) is a constant on R. But this contradicts the assumption that ϕ(t) is not
constant. □

Roughly speaking, the idea of Funahashi is to apply the Fourier inversion forumula to have
information on ϕ(t). Since Theorem 1.1 is stated in discrete form, while the Fourier inversion
concerns the continuous representation, the integral over the whole space Rn. Therefore, we
need a tool that transforms continuous representations into discrete representations. Lemma
2.2 below serves this purpose.
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Lemma 2.2 (Lemma 2 in Funahashi [3]). Let A > 0, K ⊂ Rn be a compact set, and let h(w, x) be a
continuous function on [−A,A]n ×K. Define the functions H(x) and HN (x) (N ∈ N) on K by

H(x) =

∫
[−A,A]n

h(w, x) dw,

HN (x) =

(
2A

N

)n N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)
.

Then for all ε > 0, there exists N0 ∈ N such that max
x∈K

|H(x)−HN (x)| < ε for all N ≥ N0.

Proof. First, we abbreviate 1 = (1, 1, . . . , 1) ∈ Rn to shorten the equations under calculation.
On the other hand, k ∈ {1, 2, . . . , N − 1}n means that k = (k1, k2, . . . , kn) with every integer
kj ∈ {0, 1, . . . , N − 1} (j = 1, 2, . . . , n). Thus we write∑

k∈{1,2,...,N−1}n

=

N−1∑
k1,k2,...,kn=0

.

Then, for any k = (k1, k2, . . . , kn) ∈ {0, 1, . . . , N − 1}n,(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N

)
= −A1+

2A

N
k

and

HN (x) =

(
2A

N

)n N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)

=

(
2A

N

)n ∑
k∈{1,2,...,N−1}n

h

(
−A1+

2A

N
k, x

)
.(2.2)

We estimate

|H(x)−HN (x)| =

∣∣∣∣∣∣
∫
[−A,A]n

h(w, x) dw −
(
2A

N

)n ∑
k∈{1,2,...,N−1}n

h

(
−A1+

2A

N
k, x

)∣∣∣∣∣∣ .(2.3)

By the uniform continuity of h(w, x), for any ε > 0, there exists δ > 0 such that

|h(w, x)− h(w′, x)| < ε

(2A)n

for any w,w′ ∈ Rn satisfying |w−w′| < δ. We fixN0 ∈ N such that
2A

N0
·
√
n < δ and letN > N0.

Then we have∣∣∣∣w −
(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N

)∣∣∣∣ < 2A

N
·
√
n < δ

for each (k1, k2, . . . , kn) ∈ {0, 1, . . . , N − 1}n and

w ∈
n∏

j=1

[
−A+

2kjA

N
,−A+

2(kj + 1)A

N

]
.

So, we obtain ∣∣∣∣h(w, x)− h

(
−A1+

2A

N
k, x

)∣∣∣∣ < ε

(2A)n
(2.4)
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for any

w ∈
n∏

j=1

[
−A+

2kjA

N
,−A+

2(kj + 1)A

N

]
,

where k = (k1, k2, · · · , kn). For each k = (k1, k2, . . . , kn) ∈ {0, 1, . . . , N − 1}n, we put

C(k) =

n∏
j=1

[
−A+

2kjA

N
,−A+

2(kj + 1)A

N

]
.

Then, by (2.2) and (2.4), we see that

|H(x)−HN (x)| ≤
∑

k∈{1,2,...,N−1}n

∣∣∣∣∣
∫
C(k)

h(w, x) dw −
∫
C(k)

h

(
−A1+

2A

N
k, x

)
dw

∣∣∣∣∣
=

∑
k∈{1,2,...,N−1}n

∣∣∣∣∣
∫
C(k)

{
h(w, x)− h

(
−A1+

2A

N
k, x

)}
dw

∣∣∣∣∣
=

N−1∑
k1,k2,...,kn=0

∣∣∣∣∣
∫
C(k)

{
h(w, x)− h

(
−A1+

2A

N
k, x

)}
dw

∣∣∣∣∣
≤

N−1∑
k1,k2,...,kn=0

ε

(2A)n

(
2A

N

)n

≤ε.
This completes the proof. □

By the use of the Fourier transform in the real line, we approximate the Fourier inverse
transform of the Fourier transform.

Lemma 2.3. Assume that f(x) ∈ L1(Rn) satisfies F [f ](w) ∈ L1(Rn). For all 0 < A < ∞ and
all x ∈ Rn, we have I∞,A(f)(x) = JA(x), where I∞,A(f)(x) and JA(f)(x) are defined by (2.7) and
(2.8) below, respectively. In addition, both {JA(f)(x)}A>0 and {I∞,A(f)(x)}A>0 converge uniformly
in Rn.

Proof. Let ψ(t) be a function as in Lemma 2.1. By the Lebesgue dominated convergence theo-
rem, we see that

lim
A′→∞

∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt = ψ̂(1).

Thus, to prove that I∞,A(f)(x) = JA(f)(x) for all x ∈ Rn, it suffices to prove that

lim
A′→∞

∫
[−A,A]n

f̂(w)eix·w
(∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt

)
dw

=

∫
[−A,A]n

f̂(w)eix·wψ̂(1) dw.(2.5)

Fix A > 0 for the time being. We remark that

(2.6)
∣∣∣∣f̂(w)eix·w (∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt

)∣∣∣∣ ≤ ∣∣∣f̂(w)∣∣∣ ∥ψ∥L1(R)

and that
∣∣∣f̂(w)∣∣∣ ∥ψ∥L1(R) is independent of A′ and integrable on [−A,A]n. Therefore, applying

the Lebesgue dominated convergence theorem again, we obtain (2.5). Furthermore, we show
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that {JA(f)(x)}A>0 converges to F−1
[
f̂
]
(x) uniformly in Rn. Since f̂(w) is integrable, we see

that

sup
x∈Rn

∣∣∣F−1
[
f̂
]
(x)− JA(f)(x)

∣∣∣
=(2π)−n sup

x∈Rn

∣∣∣∣∫
Rn

f̂(w)eix·w
(
1− χ[−A,A]n(w)

)
dw

∣∣∣∣
≤(2π)−n

∫
Rn

∣∣∣f̂(w)∣∣∣ (1− χ[−A,A]n(w)
)
dw → 0 (A→ ∞).

This finishes the proof of the lemma. □

We now refer back to the proof of Theorem 1.1.

Proof of Theorem 1.1. Take ε > 0 arbitrarily. Let ψ(t) be the function defined by Lemma 2.1.
(I) First, suppose that f(x) ∈ C∞

c (Rn). Here f(x) need not be supported on K. Let 0 < A <
∞ and 0 < A′ <∞. We define

IA′,A(f)(x) =

∫
[−A,A]n

(∫ A′

−A′
ψ(x · w − w0) ·

1

(2π)nψ̂(1)
f̂(w)eiw0 dw0

)
dw

=
1

(2π)nψ̂(1)

∫
[−A,A]n

f̂(w)eix·w
(∫ ∞

−∞
ψ(t)e−itχ[x·w−A′,x·w+A′](t) dt

)
dw,

(2.7) I∞,A(f)(x) = lim
A′→∞

IA′,A(f)(x),

and

JA(f)(x) = (2π)−n

∫
[−A,A]n

f̂(w)eix·w dw.(2.8)

So far, we know that I∞,A(f)(x) = JA(f)(x) for all x ∈ Rn and A > 0 due to Lemma 2.3.
Because f ∈ C∞

c (Rn) ⊂ S(Rn), we see that

(2.9) f(x) = F−1
[
f̂
]
(x) = lim

A→∞
JA(f)(x) = lim

A→∞
I∞,A(f)(x),

where the convergence in (2.9) takes place uniformly in Rn. Thus, there exists A0 > 0 such that
for all A > A0,

(2.10) max
x∈Rn

|f(x)− I∞,A(f)(x)| <
ε

3
.

Below we take A > A0 arbitrarily. Now we approximate I∞,A(f)(x) on K using IA′,A(f)(x)
with A′ <∞. We fix x ∈ K and 0 < A′ <∞. Then we have

|I∞,A(f)(x)− IA′,A(f)(x)|

≤ 1

(2π)n
∣∣∣ψ̂(1)∣∣∣

∫
[−A,A]n

∣∣∣f̂(w)∣∣∣{∫
R\[−A′,A′]

|ψ(x · w − w0)| dw0

}
dw

=
1

(2π)n
∣∣∣ψ̂(1)∣∣∣

∫
[−A,A]n

∣∣∣f̂(w)∣∣∣ {∫ ∞

−∞
|ψ(t)|χR\[x·w−A′,x·w+A′](t) dt

}
dw.



Elementary proof of Funahashi’s theorem 37

Because the set K is bounded, there exists R > 0 such that K ⊂ B(R). Let w ∈ [−A,A]n. Then
we have |x · w| ≤ ∥x∥ ∥w∥ ≤ R ·

√
nA and

R \ [x · w −A′, x · w +A′] =(−∞, x · w −A′) ∪ (x · w +A′,∞)

⊂
(
−∞,

√
nRA−A′) ∪ (−√

nRA+A′,∞
)

= : J.

We remark that the set J is independent of x and w. Hence we obtain

(2π)n
∣∣∣ψ̂(1)∣∣∣max

x∈K
|I∞,A(f)(x)− IA′,A(f)(x)|

≤
∫
[−A,A]n

∣∣∣f̂(w)∣∣∣ dw ·
(

max
x∈K,w∈[−A,A]n

∫ ∞

−∞
|ψ(t)|χR\[x·w−A′,x·w+A′](t) dt

)
≤
∫
[−A,A]n

∣∣∣f̂(w)∣∣∣ dw ·
∫ ∞

−∞
|ψ(t)|χJ(t) dt.

We note that lim
A′→∞

|ψ(t)|χJ(t) = 0, |ψ(t)| ∈ L1(R) and |ψ(t)|χJ(t) ≤ |ψ(t)|. Therefore, by

virtue of the Lebesgue dominated convergence theorem, we have lim
A′→∞

∫ ∞

−∞
|ψ(t)|χJ(t) dt = 0.

Namely there exists A′
0 > 0 such that for all A′ > A′

0,

(2.11) max
x∈K

|I∞,A(f)(x)− IA′,A(f)(x)| <
ε

3
.

Combining (2.10) and (2.11), we obtain

(2.12) max
x∈K

|f(x)− IA′,A(f)(x)| <
2

3
ε.

(II) Next, we consider the general case: f(x) is merely a continuous function defined over
K. We prove that a modified estimate of (2.12) is true. We take a real-valued extension g(x) ∈
Cc(Rn) of f(x). This is possible due to the Tietze extension theorem (Theorem 1.2). Let ρ(x) ∈
C∞

c (Rn) be such that 0 ≤ ρ(x) ≤ χB(1)(x) for all x ∈ Rn and ∥ρ∥L1(Rn) = 1. Write ρβ(x) =

β−nρ(β−1x). Define the convolution ρβ ∗ g(x) by ρβ ∗ g(x) =
∫
Rn

ρβ(x− y)g(y) dy. We employ

the operation g(x) 7→ ρβ ∗ g(x), which is called the mollifier. Applying the mollifier to g(x), we
find β ∈ (0, 1) such that

∥g − ρβ ∗ g∥L∞(Rn) <
ε

3
.

A geometric observation shows that suppg ⊂ supp(ρβ ∗ g) and that supp(ρβ ∗ g) is contained
in a fixed compact set L, the set of all points x whose distance from x does not exceed 1. Since
ρβ∗g(x) ∈ C∞

c (Rn), we can apply (2.12) to the function ρβ∗g(x). That is, there exist 0 < A0 <∞
and 0 < A′

0 <∞ such that for all A0 < A <∞ and A′
0 < A′ <∞,

max
x∈supp(ρβ∗g)

|ρβ ∗ g(x)− IA′,A(ρβ ∗ g)(x)| < 2

3
ε.

Recall that g(x) is an extension of f(x). Hence,

max
x∈K

|f(x)− IA′,A(ρβ ∗ g)(x)| = max
x∈K

|g(x)− IA′,A(ρβ ∗ g)(x)| .
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Therefore, we get

max
x∈K

|f(x)− IA′,A(ρβ ∗ g)(x)|

≤ max
x∈suppg

|g(x)− IA′,A(ρβ ∗ g)(x)|

≤ max
x∈suppg

|g(x)− ρβ ∗ g(x)|+ max
x∈suppg

|ρβ ∗ g(x)− IA′,A(ρβ ∗ g)(x)|

≤∥g − ρβ ∗ g∥L∞(Rn) + max
x∈supp(ρβ∗g)

|ρβ ∗ g(x)− IA′,A(ρβ ∗ g)(x)|

<ε.(2.13)

(III) Finally, we prove the conclusion of the theorem applying (2.13). We note that f(x) is real-
valued but that IA′,A(ρβ∗g)(x) is complex-valued. This means thatH(x) = Re (IA′,A(ρβ ∗ g)(x))
is a more suitable candicate of the approximation of f :

|f(x)− IA′,A(ρβ ∗ g)(x)| ≥ |Re (f(x)− IA′,A(ρβ ∗ g)(x))|
= |f(x)−H(x)| ,

that is, max
x∈K

|f(x)−H(x)| < ε. Meanwhile, applying Lemma 2.2 to H(x), there exists a natural

number N0 such that max
x∈K

|H(x)−HN (f)(x)| < ε holds for all N ≥ N0, where

HN (f)(x) =

(
2A

N

)n N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)
,

h(w, x) =

∫ A′

−A′
ψ(x · w − w0)γ(w,w0) dw0,

γ(w,w0) = Re

(
1

(2π)nψ̂(1)
F [ρβ ∗ g](w)eiw0

)
.

Hence we have

(2.14) max
x∈K

|f(x)−HN (f)(x)| < 2ε

using the triangle inequality. At this moment, we could manage to find HN (f)(x) which ap-
proximates f(x). However, HN (f)(x) does not satisfy the requirement of the statement. So, we
apply Lemma 2.2 to HN (f)(x) once again to construct the desired function f̃(x).

This can be achieved as follows: Using the same notation as in Lemma 2.2, then(
2A

N

)−n

HN (f)(x)

=

N−1∑
k1,k2,...,kn=0

h

(
−A+

2k1A

N
,−A+

2k2A

N
, . . . ,−A+

2knA

N
, x

)

=
∑

k∈{0,1,...,N−1}n

h

(
−A1+

2A

N
k, x

)

=

∫ A′

−A′

∑
k∈{0,1,...,N−1}n

ψ

(
x ·
(
−A1+

2A

N
k

)
− w0

)
γ

(
−A1+

2A

N
k, w0

)
dw0.
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To approximate
(
2A

N

)−n

HN (f)(x) by a Riemann sum, abbreviate

2A′

M

M−1∑
m=0

∑
k∈{0,1,...,N−1}n

ψ

(
x ·
(
−A1+

2A

N
k

)
−
(
−A′ +

2mA′

M

))

×γ
(
−A1+

2A

N
k,−A′ +

2mA′

M

)

to RM (f)(x), where M ∈ N. Using Lemma 2.2, we can find M0 ∈ N such that for any M > M0,

max
x∈K

∣∣∣∣∣
(
2A

N

)−n

HN (f)(x)−RM (f)(x)

∣∣∣∣∣ <
(
2A

N

)−n

ε.

Estimate (2.14) and the above inequality lead the estimate

(2.15) max
x∈K

∣∣∣∣f(x)− (2A

N

)n

RM (f)(x)

∣∣∣∣ < 3ε.

We prove that
(
2A

N

)n

RM (f)(x) is the desired function f̃(x). Note that RM (f)(x) can be ex-

pressed as

RM (f)(x)

=
2A′

M

M−1∑
m=0

∑
k∈{0,1,...,N−1}n

ψ

(
(x,−1) ·

(
−A1+

2A

N
k,−A′ +

2mA′

M

))

×γ
(
−A1+

2A

N
k,−A′ +

2mA′

M

)
.

To deform this expression, we put

Ω(m,k) =

(
−A1+

2A

N
k,−A′ +

2mA′

M

)
∈ Rn+1

for every m, k. The set {Ω(m,k) : m = 0, 1, . . . ,M − 1, k ∈ {0, 1, . . . , N − 1}n} consists of
NnM vectors. Thus every Ω(m,k) can be expressed as Ω(m,k) = Ω(ℓ) (ℓ = 1, 2, . . . , NnM ).
Because Ω(ℓ) ∈ Rn+1, we write

Ω(ℓ) = (Ωℓ,1,Ωℓ,2, . . . ,Ωℓ,n+1).
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Then, by the definition of ψ, we have

RM (f)(x) =
2A′

M

NnM∑
ℓ=1

ψ ((x,−1) ·Ω(ℓ)) γ(Ω(ℓ))

=
2A′

M

NnM∑
ℓ=1

γ(Ω(ℓ))ψ

 n∑
j=1

xjΩℓ,j − Ωℓ,n+1


=

2A′

M

NnM∑
ℓ=1

γ(Ω(ℓ))ϕ

 n∑
j=1

xjΩℓ,j

δ
−
(
Ωℓ,n+1

δ
− α

)
− 2A′

M

NnM∑
ℓ=1

γ(Ω(ℓ))ϕ

 n∑
j=1

xjΩℓ,j

δ
−
(
Ωℓ,n+1

δ
+ α

) .

By rearranging the right-hand side, we can find real constants cℓ, θℓ, wℓj , ℓ = 1, 2, . . . , 2NnM ,
j = 1, 2, . . . , n such that(

2A

N

)n

RM (f)(x) =

2NnM∑
ℓ=1

cℓϕ

 n∑
j=1

wℓjxj − θℓ

 (x = (x1, x2, . . . , xn) ∈ Rn).

Since (2.15) is nothing but (1.1) with ε replaced by 3ε, it follows that
(
2A

N

)n

RM (f)(x) is the

desired function f̃(x). □

If a function f(x) is continuous in a compact set K, then we see that

∥f∥L2(K) =

(∫
K

|f(x)|2 dx
)1/2

≤ |K|1/2 ·max
x∈K

|f(x)|.

Thus we easily obtain the following corollary:

Corollary 2.1. In Theorem 1.1, one has∥∥∥f − f̃
∥∥∥
L2(K)

< |K|1/2ε.

3. APPENDIX–PROOF OF THE TIETZE EXTENSION THEOREM

Let ReLU(t) = max(0, t). We write

µ(t) = ReLU(t+ 1)− 2ReLU(t) + ReLU(t− 1) (t ∈ R).

Note that µ(t) vanishes outside (−1, 1) and that µ(t) = 1− |t| for t ∈ [−1, 1]. We set

ν(x) = ν(x1, x2, . . . , xn) =

n∏
j=1

µ(xj),

so that ∑
k∈Zn

ν(x− k) = 1.
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Lemma 3.4. Let K ⊂ Rn be a compact set and f(x) be a continuous function on K. Write M =
max
y∈K

|f(y)|. There exists a continuous function g(x) defined on Rn such that

sup
x∈K

|f(x)− g(x)| ≤ 2

3
M

and that

sup
y∈Rn

|g(y)| ≤ 2

3
M.

Proof. Since f(x) is continuous in the compact setK, f(x) is uniformly continuous onK. Thus,
we can find δ > 0 such that |f(x)− f(y)| < 1

12M for all x, y ∈ K such that |x− y| < δ. Set

h(x) = min

(
max

(
−2

3
M,f(x)

)
,
2

3
M

)
(x ∈ K).

Note that

(3.16) h(x) =


− 2

3M (f(x) ≤ − 2
3M),

f(x) (− 2
3M ≤ f(x) ≤ 2

3M),
2
3M ( 23M ≤ f(x)).

Since f(x) is continuous in K, h(x) is also continuous in K. By (3.16) and −M ≤ f(x) ≤ M , it
is easy to see that

|f(x)− h(x)| ≤ 1

3
M.

Next, we prove

(3.17) |h(x)− h(y)| < 1

3
M

for all x, y ∈ K such that |x− y| < δ. Note that if h(x) = 2
3M , then

− 1

12
M < f(y)− f(x) <

1

12
M and

2

3
M ≤ f(x)

yield
7

12
M = − 1

12
M +

2

3
M ≤ − 1

12
M + f(x) < f(y).

This implies that 7
12M < h(y) ≤ 2

3M = h(x). Therefore, we have

|h(x)− h(y)| ≤ 1

12
M <

1

3
M.

From the symmetry, we see that (3.17) holds if h(x) = 2
3M or h(y) = 2

3M . To complete the
proof of (3.17), it remains to handle the following case:

h(x) = max

(
−2

3
M,f(x)

)
and h(y) = max

(
−2

3
M,f(y)

)
.

Note that

max(a, b) =
1

2
(a+ b+ |a− b|) , ||a| − |b|| ≤ |a− b|
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for a, b ∈ R. Hence, we obtain

|h(x)− h(y)| ≤ 1

2
· |f(x)− f(y)|+ 1

2

∣∣∣∣∣∣∣∣f(x) + 2

3
M

∣∣∣∣− ∣∣∣∣f(y) + 2

3
M

∣∣∣∣∣∣∣∣
≤ 1

2
· 1

12
M +

1

2
|f(x)− f(y)|

≤ 1

12
M <

1

3
M.

Finally, we construct g(x). Choose an integer A large enough so that 2Aδ > 1. Denote by U the
set of all k ∈ Zn such that {x ∈ Rn : x− A−1k ∈ [−A−1, A−1]n} ∩K ̸= ∅. From the definition
of U , it follows that ∑

k∈U

ν(Ax− k) = 1 (x ∈ K).

For each k ∈ U , choose yk ∈ {x ∈ Rn : x−A−1k ∈ [−A−1, A−1]n} ∩K. We put

g(x) =
∑
k∈U

h(yk)ν(Ax− k) (x ∈ Rn).

Then g(x) vanishes outside the set {w ∈ Rn : w = y+z, y ∈ K, z ∈ [−A−1, A−1]n} and satisfies

g(x)− h(x) =
∑
k∈U

(h(yk)− h(x))ν(Ax− k) (x ∈ K).

This equality implies that

|g(x)− h(x)| ≤ 1

3
M.

Since |f(x)− h(x)| ≤ 1
3M , it follows that |f(x)− g(x)| ≤ 2

3M . Furthermore, since |h(x)| ≤ 2
3M

for all x ∈ K, it follows that |g(x)| ≤ 2
3M for all x ∈ Rn. Thus, the proof is complete. □

With Lemma 3.4 in mind, let us prove Theorem 1.2. Let M = max
x∈K

|f(x)|. Without loss of

generality, assume M = 1. We define the sequence of functions {gk(x)}∞k=1 as follows. First,
we choose g1(x) as in Lemma 3.4. That is,

|f(x)− g1(x)| ≤
2

3
on K

and |g1(x)| ≤ 2
3 hold. Then define l1(x) = f(x)− g1(x). Next apply Lemma 3.4 to the function

l1(x) to have a function g2(x) satisfying

|l1(x)− g2(x)| ≤
2

3
max
y∈K

|l1(y)| =
(
2

3

)2

(x ∈ K)

and

|g2(x)| ≤
2

3
max
y∈K

|l1(y)| =
(
2

3

)2

(x ∈ Rn).

Next, define l2(x) = f(x)− g1(x)− g2(x) and use Lemma 3.4 for the function l2(x). We repeat
this procedure to have the functions {gk(x)}∞k=1 and {lk(x)}∞k=1 satisfying

lk(x) = f(x)− g1(x)− g2(x)− · · · − gk(x) = f(x)−
k∑

s=1

gs(x) (x ∈ K),

(3.18) |lk(x)− gk+1(x)| =

∣∣∣∣∣f(x)−
k+1∑
s=1

gs(x)

∣∣∣∣∣ ≤ 2

3
max
y∈K

|lk(y)| ≤
(
2

3

)k+1
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and

(3.19) |gk+1(x)| ≤
2

3
max
y∈K

|lk(y)| ≤
(
2

3

)k+1

(x ∈ Rn).

From (3.18) and (3.19), we conclude that

g(x) =

∞∑
k=1

gk(x)

converges uniformly over x ∈ Rn and that g(x) agrees with f(x) over K. Thus, the proof is
complete.
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