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1. Introduction 
Optimizing model performance and efficiency in machine 

learning relies heavily on feature selection, where the 

most relevant attributes are chosen for model building. 

This process streamlines the model, reducing 

computational complexity and enhancing its ability to 

generalize to new data by focusing solely on essential 

features. However, in high-dimensional datasets, the 

growing number of features can pose challenges, such as 

the curse of dimensionality (Miao and Niu, 2016; 

Shardlow, 2016). This phenomenon can lead to overly 

complex models, increasing the risk of overfitting and 

diminishing their generalization capabilities. Thus, 

effective feature selection techniques are vital to address 

these challenges and ensure the reliability and robustness 

of machine learning models, particularly in the face of 

increasing data dimensionality (Kalousis et al., 2007; 

Wang et al., 2017). 

Feature selection plays a fundamental role in the realms 

of machine learning and data analytics, aiming to enhance 

model performance and diminish unnecessary noise 

within datasets. This process is carried out through 

various methods, including filter (Chandrashekar and 

Sahin, 2014), wrapper (Kohavi and John, 1997), 

embedded (Zheng and Casari, 2018), ensemble (Opitz and 

Maclin, 1999), and hybrid methods (Kabir et al., 2010). In 

this study, we will specifically delve into filter methods. 

Filter methods assist in identifying the most significant 

features within a dataset by analyzing their relationships 

and impact on the target variable. These methods 

examine the independence between features and select 

the most suitable ones, thereby improving model 

performance while mitigating the risk of overfitting. 

Consequently, filter methods play a pivotal role in the 

feature selection process (Yousefi and Varlıklar, 2024). 

Filter methods are integral to feature selection in machine 

learning, focusing on identifying the most relevant 

attributes within a dataset based on intrinsic 

characteristics (Yousefi and Aktaş, 2024). The pyallffs 

library, developed for this purpose, offers a 

comprehensive array of filtering techniques, facilitating 

seamless integration and exploration of various methods. 

With pyallffs, researchers and practitioners can efficiently 

pinpoint the most influential features within datasets, 

enhancing the accuracy and robustness of machine 

learning models. 

This paper makes the following key contributions: 

1. Novel Integration of Filter Methods: We introduce the 

pyallffs library, which consolidates multiple filtering 

techniques into a single, accessible platform, enabling 

researchers to efficiently apply and compare different 

methods. 

2. Empirical Evaluation: Through rigorous testing on 

diverse datasets, we demonstrate the effectiveness of 

filter methods in improving model accuracy and 

robustness, particularly in high-dimensional data 

environments. 

3. Comprehensive Analysis: The paper provides a 

detailed examination of the impact of various filter 

methods on model performance, offering valuable 

insights into their strengths and limitations. 

The structure of this paper is organized as follows: The 
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Materials and Methods section details the feature 

selection process, with a particular focus on filter feature 

selection methods. It also describes the datasets used in 

the study and provides information on the 

implementation and usage of the pyallffs library. 

Following this, the Results section presents the outcomes 

of our experiments, highlighting the effectiveness of the 

selected methods. Finally, the Conclusion and Future Work 

section summarizes the key findings and discusses 

potential directions for further research. 

 

 

 

 

2. Materials and Methods 
2.1. Feature Selection 

Feature selection is an important part of machine learning 

and data analysis. It helps to pick out the most useful 

features while leaving out the ones that don't matter 

much. This process, shown in Figure 1, makes models 

better by focusing on the most important features and 

making them easier to understand. It also helps to 

prevent problems like overfitting and makes models more 

accurate. By choosing features carefully, people who work 

with data can make better models and understand their 

data better. So, feature selection is a big help in analyzing 

data and making good decisions (Yousefi and Varlıklar, 

2024). 

 

 

 

 

 

 

 

 

Figure 1. Feature selection process. 

 

2.2. Filter Methods 

The filter feature selection method (Chandrashekar and 

Sahin, 2014) is a technique used to identify the most 

important features in a dataset. This method aims to 

select the most suitable features by analyzing 

relationships between features and how they affect the 

target variable. As depicted in Figure 2, filter methods 

help improve model performance by reducing the 

dataset's dimensionality. These methods typically use 

metrics that evaluate the importance of features, such as 

statistical measures. Filter methods reduce model 

complexity, prevent overfitting, and enhance the model's 

generalization ability. Therefore, the filter feature 

selection method plays a significant role in data analytics 

and machine learning projects (Yousefi and Varlıklar, 

2024). 

Filter methods are paramount in feature selection, 

serving to enhance model performance by identifying 

relevant attributes within datasets. However, given the 

plethora of techniques utilized within filter methods and 

the absence of a unified tool for their simultaneous 

application, a library addressing this need has been 

developed in this study. This library, namely pyallffs, is a 

versatile toolkit boasting 19 distinct filter feature 

selection methods. With pyallffs, researchers and 

practitioners can effortlessly navigate through various 

filtering techniques, as depicted in Figure 3, facilitating 

efficient and informed feature selection processes 

tailored to their specific dataset needs. 

2.2.1. Fisher Score 

The Fisher Score (Gu et al., 2012), employed in binary 

classification scenarios, assesses the discriminative 

capability of a feature across two classes. It quantifies this 

by computing the ratio of squared mean differences 

between feature values for each class to the sum of 

variances within each class. A higher Fisher Score 

suggests a more pronounced discrimination between 

classes, rendering the feature more significant. The Fisher 

Score formula can be expressed as in equation 1: 

𝐹𝑖𝑠ℎ𝑒𝑟_𝑠𝑐𝑜𝑟𝑒(𝑓𝑖) =  
∑ 𝑛𝑗(𝜇𝑖,𝑗 − 𝜇𝑖)

2𝑐
𝑗=1

∑ 𝑛𝑗𝜎(𝑖, 𝑗)2𝑐
𝑗=1

     (1) 

Here, nj, μi, μi,j, and σ(i, j)2 respectively denote the 

number of samples in class 𝑗, the mean value of feature fi, 

the mean value of feature fi for samples in class 𝑗, and the 

variance value of feature fi for samples in class 𝑗. This 

feature selection method is commonly employed for 

binary classification purposes (Gu et al., 2012). 

2.2.2. T-Score 

The fundamental concept behind the T-score (Carey and 

Delaney, 2010) is to assess whether a feature can 

statistically differentiate between the means of two 

classes by calculating the ratio between the mean 

difference and the variance of the two classes. Generally, 

the higher the t-score, the more significant the feature 

(Faulkner, 2005). The T-score relies on the t-value, which 

is among the most commonly used filter methods. As 

mentioned earlier, a relationship score is computed for 

each class using the sample size, mean, and standard 

deviation values of features, and features with high scores 

are added to the subset in the t-score method (Budak and 

Taşabat, 2016). The T-Score formula can be expressed as 

in equation 2 (Chandrashekar and Sahin, 2014): 

𝑇𝑆𝑐𝑜𝑟𝑒(𝑓𝑖)  =
|𝜇1 −  𝜇2|

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

 
(2) 

Here, μ1 and μ2 are the mean feature values for samples 
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from the first and second classes, respectively, while σ1
2 

and σ2
2 represent the corresponding standard deviation 

values, and n1 and n2 denote the number of samples from 

these two classes (Chandrashekar and Sahin, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The general framework of filter method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. All filter feature selection methods. 

 

2.2.3. Welch's T-statistic 

Welch's t-statistic (Welch, 1947) is a technique used in 

feature selection to spot differences between groups of 

features. It calculates variations in group means, within-

group variances, and sample sizes. Unlike the standard t-

test, Welch's method is more reliable when group sizes 

and variances differ. It offers a flexible approach to 

evaluating how features stand out across groups by 

normalizing mean differences. The Welch's t-statistic 

formula can be expressed as in equation 3: 

𝑊𝑒𝑙𝑐ℎ′𝑠𝑇𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐(𝑓𝑖)  =
|𝜇1 − 𝜇2|

√
(𝜎1

2)2

𝑛1
+

(𝜎2
2)2

𝑛2

 
(3) 

Here, μ1 and μ2 are the mean feature values for samples 

from the first and second classes, respectively, while σ1
2 

and σ2
2 represent the corresponding variances values, and 

n1 and n2 denote the number of samples from these two 

classes (Delacre et al., 2017). 

2.2.4. Chi-Squared 

The chi-square (Kass, 1980) statistic serves as a 
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technique for feature selection, primarily assessing the 

association between features and the target variable, 

particularly in classification tasks involving categorical 

features. It determines whether a feature is independent 

of the target variable by measuring the strength of their 

relationship. This test evaluates the independence 

hypothesis between two categorical variables through the 

ratio of squared differences between observed and 

expected frequencies, thereby gauging the existence of a 

relationship between them. The mathematical formula of 

chi-square statistic is as in equation 4 (Witten and Frank, 

2002): 

𝐶ℎ𝑖𝑆𝑞𝑢𝑎𝑟𝑒𝑑(𝑓𝑖)  =    ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 (4) 

Here, 𝑂𝑖  stands for observed frequency, indicating the 

actual occurrence frequencies of category combinations 

within the dataset, while 𝐸𝑖 represents expected 

frequency, depicting the frequencies expected under the 

assumption of independence between the two variables 

(Ugoni and Walker, 1995). The chi-square statistic 

calculates the sum of the squared differences between 

observed and expected frequencies for category 

combinations, serving as a measure of the relationship 

between the feature and the target variable. A high chi-

square value indicates a robust relationship, whereas a 

low value suggests a weaker association between the two 

variables (Bryant and Satorra, 2012). 

2.2.5. Information Gain 

Information gain, also known as Kullback-Leibler 

(Kullback and Leibler, 1951) divergence, is a measure of 

the entropy gained through operations performed on a 

dataset or random variable (Cover, 1999). Entropy 

represents the level of variation in data; lower entropy 

indicates less variation and stronger relationships. Higher 

information gain signifies greater importance of a feature. 

It operates independently across all features and is based 

on their information gain (Hall and Smith, 1998). The 

information gain of a feature denotes the difference 

between previous uncertainty and expected subsequent 

uncertainty. Information gain is highest for classes with 

equal probability, indicating lowest uncertainty. Shannon 

entropy is commonly used as a measure of uncertainty 

(Shannon, 1948). The mathematical formula of 

information gain is as in equation 5  et al., 2004): 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖) 𝑙𝑜𝑔(𝑃(𝑥𝑖))

𝑥𝑖∈𝑋

 

𝐻(𝑋|𝑌) =  ∑ 𝑃(𝑦𝑖) ∑ 𝑃(𝑥𝑖|𝑦𝑖) 𝑙𝑜𝑔(𝑃(𝑥𝑖|𝑦𝑖))

𝑥𝑖∈𝑋𝑦𝑖∈𝑌

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑋, 𝑌)  =  𝐻(𝑋) − 𝐻(𝑋|𝑌) 

(5) 

Here, Information Gain (X, Y) denotes the information 

gain between dataset X and feature Y. H(X) signifies the 

entropy of dataset X, which equals zero when the dataset 

is entirely homogeneous. H(X|Y) represents the 

conditional entropy of dataset X given feature Y. It 

assesses the homogeneity of the dataset following its 

division based on feature values. 

 

2.2.6. Gain Ratio 

Gain Ratio is a feature selection criterion utilized to gauge 

the importance of features in the feature selection 

process. As a variant of Information Gain, it offers a 

normalized perspective, considering the intrinsic 

information content of a split. It assesses the homogeneity 

of subsets formed by feature splitting while also factoring 

in the number of values the feature can assume. This 

metric aims to address the bias towards features with a 

large number of unique values, which often exhibit higher 

Information Gain, by normalizing it with the split 

information (Witten et al., 2005). The Gain Ratio is 

typically calculated as in equation 6 (Novaković, 2016): 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑋)  =  
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑋)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑋)
 (6) 

Here, Information Gain (X) denotes the information gain 

attributed to feature X, while Split Information (X) 

quantifies the information generated by splitting based on 

feature X. Split Information is determined by the 

cardinality of feature values; higher unique values lead to 

diminished Split Information, consequently elevating the 

Gain Ratio, thus ensuring a more equitable metric for 

feature selection across diverse feature sets (Novaković, 

2016; Priyadarsini et al., 2011). 

2.2.7. Symmetric Uncertainty Coefficient 

The Symmetric Uncertainty Coefficient is a method 

devised to overcome the drawbacks of information gain 

by dividing the entropies of X and Y (Dash and Liu, 2003). 

It assesses the suitability of features in relation to the 

target class, with higher values indicating greater 

importance. Symmetric Uncertainty Coefficient can be 

calculated using the formula in equation 7 (Hernández-

Torruco et al., 2014): 

𝑆𝑈𝐶(𝑋, 𝑌)  =  
2 ∗  𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑋, 𝑌)

𝐻 (𝑋) + 𝐻(𝑌)
 (7) 

Here, SUC(X, Y) denotes the Symmetric Uncertainty 

Coefficient between variables 𝑋 and 𝑌, while 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑋, 𝑌) measures the information gain 

between them, with 𝐻 (𝑋) and 𝐻(𝑌) representing their 

respective entropies (Ali and Shahzad, 2012). Similar to 

gain ratio, this method also ranges between 0 and 1. 

When the symmetric uncertainty coefficient equals 1, it 

indicates that one feature completely predicts the other, 

whereas a value of 0 signifies no relationship between 𝑋 

and , 𝑌 (Mani and Kalpana, 2016). 

2.2.8. Relief Score 

Relief, proposed by Kira and Rendell (Kira and Rendell, 

1992), is a widely used classic filter method for 

classification problems, functioning as a multivariate 

feature selection technique. It operates by randomly 

selecting instances from the data and then finding the 

nearest neighbors from the same and opposite classes, 

updating relevance scores for each feature based on these 

comparisons (Hall and Holmes, 2000). In other words, 

Relief measures the relevance of features by comparing 

the value of the current feature for instances classified as 

the same and different classes (Esmael et al., 2012). Its 

strengths lie in its independence from intuitive scans, 
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efficient operation in low-degree polynomial time, and 

applicability to binary and continuous data, and resilience 

to noisy data and feature interactions. However, it fails to 

distinguish among redundant features, thus potentially 

misleading the algorithm with a limited number of 

training instances (Lun Gaoa et al., 2013).  Relief score can 

be calculated using the formula in equation 8 (Miao and 

Niu, 2016; Nilsson, 2007): 

𝑅𝑒𝑙𝑖𝑒𝑓_𝑆𝑐𝑜𝑟𝑒 =   
1

2
∑ 𝑑(𝑋(𝑗, 𝑖) − 𝑋(𝑁𝑀(𝑗), 𝑖))

𝑙

𝑗=1

− 𝑑(𝑋(𝑗, 𝑖) − 𝑋(𝑁𝐻(𝑗), 𝑖)) 

(8) 

Here, NM(j) and NH(j)indicate the nearest data instances 

to 𝑥𝑗 with the same class label and a different class label, 

respectively. Typically, 𝑑 is set as the Euclidean distance 

metric(Miao and Niu, 2016; Nilsson, 2007). 

2.2.9. Relief-F Score 

Relief-F (Kononenko, 1994) is an extension of the original 

Relief algorithm. Whereas the original Relief operates by 

randomly selecting an instance from the data and then 

finding the nearest neighbors from the same and opposite 

classes, Relief-F extends its capabilities to handle multi-

class problems and offers increased robustness against 

missing and noisy data (Arauzo-Azofra et al., 2004; 

Urbanowicz et al., 2018). This method is universally 

applicable, has low error rates, accounts for feature 

interactions, and can capture local dependencies 

overlooked by other methods. The core idea of this 

approach is to select features capable of distinguishing 

examples originating from different classes (Kononenko, 

1994; Vora and Yang, 2017). Relief-F calculates its score 

using the formula in equation 9 (Kononenko, 1994): 

𝑅𝑒𝑙𝑖𝑒𝑓𝐹(𝑓𝑖)

=   
1

𝑐
∑ (−

1

𝑚𝑗
∑ 𝑑(𝑋(𝑗, 𝑖) − 𝑋(𝑟, 𝑖))

𝑥𝑟∈𝑁𝐻(𝑗)

𝑙

𝑗=1

+  ∑
1

ℎ𝑗𝑦

𝑃(𝑦)

1 − 𝑃(𝑦)
∑ 𝑑(𝑋(𝑗, 𝑖) − 𝑋(𝑟, 𝑖))

𝑥𝑟∈𝑁𝑀(𝑗,𝑦)𝑦≠𝑦𝑗

) 

(9) 

Here, NH(j) and NM(j, y) denote the nearest data 

instances to 𝑥𝑗 with the same class and a different class𝑦, 

respectively, with sizes hjy and mj. P(y) represents the 

proportion of examples with class label 𝑦 (Vora and Yang, 

2017). 

2.2.10. mRMR 

The Minimum Redundancy Maximum Relevance (mRMR) 

score, proposed by Ding ad Peng in 2005 (Ding and Peng, 

2005), is a filter-based and supervised feature selection 

method. It selects features by minimizing redundancy 

among them while maximizing relevance, aiming to 

reduce feature redundancy and maximize feature 

relevance (Chandra and Gupta, 2011; Radovic et al., 

2017). Additionally, this method utilizes the mutual 

information criterion as a fitness measure across different 

datasets (Ding and Peng, 2005; Bolón-Canedo et al., 

2014). The mRMR score can be calculated using the 

formula in equation 10 (Ding and Peng, 2005): 

𝑤 =
1

|𝑆|2  ∑ 𝑐(𝑖, 𝑗)

𝑖,𝑗

 

𝑉𝐹 =
1

|𝑆|
 ∑ 𝐹(𝑖, ℎ)

𝑖∈𝑆

 

(10) 

Here, 𝑆 represents a set of features, |𝑆| denotes the 

number of features in 𝑆, 𝑐(𝑖, 𝑗) represents the correlation 

between features 𝑖 and 𝑗, h is the target, and 𝐹(𝑖, ℎ) is the 

F-statistic. The Minimum Redundancy Maximum 

Relevance (mRMR) method is one of several feature 

selection techniques applicable in both classification and 

regression tasks. It has been observed to perform 

particularly well in high-dimensional datasets where the 

number of features is significantly larger than the number 

of samples (Ding and Peng, 2005; Peng and Fan, 2015). 

2.2.11. Absolute Pearson Correlation Coefficients 

Feature selection based on correlation involves assessing 

the connection between a feature and either the target 

variable or other features, indicating the strength of their 

relationship. The correlation coefficient, often measured 

using the Pearson correlation coefficient, quantifies this 

relationship between two variables. With values ranging 

from -1 to 1, a coefficient close to 1 signifies a positive 

linear relationship, while a coefficient near -1 suggests a 

negative linear relationship. Conversely, a coefficient 

close to 0 indicates no linear relationship between the 

variables. The Pearson correlation coefficient can be 

calculated using the formula in equation 11 (Sedgwick, 

2012): 

𝑝𝑒𝑎𝑟𝑠𝑜𝑛_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(𝑟)

=
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 −  𝑦)𝑛

𝑖=1

𝜎𝑥𝜎𝑦
 

(11) 

Here, x and y represent the means, while σx and σy denote 

the standard deviations of xi and yi, respectively 

(Goswami and Chakrabarti, 2014). 

2.2.12. Maximum Likelihood Feature Selection 

Maximum likelihood feature selection (Suzuki et al., 

2008) is a multivariate and supervised feature selection 

method that prioritizes variables based on the measure of 

input-target dependency. Estimators utilize maximum 

likelihood mutual information to measure the 

dependency between input and target. This method is a 

density estimation-based mutual information estimator. 

The density ratio of this method is calculated using the 

formula in equation 12 (Suzuki Ding and Peng, 2005; 

Suzuki et al., 2008; Suzuki Ding and Peng, 2009): 

𝑤(𝑥, 𝑦) =
𝑃𝑥𝑦(𝑥, 𝑦)

𝑃𝑥(𝑥)𝑃𝑦(𝑦)
 (12) 

Here, Pxy(x, y) denotes the joint density of 𝑋 and 𝑌, while 

Px(x) and Py(y) represent the densities of 𝑋 and 𝑌, 

respectively. Maximum likelihood feature selection is a 

method employed for both classification and regression 

problems (Suzuki et al., 2008). 

2.2.13. Least Squares Feature Selection 

Least Squares Feature Selection is a method utilized to 

enhance model accuracy or effectively explain the target 

variable by selecting features from a dataset. It employs a 

linear regression model to gauge feature importance, 
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utilizing the least squares method within this framework. 

Practically, it involves estimating coefficients in the linear 

regression model and evaluating their absolute 

magnitudes to determine feature importance. Features 

are prioritized or ranked based on the absolute values of 

their coefficients, providing insights into their significance 

in the model. Mathematically, this technique is 

represented by estimating coefficients in the linear 

regression model and examining their absolute values to 

ascertain feature importance. The least squares feature 

selection can be calculated using the formula in equation 

13 (Xiang et al., 2012): 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (13) 

Here, �̂� denotes the estimated parameter vector of the 

model, 𝑋 represents the data matrix, and y is the vector of 

the target variable. 

2.2.14. Laplacian Feature Selection Score 

The Laplacian feature selection score (He, Cai, and Niyogi, 

2005) is fundamentally based on Laplacian eigenmaps 

(Belkin and Niyogi, 2001) and locality preservation forces 

(He and Niyogi, 2003); moreover, this method is a graph-

based, unsupervised, and univariate feature selection 

algorithm that ranks features according to their locality 

preservation forces (Von Luxburg, 2007). In the Laplacian 

algorithm, features are evaluated independently; 

therefore, this algorithm cannot assess feature 

redundancy (Liu et al., 2010). The Laplacian score of a 

feature can be calculated using the formulas in equation 

14 (He et al., 2005): 

𝐿𝑎𝑝(𝑓𝑖) =
𝑓𝑖

′𝐿𝑓𝑖
′

𝑓𝑖
′𝐷𝑓𝑖

′
 

𝑓𝑖 = 𝑓𝑖 −
𝑓𝑖

′𝐷1

1′𝐷1
1     , 1 =  [1,1, … ,1]′ 

𝐷(𝑖, 𝑗) = ∑ 𝑆(𝑖, 𝑗)

𝑛

𝑗=1

 

𝑆(𝑖, 𝑗) =
𝑒−‖𝑥𝑖− 𝑥𝑗‖

2

𝑡
 

𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝐿) = 𝐷 − 𝑆 

(14) 

It is well-known that constructing the Laplacian graph is 

computationally expensive, particularly when the number 

of features is high (He et al., 2005) . 

2.2.15. Mutual Information 

Mutual Information was initially proposed by Shannon in 

1948 (Shannon, 1948). This method is a univariate and 

supervised feature weighting technique. Moreover, it 

calculates the mutual information between each feature 

and the target class label, then ranks the features 

accordingly and selects the best ones. In other words, this 

method quantifies the amount of information that two 

random variables convey about each other. Additionally, 

it has a symmetric structure 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋) and can 

detect nonlinear relationships between variables. Hence, 

it has become a very popular criterion (Battiti, 1994; 

François et al., 2007). The reason is that mutual 

information, unlike other methods, does not only handle 

linear dependencies (Doquire and Verleysen, 2011). The 

mutual information method has been successfully 

adopted in filter feature selection methods to assess both 

the relevance of a subset of features in predicting the 

target variable and their redundancy with respect to 

other variables (Beraha et al., 2019). Mutual information 

can be calculated using the formula in equation 15 (Cover, 

1999): 

𝑀𝑢𝑡𝑢𝑎𝑙_𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑋, 𝑌)

= ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥) ∗ 𝑝(𝑦)
𝑦𝑥

 (15) 

Here, X and Y represent two random features or variables, 

with 𝑝(𝑥) and 𝑝(𝑦) being the probability density 

functions and 𝑝(𝑥, 𝑦) the joint probability density 

function (Kannan and Ramaraj, 2010; Vergara and 

Estévez, 2014). Mutual Information is a fundamental 

method for evaluating how much information is 

associated between two features. It is defined as the 

difference between the sum of marginal entropies and the 

joint entropy. For completely independent objects, mutual 

information is always zero (Singh et al., 2014). A 

prediction or classification model aims to reduce 

uncertainty in the output, the dependent variable. As 

mentioned above, it is a good criterion for assessing the 

relevance of a set of features, a simplified prediction 

model. Naturally, it measures the uncertainty of the 

output due to knowledge of the inputs (Rossi et al., 2006). 

2.2.16. Euclidean Distance 

The Euclidean Distance is a widely employed metric for 

gauging the similarity or dissimilarity between features, 

denoting the straight-line distance between two points 

within the feature space. This distance measure finds 

extensive application in various machine learning and 

data mining algorithms to quantify the distance or 

similarity between features (Suebsing and 

Hiransakolwong, 2009). The mathematical expression for 

the Euclidean Distance between two points is given by the 

formula in equation 16 (Ladha and Deepa, 2011): 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = √∑(𝑥𝑖 −  𝑦𝑖)2

𝑛

𝑖=1

 (16) 

Here, 𝑥 and 𝑦 are feature vectors, xi and yi represent the 

i−𝑡ℎ components of vectors 𝑥 and 𝑦, respectively, and 𝑛 is 

the dimensionality of the feature vectors (i.e., the number 

of features). A smaller Euclidean Distance suggests 

similarity between two vectors, whereas a larger 

Euclidean Distance suggests dissimilarity. This metric is 

especially valuable for assessing the proximity or 

separation of clusters or data points within the feature 

space (Ladha and Deepa, 2011). 

2.2.17. Cramer's V test 

The chi-square test is a widely recognized method 

employed to examine associations between variables, 

demonstrating efficacy in the domain of feature selection 

(Lu and Weng, 2007). However, its sensitivity to sample 

size is a well-documented limitation. To address this 

issue, researchers often turn to Cramer's V test, a 

prominent nominal technique used to quantify the 

strength of relationships between variables. Notably, 

Cramer's V is advantageous as it remains unaffected by 

sample size variations, making it particularly valuable in 
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scenarios where statistical significance in chi-square 

results may be attributed to large sample sizes rather 

than genuine associations between variables. As such, 

Cramer's V test serves as a reliable tool for assessing the 

degree of relationship between target and predictor 

variables. The calculation of Cramer's V value is 

determined by the formula in equation 17 (Martínez 

Casasnovas et al., 2008): 

𝑉 = √
𝑥2

𝑁 ∗ (𝑘 − 1)
 (17) 

Here, Cramer's V value is derived from the chi-square (x2) 

statistic and is calculated based on the total number of 

observations (𝑁) and the number of categories (𝑘) in the 

features. This value ranges between 0 and 1, where a 

higher value signifies a stronger relationship between the 

categorical variables. In feature selection, features 

exhibiting higher Cramer's V values are generally deemed 

more significant and prioritized over others (Martínez 

Casasnovas et al., 2008). 

2.2.18. Markov Blanket Filter 

The concept of the Markov Blanket, originating from 

Pearl's seminal work in 1988 (Pearl, 1988), serves as a 

fundamental component in probabilistic graphical 

modeling. The Markov Blanket Filter, an essential tool for 

feature selection, identifies a subset of variables crucial 

for maintaining the conditional independence of a target 

variable within a probabilistic framework. For a variable 

𝑋𝑖, its Markov blanket includes directly connected 

variables that influence or are influenced by 𝑋𝑖, 

encompassing both parents and children nodes within a 

graphical model. This blanket, defined as 𝑀𝐵(𝑋𝑖), plays a 

pivotal role in Bayesian networks and graphical models 

by encapsulating the minimal set of variables needed to 

predict 𝑋𝑖 given all others in the network (Tsamardinos, 

Aliferis, and Statnikov, 2003; Tsamardinos, Aliferis, 

Statnikov, and Statnikov, 2003). The mathematical 

definition of the Markov blanket for the variable 𝑋𝑖, is 

expressed as in equation 18: 

𝑀𝐵(𝑋𝑖) = 𝑃𝑎(𝑋𝑖) ∪ 𝐶ℎ(𝑋𝑖) ∪ 𝑃𝑎(𝐶ℎ(𝑋𝑖)) (18) 

Here, the Markov blanket 𝑀𝐵(𝑋𝑖) of 𝑋𝑖 comprises its 

parents 𝑃𝑎(𝑋𝑖), its children 𝐶ℎ(𝑋𝑖), and the parents of its 

children 𝑃𝑎(𝐶ℎ(𝑋𝑖)). This concept is instrumental in 

depicting the independence relationships within Bayesian 

networks and serves as a tool in feature selection 

methodologies (Koller and Sahami, 1996; Shen et al., 

2008). 

2.2.19. Kruskal-Wallis test 

The Kruskal-Wallis test is a supervised, univariate, non-

parametric feature selection method that assesses 

whether two or more classes have equal medians and 

provides a corresponding value. In essence, this method is 

a cost-effective and straightforward feature selection 

technique with lower computational overhead. A value 

close to zero indicates discriminatory power of the 

feature, effectively selecting features containing 

discriminatory information while discarding others. 

Similar to other statistical tests, the Kruskal-Wallis test 

computes a test statistic and compares it with a critical 

value to determine significance (Saeys et al., 2007; Ali 

Khan et al., 2014). The formula used to apply the Kruskal-

Wallis test is as in equation 19 (Naik and Rangwala, 

2016): 

𝑘𝑟𝑢𝑠𝑘𝑎𝑙_𝑤𝑎𝑙𝑙𝑖𝑠 = (𝑁

− 1)
∑ 𝑛𝑖(�̅�𝑖 − �̅�)2𝐿

𝑖=1

∑ ∑ 𝑛𝑖(𝑟𝑖𝑗 − �̅�)
2𝑛𝑖

𝑗=1
𝐿
𝑖=1

 (19) 

Here, ni represents the number of examples in class 𝑖, rij 

denotes the ranking of example 𝑗 in class 𝑖, and r̅ indicates 

the average ranking across all examples. 

2.3. Dataset 

In this study, we utilized the breast cancer dataset to 

evaluate the performance of the pyallffs library we 

developed. The dataset consists of 30 features associated 

with breast cancer, excluding identifiers and diagnosis 

labels. These features are employed to forecast the 

occurrence of breast cancer in individuals. You can freely 

access the dataset on Kaggle using the following link: 

https://www.kaggle.com/datasets/yasserh/breast-

cancer-dataset. 

2.4. How to Use pyallffs Library? 

In this study, we introduce the pyallffs library, which 

provides a convenient way to apply 19 different feature 

selection methods to your datasets for rapid identification 

of the most important features. This library is designed to 

streamline the process of feature selection by offering a 

comprehensive suite of methods that can be easily 

adapted to various datasets. By leveraging pyallffs, 

researchers and data scientists can efficiently identify 

critical features for predictive modeling and analysis. 

To access the codes and utilize the functionalities of the 

pyallffs library, you can install the library using the 

command “pip install pyallffs”. After installation, you can 

import all the mentioned methods into your workflow 

using “from pyallffs import *”. Once imported, you can 

instantiate an object of interest from the available 

methods and feed your dataset into it. The library will 

then generate graphical outputs showcasing the most 

important features based on the chosen method. 

For further information and to access the library's source 

code, please visit the following links: 

https://pypi.org/project/pyallffs/ 

https://github.com/tohid-yousefi/pyallffs 

https://www.kaggle.com/tohidyousefi/pyallffs 

 

3. Results and Discussion 
In our study, we applied our developed pyallffs library to 

perform feature selection using all filter methods on the 

breast cancer dataset, reducing the feature set from 30 to 

10 features. We conducted predictive modeling using the 

random forest algorithm based on this reduced feature 

set. Additionally, we compared this approach to using all 

features without feature selection. The results, as 

depicted in Table 1 and Figure 4, demonstrate that 

employing our library for feature selection led to 

improved predictive performance compared to using the 

entire set of features. This outcome underscores the 

effectiveness of our pyallffs library in enhancing 

https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset
https://www.kaggle.com/datasets/yasserh/breast-cancer-dataset
https://pypi.org/project/pyallffs/
https://github.com/tohid-yousefi/pyallffs
https://www.kaggle.com/tohidyousefi/pyallffs
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predictive accuracy through efficient feature selection, 

contributing to more robust and reliable modeling 

outcomes in breast cancer prediction. 

Table 1. Metrics of all filter feature selection methods using pyallffs library 

Feature Selection Methods Accuracy Precision Recall F1 Score ROC AUC 

Kruskal Wallis 0.982 1.000 0.953 0.976 0.977 

Laplacian Score 0.982 0.977 0.977 0.977 0.981 

Fisher Score 0.974 0.976 0.953 0.965 0.970 

T-Score 0.974 0.976 0.953 0.965 0.970 

Welch T-Score 0.974 0.976 0.953 0.965 0.970 

Cramers V 0.965 0.976 0.930 0.952 0.958 

Mutual Information 0.965 0.976 0.930 0.952 0.958 

Without-Feature-Selection 0.965 0.976 0.930 0.952 0.958 

Symmetric Uncertainty Coefficient 0.965 1.000 0.907 0.951 0.953 

Information Gain 0.965 0.976 0.930 0.952 0.958 

mRMR 0.965 1.000 0.907 0.951 0.953 

Pearson Correlation 0.956 0.952 0.930 0.941 0.951 

Gain Ratio 0.956 0.975 0.907 0.940 0.946 

Markov Blanket 0.956 0.952 0.930 0.941 0.951 

Relief 0.947 0.930 0.930 0.930 0.944 

Maximum Likelihood 0.947 0.951 0.907 0.929 0.939 

Least-Squares 0.947 0.951 0.907 0.929 0.939 

Euclidean Distance 0.947 0.951 0.907 0.929 0.939 

Chi-Squared 0.947 0.951 0.907 0.929 0.939 

Relief-F 0.930 0.889 0.930 0.909 0.930 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Comparison of All Filter Feature Selection Methods Using pyallffs Library 
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In conclusion, our developed pyallffs library facilitated 

feature selection using all filter methods on the breast 

cancer dataset, followed by predictive modeling using the 

random forest algorithm. Comparing the performance of 

this approach with predictive modeling using all features 

without feature selection, our results clearly demonstrate 

superior predictive accuracy when leveraging the pyallffs 

library for feature selection. Therefore, we believe that 

the pyallffs library offers significant advantages to 

developers by consolidating all feature selection methods 

under a single framework, providing enhanced 

performance, and simplifying the process of model 

development and optimization in breast cancer prediction 

tasks. This consolidation not only improves efficiency but 

also supports more informed decision-making in machine 

learning workflows. 

In the future, we plan to enhance the pyallffs library by 

integrating metaheuristic algorithms to optimize the 

parameters of feature selection methods, aiming to create 

a more comprehensive tool. Additionally, we intend to 

design a user-friendly interface and offer this library as a 

free product, making it accessible to a broader audience 

and further supporting the machine learning community. 
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