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Öz 

Beyin hücrelerinin zamanla ölmesine bağlı olarak hafıza kaybı, demans ve bilişsel işlevlerde genel bir azalma 

şeklinde gelişen tıbbi duruma Alzheimer hastalığı denir. Bu hastalık, bilişsel işlevlerde kademeli bir düşüşe ve 

sonuçta kişinin günlük yaşamını etkileyen ciddi hafıza kayıplarına yol açabilmektedir. Alzheimer hastalığına 

neden olan mekanizma tam olarak anlaşılmamasına rağmen beyindeki plaklar ve nörofibriler demetler gibi bazı 

yapısal değişikliklerle ilişkilendirilmiştir. Bu çalışma, Alzheimer hastalığının tedavisinde ümit verici olan BACE-

1 inhibitörlerinin keşfi için geometrik derin öğrenme yönteminin kullanımını araştırmaktadır. Eğitim sürecinde 

İletişim Geçiş Sinir Ağı ve Tamamen Bağlantılı Ağ kullanılarak özelleştirilmiş bir model geliştirilmiştir. Bu 

model, moleküler yapıların karmaşık özelliklerini yakalamak için grafik yerleştirmelerin ve tamamen bağlantılı 

ağların birleşimi yoluyla molekül etkileşimlerini tahmin etmektedir. Sonuçlar, geliştirilen modelin BACE-1 

inhibitörlerinin etkileşimlerini başarılı bir şekilde tahmin edebildiğini göstermektedir. Modelin performans oranı 

%87,7 olarak belirlenmiştir. Bu çalışma, Alzheimer hastalığına yönelik yeni BACE-1 inhibitörlerinin keşfedilmesi 

ve geliştirilmesi için umut verici bir yol haritası sunmaktadır. 

 

Anahtar kelimeler: BACE-1 ilaç etkileşimi, Alzheimer hastalığı, Geometrik derin öğrenme, Grafik ağı, BACE-

1 inhibitörleri
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Abstract 

The medical condition that develops as memory loss, dementia, and a general decrease in cognitive functions due 

to the death of brain cells over time is called Alzheimer's disease. This disease can lead to a gradual decline in 

cognitive functions and eventually severe memory losses that affect a person's daily life. Although the exact 

mechanism that causes Alzheimer's disease is not fully understood, it has been associated with certain structural 

changes in the brain, such as plaques and neurofibrillary bundles. This study investigates the use of geometric deep 

learning methods for the discovery of BACE-1 inhibitors that are promising in addressing Alzheimer's disease. 

Our study builds on these advancements by integrating GDL with pharmacological criteria, such as the QED 

criterion and Lipinski's rule, to predict BACE-1 inhibitors with enhanced accuracy and drug-like properties. Our 

model, which combines message-passing neural networks (MPNNs) and fully connected network (FCN) 

architectures, achieved a success rate of 87.7%. This performance not only surpasses that of previous studies but 

also ensures the practical applicability of our findings in drug discovery for Alzheimer's disease. The dual focus 

on prediction accuracy and drug likeness sets our work apart, providing a more comprehensive approach to 

identifying effective therapeutic agents. 

 
Keywords: BACE-1 drug interaction, Alzheimer's disease, Geometric deep learning, Graph network, BACE-1 

inhibitors. 
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1. Introduction  
 

Alzheimer's disease is a form of dementia that progresses slowly and increases with age, leading to cognitive 

impairment, memory loss, and eventually difficulty in activities of daily living. The disease is characterized 

by nerve cells in the brain becoming damaged and dying over time [1,2]. It is the most prevalent form of 

dementia and usually has a progressive course. The pathophysiology of Alzheimer's disease revolves around 

two key features, namely the accumulation of beta amyloid plaques and the formation of neuronal fibrillary 

tangles. These plaques and tangles block communication between nerve cells and lead to neuronal death. 

Alzheimer's disease is a health problem that is common in the elderly population and still has no cure. The 

pathophysiology of this disease is complex and is affected by factors such as the accumulation of beta 

amyloid (Aβ) plaques and abnormal accumulation of tau protein leading to neuronal toxicity. In the beginning 

of these pathological processes, the BACE-1 enzyme, also known as beta-secretase, plays a critical role [3,4]. 

Beta-secretase 1 (BACE-1), which plays a critical role in the production of beta amyloid (Aβ) peptides, is an 

enzyme associated with Alzheimer's disease [5]. BACE-1 initially produces the Aβ42 peptide by cleaving 

the amyloid precursor protein (APP). Aβ42 is one of the main components of toxic amyloid beta plaques that 

accumulate in the pathological process of Alzheimer's disease and cause the death of nerve cells. Therefore, 

the inhibition or diminishment of BACE-1 activity is being explored as a strategy to treat or prevent AZ. 

Inhibitors targeting the BACE-1 enzyme have garnered significant attention in research and development as 

potential therapeutic avenues for addressing AZ. Understanding the role of this enzyme's function is crucial 

in elucidating the pathophysiology of AZ and devising potential treatment modalities [6]. 

 

The geometric deep learning (GDL) approach is the application of advanced geometry techniques to drug 

data used to predict drug interactions by providing precise representations of molecular structures. Numerous 

studies in the literature delve into drug interactions using geometric deep learning. For instance, the work by 

Shen et al. [7] showcases the efficacy and promise of geometric deep learning in molecular data analysis. 

Specifically, research shows that molecular graphs composed solely of non-covalent bonds can yield 

comparable or superior results compared to those based on covalent bonds, which are conventionally 

accepted as the standard for representing molecular topology at the atomic level. In the context of geometric 

deep learning (GDL), molecules are typically modeled as molecular graphs, density functions, or molecular 

surfaces, and these representations are analyzed using various deep learning models such as (3D) 

convolutional neural networks (CNNs), graph neural networks (GNNs), recurrent neural networks (RNNs), 

and others [8-10]. In another investigation, researchers applied geometric deep learning techniques to drug 

discovery and the design processes of bioorganic and medicinal chemistry. Authors  investigated the potential 

of geometric deep learning in tasks such as molecular property prediction, ligand binding site and location 

prediction, and structure-based new molecule design [11]. Additional studies [12-15] delve into the 

integration of symmetry information into 3D molecular representations and its incorporation into neural 

network architectures. These studies assess the efficacy of these methods, particularly in structured learning 

processes, and their utilization in structure-based drug design. Furthermore, a comprehensive review [16] 

offers insights into recent literature on GDL studies for drug discovery and symmetry learning. The review 

highlights GDL's applications in drug discovery, including tasks like molecular property prediction, 

interactions, design, conformation prediction, and 3D pretraining, while also addressing associated 

challenges. Nugroho et al. developed and optimized a fingerprint-based artificial neural network (ANN) 

model using three different Bat Algorithm strategies to predict Beta-secretase 1 (BACE-1) inhibitors as 

therapeutic agents for Alzheimer's disease [17]. More recently, Feinberg et al. [18] applied 3D convolutional 

neural networks (3D-CNNs) to molecular surfaces, achieving high accuracy in predicting protein-ligand 

binding affinities. Their study highlighted the importance of three-dimensional molecular representations in 

capturing interaction nuances. Ragoza et al. [19] developed a deep learning model that incorporates both 2D 

and 3D information of molecules for drug-target interaction predictions. Their model achieved state-of-the-

art performance, showcasing the advantages of integrating multiple molecular representations. 

 

In our study, we leverage both GDL and pharmacological criteria to predict interactions of BACE-1 

inhibitors. Unlike previous studies, our model integrates MPNN and fully connected network (FCN) 

architectures, achieving a success rate of 87.7%. This study also advances the literature by providing a 

quantifiable success rate, which is often missing in previous studies. By incorporating pharmacological 



 
 

Firat Univ Jour. of Exp. and Comp. Eng., 4(1), 72-84, 2025 

S. Toraman, B. Daş 

 

  
75 

 

criteria such as the QED criterion and Lipinski's rule, our model ensures not only effective interaction 

predictions but also favorable drug-like properties of the inhibitors. This dual focus enhances the practical 

applicability of our findings, offering a more comprehensive approach to drug discovery for Alzheimer's 

disease. 

 

In this paper, we aim to use a geometric deep learning approach to perform interaction predictions for 

Alzheimer's disease on BACE-1 data. GDL has indeed emerged as a powerful method in molecular 

interaction prediction because it allows more precise representation of molecular structures and more 

accurate modeling of interaction mechanisms. This study also targets to make valuable contributions to the 

discovery of new therapeutic targets and drug development for the treatment and prevention of Alzheimer's 

disease. Application of geometric deep learning methods to interaction predictions on BACE-1 data may lead 

to the discovery of potential BACE-1 inhibitors and the development of innovative approaches to the 

treatment of Alzheimer's disease. This study aims to offer a new perspective in the fight against Alzheimer's 

disease and shed light on advancing treatment strategies. The main contributions of this study are outlined 

below: 

 It offers a new approach to drug interaction prediction for Alzheimer's disease by investigating the 

use of geometric deep learning methods on BACE-1 data. 

 Interaction predictions obtained through the use of MPNN based method can guide the design and 

optimization of BACE-1 inhibitors. 

 The study contributes to a better understanding of the molecular interactions between the BACE-1 

enzyme and potential inhibitors. This allows for the development of more effective strategies during 

the drug design process. 

 

The structure of this paper as follows: Section 2 presents an in-depth exploration of the materials and methods 

employed. Section 3 delves into the experimental findings and discussions. Following that, Section 4 outlines 

the limitations encountered and suggests future avenues of research. Finally, Section 5 concludes the study 

of the paper. 

 

2. Materials and Method 
 

This section outlines the materials and methodologies employed in the study for the prediction of interactions 

with BACE-1 inhibitors. It encompasses the dataset description, model architecture, training procedure, and 

evaluation metrics utilized in the experiment. The proposed algorithm encompasses three key steps: dataset 

collection, training, and prediction. Additionally, Figure 1 shows the block diagram of the proposed model, 

providing a visual representation of the methodology employed in the study. 

 

This section outlines the materials and methodologies employed in the study for the prediction of interactions 

with BACE-1 inhibitors. It encompasses the dataset description, model architecture, training procedure, and 

evaluation metrics utilized in the experiment. The proposed algorithm encompasses three key steps: dataset 

collection, training, and prediction. Additionally, Figure 1 shows the block diagram of the proposed model, 

providing a visual representation of the methodology employed in the study. 
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Figure 1. The block diagrams of the GDL based model 

  

2.1. Data collection 
 

This section provides an overview of the dataset employed in the study. It includes quantitative (IC50) 

measurements and qualitative (binary label) binding outcomes, obtained from experiments conducted on a 

range of compounds targeting human β-secretase 1 (BACE-1). BACE-1 is an enzyme involved in the 

production of beta-amyloid peptides, which accumulate in the brains of Alzheimer's patients, contributing to 

the disease's progression. The BACE dataset includes a variety of columns and parameters that are crucial 

for developing and evaluating potential BACE-1 inhibitors. These features are broadly categorized into 

molecular descriptors, activity measurements, and annotations related to Alzheimer's disease. The dataset 

originates from the BACE data, specifically curated for research on Alzheimer's disease therapeutics. The 

dataset utilized in this study was sourced from https://moleculenet.org/datasets-1 database [20]. It comprises 

1513 compounds represented in the SMILES format. The dataset is partitioned into training of 80%, 

validation of 10%, and test of 10%  subsets. Additionally, the dataset's scaffold and rec-split methods were 

employed to ensure diverse representation and robust evaluation. 1D and 2D descriptive features were used 

to represent the compounds in the study. Basic molecular feature information such as molecular weight, 

number of hydrogen bond donors and acceptors, and LogP (partition coefficient) were selected as 1D 

descriptors. These descriptors are necessary to evaluate the drug-likeness of compounds based on Lipinski's 

rule of five. 2D descriptors, on the other hand, capture the molecular topology and include features such as 

the number of rings, the number of rotatable bonds, and the presence of specific functional groups. They 

provide a more detailed representation of the structure of the molecule. Table 1 shows the dataset used in the 

experiment. 
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Table 1. The detailed features of the dataset 
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2.2. Pre processing 
 

This section describes the preprocessing steps applied to prepare the dataset for training the geometric deep 

learning-based model. In the experimental study, raw data represented in SMILES (Simplified Molecular 

Line Entry System) format was first converted into molecular graphs. The choice to use the SMILES format 

is to represent the structure of chemical compounds efficiently and concisely. The preprocessing steps began 

with parsing each compound's SMILES string to generate its corresponding molecular graph, identifying 

atoms and bonds, and constructing a graph where atoms are nodes and bonds are edges. These molecular 

graphs were then processed to extract node features such as atom types, hybridization states, and aromaticity, 

along with edge features like bond types and bond orders, which are crucial for accurately representing the 

molecules' chemical properties. Next, these molecule representations were used to construct graph structures 

suitable for input into the Message Passing Neural Network (MPNN), where each node (atom) was 

represented by a feature vector and each edge (bond) by an attribute vector. Feature normalization was 

applied to ensure that all input features were on a similar scale, enhancing the stability and performance of 

the neural network. 

 

2.3. Training 
 

This section elucidates the training protocol for our proposed model, which integrates a Message Passing 

Neural Network (MPNN) to forecast interactions with BACE-1 inhibitors. The training unfolds in two pivotal 

stages: MPNN and FCN. MPNN, a specialized neural network architecture tailored for processing molecular 

data depicted as graphs [21], plays a central role. It facilitates the conversion of graph data structure into a 

vector termed as a graph embedding. This embedding vector undergoes iterative updates grounded on 

messages exchanged among nodes within the graph. Leveraging MPNN, node feature vectors are transmuted 

into a distinct space, thereby enabling the generation of graph embedding [22-24]. Originally introduced by 

Gilmer et al., this approach reshapes spatial and spectral architectures within graph networks through two 

discernible phases: message passing and readout. Moreover, MPNN serves as a supervised learning 

framework for graphs, empowering the redefinition of spatial and spectral architectures within graph 

networks. MPNN's message passing and readout stages contribute to the model's ability to capture intricate 

structural and functional characteristics of molecules. By incorporating MPNN into our training pipeline, we 

aim to exploit the rich information present in molecular structures to accurately predict interactions with 

BACE-1 inhibitors. 

 

In the GDL-based model used, the metric space is created by excluding the reading function. Since the entire 

graph is examined to predict molecule interactions with BACE inhibitors for results, simply placing node 

proximity information in the embedding field will not be sufficient. Within the proposed GDL framework, 

embedding values undergo processing through a fully connected layer to facilitate prediction. This layer 

comprises four dense layers, with a dropout rate of 20% implemented in the first three layers to counter 

overfitting. The initial dense layer encompasses 92 neurons, succeeded by 46 neurons in the second layer, 23 

neurons in the third layer, and a solitary neuron in the output layer. Activation functions encompass ReLu 

for the first three layers and sigmoid for the final layer. The architecture of the methodology employed in the 

experimental application is delineated in Figure 2. 
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Figure 2. The Architecture of the FC Network Component 

 

2.4. Prediction of interaction 
 

In estimating the interaction of BACE-1 inhibitors, the Quantitative Estimates of Drug-likeness (QED) 

criterion is utilized [25,26]. This criterion allows quantitative evaluation of a combination of a compound's 

biological effect, drug properties, and pharmacological properties. This measure is calculated by evaluating 

molecular properties through a series of mathematical and statistical analyses. A compound with a higher 

QED score is considered to be more likely to succeed in the drug development process. Therefore, QED is 

used as an important tool in drug design and discovery processes. Figure 3 shows the interaction rates of 

QED on the BACE-1 inhibitors. 
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y_true/ y_pred = 1/0.87 y_true/ y_pred = 0/0.21 y_true/ y_pred = 1/0.80 

 

 

 

Clc1cc2CC(N=C(NC(Cc3cscc3CCC) 
C(=O)[O-])c2cc1)(C)C 

S(=O)(=O))CC(NC(OCn1nc(cc1C) 
C)=O)C(=O)NC(C(O)CC(C=O)NC 
(C(C)C)C(=O)NCC(C)C)C)CC(C)C)C 

FC1(F)CN2C(=NC1)[C@]( 
[NH+]=C2N)(c1cc(ccc1)C#CCOC) 
c1ccc(OC(F)F)cc1 

y_true/ y_pred = 0/0.15 y_true/ y_pred = 1/0.50 y_true/ y_pred = 1/0.87 

 

  
s1cc(cc1)-c1cc2c(nc(N)cc2)cc1 O=C1N(C)C(=N[C@]1(c1cc(nc(c1)C)

C) c1cc(ccc1)-c1cncnc1)N 
Clc1cc(-c2cc3c(OC(CC34N=C(N)N 
(C)C4=O)(C)C)cc2)c(F)cc1 

y_true/ y_pred = 1/0.16 y_true/ y_pred = 0/0.64 y_true/ y_pred = 1/0.50 
 

Figure 3. The QED results for interaction on BACE-1 inhibitors 

 

3. Experimental Results and Discussion 
 

In this study, Lipinski's rule was also taken into account for the prediction of drug interactions of BACE-1 

inhibitors. The Lipinski rule consists of a set of rules used to evaluate whether oral bioavailability of a 

compound is likely [27]. This rule is important for determining the pharmacokinetic properties of a 

compound and is widely used in the development of drug candidates. Lipinski's rules are [28]: 

 

 The molecular weight of the molecule has not been more than 500. 

 The total number of hydrogen bonds (sum of N and O atoms) has not been more than 5. 

 The number of donor hydrogen bonds has not been more than 5. 

 To determine the lipophilicity of the molecule, the distribution coefficient (LogP) value should not 

be more than 5. 

 

The BACE-1 drug interaction prediction performance value obtained by using the GDL model was 

determined as 0.877. To assess the effectiveness of the GDL model, the area under the curve (AUC) was 

calculated, indicating the accuracy of the proposed model. The ROC curve was used to provide a clearer 
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visual interpretation of the drug prediction of BACE-1 inhibitors. Figure 4 shows the results of the AUC, F1 

score and negative predictive value performance values of the proposed model. Figure 4 shows that the AUC 

value approaches 90. In the ROC curve, the under the curve is defined as AUC. The desired situation is for 

the ROC curve to be close to 1. This shows that the discrimination of the system is high. In Figure 4a, the 

high AUC value shows that the discrimination of the system is high. 

 

Accuracy is a performance criterion that is frequently used to measure the success of a model, but is not 

sufficient to measure system performance. F1 score is used to avoid making a wrong choice, especially when 

there is an imbalance in data between classes. Figure 4b shows the F1 score values for the training and 

validation data sets. As seen in Figure 4b, the F1 score reached approximately 80% at the end of 60 epochs. 

 

When a test result is negative, the value that indicates the probability of the result actually being negative is 

called Negative Predictive Value. As can be seen in Figure 4c, it was actually negative, but the percentage 

defined as negative in the system was approximately 78%. 

 

  
(a) (b) 

 
(c) 

 
Figure 4. (a) The AUC (b) The F1 Score (c) The Negative Predictive Value performance of GDL based model 

 

This study examined the potential role of BACE-1 inhibitors in the treatment of Alzheimer's. When we 

review other studies in the existing literature [29-32], there is sample evidence that BACE-1 inhibitors are an 

important therapeutic strategy targeting AD pathology. In particular, BACE-1 inhibitors have been shown to 

inhibit Aβ oligomerization and consequent amyloid plaque formation and thus may slow disease progression. 

Other studies in the literature reveal that BACE-1 inhibitors often face significant challenges in terms of their 

selectivity and drug-like properties. In this study, we showed that the GDL model we developed provides a 

high accuracy in predicting the efficacy of BACE-1 inhibitors. It is important to highlight the potential use 

of this model as a tool in the design and screening of BACE-1 inhibitors. However, the current study has 

some limitations. For example, the data set used was limited and only covered a specific chemical space. 

Additionally, further work is required on the generalizability and applicability of the GDL model to other 

molecular targets. Additionally, we think this study is an important step to further investigate the potential of 

BACE-1 in the treatment of AD. In the future, with further experimental studies and clinical trials, it will be 

possible to realize this potential and develop an effective therapeutic strategy in the treatment of AD. 
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Upon reviewing the literature, it is evident that many studies in the field do not explicitly report success rates 

in a manner that allows for direct comparison. For example, studies by Korolev et al. [33], Wang et al. [34], 

and Ghosh et al. [35] focus primarily on clinical and biochemical evaluations, providing valuable insights 

into binding mechanisms and pharmacokinetic properties, but do not offer quantifiable success rates for 

predictive modeling. This study makes significant contributions to the literature by leveraging geometric 

deep-learning techniques to predict interactions of BACE-1 inhibitors, an approach not widely explored in 

previous studies. Unlike traditional methods, our model utilizes the Message Passing Neural Network 

(MPNN) and Fully Connected Network (FCN) to effectively capture and represent complex molecular 

structures and their interactions. A key superiority of our study is the quantifiable success rate of 87.7%, 

which demonstrates the robustness and accuracy of our predictive model. This metric provides a clear 

benchmark for future research and offers a measurable improvement over previous studies that often lack 

explicit success rates. 

 

4. Conclusion 
 

This study assessed the applicability of geometric deep learning techniques in forecasting interactions of 

BACE-1 inhibitors for addressing Alzheimer's disease. During the training process, a customized model was 

developed using a Communication Transition Neural Network (MPNN) and Fully Connected Network 

(FCN). This model predicts molecule interactions through the combination of graph embedding and fully 

connected networks to capture complex structural and functional features in molecular structures. Our results 

show that the geometric deep learning model we developed can successfully predict the interactions of 

BACE-1 inhibitors. The performance rate of our model was evaluated based on the curve under area (AUC) 

value and was determined as 87.7%. By using pharmacological criteria such as the QED criterion and 

Lipinski's rule, the effectiveness of our model has further increased. These findings offer a novel approach 

for identifying and developing potential BACE-1 inhibitors aimed at treating Alzheimer's disease. 
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