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ABSTRACT 

This paper focuses on the design and implementation of model predictive controller (MPC) for a boost pressure control of series 

sequential diesel engine. Boost pressure control is critical to satisfy diesel engine performance and driveability requirements as 

well as increasing volumetric efficieny. In this study, Control oriented linear models are generated by using system identification 

methods in order to be used in output prediction models. Prediction models are identified for 5 different engine operating regions 

to increase the accuracy of linear models. Based on state-space prediction models, Controller design is performed considering 

Kalman Filter tuning, constraint definitions, controller weights. Engine dynamometer testing have been performed to define input 

and input rate constraints. MPC design is performed for online optimization method. Nonlinear engine model is modeled in high 

fidelity simulation environment. Results are shown that MPC is capable of showing better setpoint tracking while satisying 

contraints explicitly than conventional PID (Proportional-Integral-Derivative) controllers. Relatively easy tuning, ability to 

handle constraints and incorporation of models makes MPC attractive to Automotive control community.  

Keywords: Model predictive control; system identification; Diesel engine control. 

Seri Bağlı Aşırı Doldurma Sistemine Sahip Dizel 

Motorlar İçin Doğrusal Model Tahmini Tabanlı Basınç 

Kontrolcüsü Tasarımı ve Simülasyonu 

ÖZET 

Bu makalede seri bağlı aşırı doldurma sistemine sahip bir dizel motor için model tahmini bazlı basınç kontrolcüsü tasarımı ve 

simülasyonu sunulmuştur. Dizel motorların performans ve sürüş özellikleri geliştirmek ve volumetrik verimi arttırmak için aşırı 

doldurma basıncının kontrolü kiritk bir önem arzetmektedir. Bu çalışmada ilk olarak, sistem tanıma metodu kullanılarak, 

kontrolcü tasarımında kullanılacak doğrusal modeller yaratılmıştır. Motorun çalışma bölgesinde 5 ayrı bölge için doğrusal 

modeller çıkarılmıştır. Çıkarılan bu modeller kullanılarak, Kontrolcü tasarımı gerçekleştirilmiştir. Kontrolcü tasarımında Kalman 

filtresi ve ağırlıklandırma matrislerinin kalibre edilmesi ile sistem kısıtları belirlenmiştir. Sistem kısıtlarının belirlenmesinde 

motor dinamometresinde testler gerçekleştirilmiş ve elde edilen veriler giriş ve giriş oranı kısıtlarının belirlenmesinde 

kullanılmıştır.  Kontrolcü tasarımı çevrimiçi eniyileme metodu baz alınarak gerçekleştirilmiştir.. Benzetimlerde, yüksek 

hassasiyetli doğrusal olmayan motor modeli kullanılmıştır. Sonuçlarda, model tahmini bazlı kontrolcünün, standart PID’lere göre 

daha üstün set edilen değer takibi yaptığını ve bunu sağlarken sistem kısıtlarını da dikkate aldığı gözlemlenmiştir. Kalibre 

edilmesinin göreceli olarak kolay oluşu, sistem kısıtlarını tasarımda dahil etmesi ve model bazlı olması nedeniyle Otomotiv 

kontrolü alanında çekici bir hale gelmiştir.  

Anahtar Kelimeler: Model tahmini bazlı kontrol; Sistem tanıma; dizel motor kontrolü.  

1. INTRODUCTION (GİRİŞ) 

Customer performance and fuel economy requirements 

as well as environmental concerns (reduction of gaseous 

and particulate emissions, CO2) leads progressive 

development in the field of Automotive Control. 

Although the challenges are valid for most of the 

subsytems, powertrain control is emerged thanks to high 

nonlinear behaviour, fast system dynamics and 

complexity. Stringent emissions legislations requires 

extensive control loops with more sensors and actuators 

added. This phenomena makes the control problem 

multi-dimensional and multi-variable. 

Diesel engine management consists of controlling of 

fuel, air and exhaust paths. Coordinated control of fuel 

and air path results in efficient diesel combustion. The 

amount of fresh inside cylinders is controlled by boost 

pressure . Increased boost leads to inreased air density 

therefore higher mean effective pressure which 

increases power output from the engine. Supercharging 

increases the amount of boost by employing exhaust-gas 
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turbchargers and/or mechanical supercharging units. 

Series sequential turbocharging refers to the system in 

which two exhaust gas turbocharges are connected in 

series in order provide enough boost at rated power and 

load response at low speed-load points [1].  

Current ECU(Engine Control Unit) algorithms 

incorporate conventional map-based PID controllers for 

Boost pressure control. Most algorithms include anti-

wind up strategies as well as feedforward compensation. 

These gain scheduled PIDs result in extensive effort to 

calibrate each map in engine dynamometer and vehicle 

testing. In addition, system hardware limitations and 

constraints should be handled indirectly . This is mostly 

performed by setpoint limitations.  

Being developed in process industry in 1980s, Model 

predictive control offers a  formulation to this 

multivariable problem in terms of constrained  finite 

horizon optimal control problem. Basically, MPC 

formulation is based on multivariable framework which 

provides suitable environment for Multi-Input and Multi 

Output systems [2]. Moreover, soft and hard constraints 

are handled in this multivariable control framework 

where the limitations need not to be considered 

seperately [3]. In addition, optimal control sequence can 

be either calculated online of explicitly (See [4] for 

details on Explicit MPC) 

The outline of this paper is organized as follows; 

Section 2 include the derivation of control-oriented 

model and partition of engine operating region. Section 

3 include the MPC formulation. Constraints definition 

and Kalman filtering is mentioned in Section 3. Section 

4 shows the simulation setup as well as the generation 

of high fidelity engine model in RICARDO WAVE.  

Section 5 concluded with the simulation results.  

 

2. CONTROL ORIENTED MODEL (KONTROL 

AMAÇLI MOTOR MODELİ) 

The system to be modeled is shown in Figure 1. Test 

engine is 2L series sequential diesel engine. There are 2 

seperate turbocharger units which are connected in 

series (HP-High Pressure stage and LP-Low Pressure 

stage). Low-end and high-end torque characteristics of 

the engine defines the turbocharging matching criteria. 

At high load-speed points LP turbocharger is more 

efficient therefore Turbocharger size is matched 

according to the rated power. HP turbocharger matching 

is performed according to satisfy better transient 

characteristics and low-end torque performance only.  

Control of boost pressure is performed by means 

of HP bypass and LP bypass valves. Both of these 

valves are electropneumatically actuated by ECU. The 

after treatment parts such as Diesel oxidation catalyst 

and Diesel Particulate filter have not been considered in 

this study. Therefore, the LP turbine outlet pressure is 

assumed equal to atmospheric pressure. Moreover the 

air filter restriction is not taken into account.  

 

 

 
Figure 1: Engine Architecture (Motor mimarisi) 

 

In order to design linear control system, the controlled 

plant should be represented in linear system 

formulation. This can be achieved by 2 methods; 

Linearization of nonlinear gray box models and system 

identification based black-box modeling. During this 

study, latter method is used. Linearization of gray-box, 

mean-value engine models is cumbersome in case high 

order systems with high number of states. In this case, 

linear system is identified by using input and output 

data. Unlike, gray box models, there is no physical 

relation of black-box model to real engine system but 

only mathematical relations [5].  Moreover, black-box 

model derivation can take shorter times, which would 

be less than theoretical, gray-box modeling method [6]. 

Generally, there are parametric and non-parametric 

methods used in system identification. Non-parametric 

methods are so-called data-based identification [7]. 

Linear Time-invariant system identification in state-

space form by using parametric methods is much more 

easier and convenient than using non-parametric data-

based methods. There are number of parametric 

methods but during this study,  Prediction Error 

Minimization  (PEM) methods and Sub-Space 

identification methods (N4SID) are used due to being 

compatible with state-space identification (see [8] and 

[9] for details on PEM and N4SID methods). In either 

method, final form of the model is described in terms of 

state space realization shown in (1). 

 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡)               (1) 

𝒚(𝒕) = 𝑪𝒙(𝒕) + 𝒆(𝒕) 

During system identification tests, Pseudo Random 

Binary Sequence (PRBS) signal is applied to HP bypass 

valve.  PRBS test signal is recommended signal in  the 

literature as they excite the dynamics of all frequencies 

uniformly, and relatively easy and safe to implement 

[10]. The term pseudo refers to the fact that the PRBS 

signal is actually  deterministic signal and its 

autocorrelation function is the same as a white random 

noise.  LP bypass valve is fully closed during 

experiments. Filtered white noise signal is applied to 

Injection quantity and engine speed.  
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Figure 5: System identification workflow (Sistem tanıma iş akışı) 

 
Table 1: N4SID method and PEM statistical variables for Region 3(N4SID ve PEM modellerinin istatistiksel sonuçları). 

Identification 

method 

Standard 

Deviation (mbar) 

3xStandard 

Deviation (mbar) 

Mean (mbar) Min   (mbar) Max  (mbar) 

N4SID 26.79 80.37 5.43 -61.17 96.17 

PEM 47.03 147 6.334 -89.87 139.3 
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Figure 2. Regions for local linear model across engine 

operating zone (Doğrusal model için motorun 

çalışma bölgeleri) 

 

Figure 2 shows the seperation of engine operating and 

relevant model regions. Regions have been selected 

according to turbocharger operation and hardware 

capabilities. Region 2 and region 1 denotes the 

operating conditions where engine speed is low but the 

low end torque is high. It is quite likely that during 

acceleration, turbocharger will operate in this region. 

Region 2 and region 4 is coinciding with NEDC (New 

European Driving cycle) emissions cycle. Region 3 is 

the intermediate region which is critical in boost 

pressure control. Corrected mass flows and 

compressor/turbine efficiencies are high in this section. 

It should be noted that there is a “no-control zone” in 

which controller is not activated.It is quite unlikely that 

transient conditions is occurred in this zone as the 

engine speed is high but the torque is low. 

Local linear models are generated for each of the 

regions shown in Figure 2 by using system 

identification methods mentioned above. Experiments 

are performed in transient engine dynamometer. Figure5  

shows the workflow that has been followed during 

identification process. 

Identification results of local linear model for region 3 

is shown in Figure 4. Although the model fit 

performances are similar between N4SID and PEM 

methods, N4SID method is slightly better than PEM. 

This is clear in Table 1 which includes the main 

statistical variables for PEM and N4SID models. N4SID 

shows better performance as the 3σ (3 times standard 

deviation) separation is 80.23 hPa where PEM shows 

141 hPa separation. 

 
Figure 4:  SISO model validation results for Region 3 (3.bölge 

için SISO model doğrulanmasına ait sonuçlar) 

 

3.  CONTROLLER DESIGN (KONTROLCÜ 

TASARIMI)  

Explicit use of models during control design, improves 

controller sensitivity to disturbances as well as 

providing better setpoint tracking capability. Literature 
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Figure 6:  MPC srategy (MPC kontrol stratejisi) 

 

search have been focused on model-based controllers 

schemes due to ability to incorporate system dynamics 

to controller synthesis. In the literature, there are variety 

of model based controllers but during this study,  

research have been focused on MPC design.   

3.1 MPC Formulation (MPC Formülasyonu) 

Online computation of future manipulated variables to 

optimize the future behavior of the outputs  is the 

MPC’s main design objective.  The term “Prediction” in 

MPC definition denotes the prediction of future output 

trajectories. 

Basically, at each time step, finite horizon open-loop 

optimal control problem is solved online. Optimization 

yields an optimal control sequence.  Please keep in mind 

that MPC is a family of controller . It is not designating 

a specific controller but explains the range of methods. 

Various MPC controllers are separated according to the 

plant model types, noises and cost function used in 

optimization [11]. MPC has become attractive 

especially for linear processes. Linear models are used 

in Linear MPC family in order to represent the system 

dynamics although the real dynamics of the system is 

non-linear. Linear MPC formulation is well addressed 

across industry and research community and proved the 

performance in terms of performance, stability and 

online-computation requirements. 

Suppose a linear time invariant discrete-time system as 

shown in (2) 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘                  (2) 

𝑦𝑘 = 𝐶𝑥𝑘  

Where, 𝑥𝑘 ∈ R𝑛 is the state vector and 𝑢𝑘 ∈ R𝑚 is the 

input vector (mainly indicated as manipulated variables) 

which is the output of solution of optimal control 

problem. 

Constrained finite horizon optimal control problem can 

be stated for output reference tracking problem as 

shown in (3). Optimal control problem is constructed as 

quadratic program with linear constraints. 

𝑚𝑖𝑛 ∑
[𝑦𝑡+𝑘|𝑡 − 𝑟(𝑡)]

𝑇
 𝑄[𝑦𝑡+𝑘|𝑡 − 𝑟(𝑡)] +

𝛿𝑢𝑡+𝑘|𝑡
𝑇 𝑅𝛿𝑢𝑡+𝑘|𝑡

𝑁−1
𝑘=0

𝑠. 𝑡.
𝑦min ≤ 𝑦𝑡+𝑘|𝑡 ≤ 𝑦max ,    𝑘 = 1, … , 𝑁𝑐

𝑢min ≤ 𝑢𝑡+𝑘 ≤ 𝑢max ,    𝑘 = 1, … , 𝑁𝑐

𝛿𝑢min ≤ 𝛿𝑢𝑡+𝑘 ≤ 𝛿𝑢max ,    𝑘 = 1, … , 𝑁𝑢 − 1
𝑥𝑡+𝑘+1|𝑡 = 𝐴𝑥𝑡+𝑘|𝑡 + 𝐵𝑢𝑡+𝑘, 𝑘 ≥ 0,

𝑦𝑡+𝑘|𝑡 = 𝐶𝑥𝑡+𝑘|𝑡 , 𝑘 ≥ 0,

𝑢𝑡+𝑘 = 𝑢𝑡+𝑘−1 + 𝛿𝑢𝑡+𝑘, 𝑘 ≥ 0,
𝛿𝑢𝑡+𝑘 = 0, 𝑘 ≥ 𝑁𝑢

       

(3) 

 

Here 𝑄 ≥ 0, 𝑅 ≥ 0 are the positive semidefinite output 

and input weightings where 

𝑢min , 𝑢max, 𝑦min, 𝑦max,  𝛿𝑢min,  𝛿𝑢max are the input, 

output and input rate constraints. N is the prediction 

horizon in which the optimization takes place. At time t 

, current state is estimated or measured and the QP 

problem is solved for N steps to get an optimal control 

of future input defined as 𝑈∗(𝑥(𝑡)). Apply only, 

𝑢(𝑡) = 𝑢0
∗(𝑥(𝑡)                 (4) 

Remaining control input for control horizon are not 

taken into account and iterative process is repeated at 

time t+1. 

System model can be extended by including the 

measured and unmeasured disturbances. Measured 

disturbances are mainly exogenous inputs which have 

direct effect on system response but there is no control 

applied. For example, engine speed and injection 

quantity affects the boost pressure because the fuel and 

air setpoints are changed. Unmeasured disturbances 

may appear in forms of sensor noise, model prediction 

errors as well as input disturbances. Extended system 

model covering measured and unmeasured disturbances 

is shown in (5). 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐵𝑣𝑣(𝑡) + 𝐵𝑑𝑑(𝑡)          (5) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑣𝑣(𝑡) + 𝐷𝑑𝑑(𝑡)  
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Figure 7: Transient response characteristics(Geçici rejim cevabı) 

 

Where 𝑣(𝑘) is the measured disturbances, 𝑑(𝑘) is the 

unmeasured disturbances which covers both state 

disturbances defined by 𝐵𝑑  and output disturbances 𝐷𝑑 

.Disturbance model is totaly application dependent. 

During this study, disturbance model suggested by [13] 

has been implemented. It is basically modeled as shown 

in (6) below. 

𝑥𝑑(𝑘 + 1) = �̅�𝑥𝑑(𝑘) + �̅�𝑛𝑑(𝑘)                (6) 

𝑑(𝑘) = 𝐶̅𝑥𝑑(𝑘) + �̅�𝑛𝑑(𝑘))   

Where 𝑛𝑑(𝑘) is zero-mean, unit variance, random 

Gaussian input and 𝑥𝑑(𝑘) is the input disturbance states. 

Basically, unmeasured disturbances are also 

representing modeling errors. Measurement noise model 

also implemented in a similar way.  

By combining (5) and (6) we will have the extended 

state vector [𝑥′(𝑡) 𝑥𝑑′(𝑡)] described in (7) below. 

[
𝑥(𝑘 + 1)

𝑥𝑑(𝑘 + 1)
] = [

𝐴 𝐵𝑑𝐶̅

0 �̅�
] [

𝑥(𝑘)
𝑥𝑑(𝑘)

] + [
𝐵𝑢

0
] 𝑢(𝑘) +

[
𝐵𝑣

0
] 𝑣(𝑘) + [

0 𝐵𝑢 𝐵𝑣

�̅� 0 0
] [

𝑛𝑑(𝑘)

𝑛𝑢(𝑘)

𝑛𝑣(𝑘)
]  

𝑦(𝑘) = [𝐶 𝐶̅] [
𝑥(𝑘)

𝑥𝑑(𝑘)
]                  (7) 

It should be noted that �̅�, 𝐷𝑑𝑢, 𝐷𝑑𝑣  is assumed to 

be zero through the formulations.In addition 𝑛𝑢(𝑘) and 

𝑛𝑣(𝑘) are the unmeasured disturbances applied to 

manipulated variables and measured disturbances which 

are also modeled as zero-mean, unit covariance white 

noise signals.  Some of the states cannot be measured 

depending on the model information. System 

identification based models includes some states which 

combination of physical states. These states cannot be 

measured but rather are estimated. In this case, linear 

state observer should be used for state estimation. 

Please note that the necessary and sufficient condition 

for observer design is that, combined state space model 

in (6) should be observable. Linear state estimator is 

used to estimate combined state vector 

[𝑥𝑑(𝑘 + 1) 𝑥(𝑘 + 1)]𝑇 by using measured output 

values. During this study, Kalman filter is designed as a 

linear state estimator. State estimation of Discrete time 

Kalman filter is generic with linear state estimation 

formulation. 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘 − 1|𝑘) + 𝐵Δ𝑢(𝑘) + 𝑀(𝑦(𝑘) −
𝐶𝑥(𝑘 − 1|𝑘))                                           (8) 

Where L is the observe gain matrix which is expressed 

as product of A and M. The gain matrix L is derived by 

solving a discrete Riccati equation.  

3.2 Control Objectives (Kontrolcü tasarım kriterleri) 

Two-stage turbocharged system should satisfy certain 

performance criteria. In this case, performance criteria 

can be defined in terms of the transient response of the 

system and the tracking of optimized steady state set 

points. As mentioned in [12], Diesel engine torque 

response is proportional to intake manifold pressure 

gradient. During controller design, system’s 

performance should be assessed by using predefined 

transient response criteria. Controller objectives are 

summarized below.  

1. Primary goal is to track the desired boost pressure 

shown as red line in Figure 7 at constant engine 

speed.  

2. The maximum system characteristics to increase the 

boost pressure is experimented by setting both HP 

and LP bypass valves to fully closed positions. This 

will give us the physical limitation of the system. 

This is shown in green dash-dot line in Figure 6. 

3. The overshoot of boost pressure should be limited to 

the values shown in Table 2 according to the varying 

steps in intake pressure.  
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Table 2: Transient response time requirements for varying pressure steps (Değişken basamak basınç girişleri için 

geçici rejim cevabı hedef değerleri) 

Step Signal (mbar) Rise/Fall Time   (ms) Nominal Over/Undershoot Steady-State Accuracy 

100 1600 %6 %2.5 

250 2100 %7 %2.5 

500 2400 %8 %2.5 

 3.3 Specification of Prediction and Control Horizons    

(Tahmin ve Kontrol aralıklarının belirlenmesi) 

Prediction horizon (PH) defines the optimization 

window therefore system response is affected directly. 

Under the situation in which sufficiently longer 

prediction horizon is used, potential constraints can well 

be considered and avoided. Also increasing the 

prediction horizon will have positive effects on 

controller performance when the plant shows non-

minimum phase-behavior. Figure 8b shows the 

comparison of different prediction horizons. First 

simulation is performed with Prediction horizon set to 5 

samplings and latter was set to 50 samplings. The rise 

time of boost pressure response is higher when PH is set 

to 50. But the disturbance rejection and robustness is 

better than smaller PH’s. Control horizon is suggested 

to be set as some values in between 1 and 6. 

 
Figure 8:  Effect of Prediction horizon and Kalman Filter gain 

tuning on controller performance (Tahmin aralığı 

ve Kalman filtresinin kontrolcü performansına 

etkisi) 

During this study, the methodology suggested by [13] 

has been used. 

1. Control interval is based on the system’s settling 

time. Maximum HP bypass valve step command has 

been applied to observe system’s settling time. It was 

recorded as 4 seconds approximately. Therefore control 

interval is selected as 0.1 seconds. 

2. Prediction horizon is set as number of sampling 

periods used in step 1 as 30. Decreasing this value 

should be avoided considering the system has pure time 

delay and exhibits non-minimum phase behavior.  

 

3. Control horizon is set as 3. Increasing control 

horizon will have a relaxation on number of free moves 

thus explicit MPC computation. Therefore, control 

horizon should be selected as small as possible. 

3.4. Controller Weights and Estimator Tuning 

(Kontrolcü Ağırlıkları Ve Gözleyici Ayarlanması) 

As shown in (3), Q and R matrices are used for 

weighing the cost function for output set point tracking 

as well as satisfying input rate constraints to prevent 

drastic changes in the control signal. Boost pressure 

output tracking is adjusted by matrix Q and controller 

adjustments are weighted by matrix R. Please note that 

the effect of output and input rate weights are 

contradicting with each other. Increasing R matrix will 

result in smaller HP bypass valve’s controller actions 

which would increase the controller robustness to boost 

pressure prediction inaccuracies while degrading set 

point tracking. 

Estimator tuning is basically based on the adjustment of 

Kalman gain matrix, M. Estimator tuning is as much 

critical as controller design, as it defines the controller 

sensitivity to unmeasured disturbances (prediction 

errors). During controller design, estimator tuning is 

performed in MATLAB Model predictive control 

toolbox. Figure 8a shows the effect of Kalman gain 

matrix on MPC’s disturbance rejection capability.  

During the simulations, overall gain of estimator is 

changed from 0.44 to 0.56. 50 mbar unmeasured 

disturbances is applied on boost pressure at 4 sec. with 

boost pressure set point value is stepped to 300 hPa. 

3.5. Constraint Definition (Sistem Kısıtlarının 

Belirlenmesi) 

As critical part of the finite horizon optimal control 

problem, constraint definition should be clearly 

determined during controller design process. Constraints 

are mostly related with physical system. Output 

constraints are considered as 1
st
 type which is directly 

related with the system dynamics. During this study, the 

single output and the controlled variable is the boost 

pressure. Constraint definition for boost pressure is 

required especially for maximum values in order to 

prevent cylinder failure. The dynamics of thermal and 

mechanical stress induced by boost pressure [1]. As the 

boost pressure increased, there should be increase in the 

peak fire pressure and compression end pressure. These 

would increase the mechanical strength applied on the 

connecting rod, piston, cylinder head and bearings. 

There should be design limit for over boost which 

would prevent the engine components failed. During 

this study, the upper limit for boost pressure is set as 

3500 mbar, which slightly lower than the design limit. 
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Figure 9: Nonlinear engine model validation (Doğrusal olmayan motor modelinin doğrulanması). 

 

There is not any lower limit for boost pressure. 

Therefore it is set a 0 as shown in (10).  

[
𝑦max

𝑦min
] = [

3500
0

]                                         (10) 

The second type of constraints is the input constraints. 

HP bypass valve is actuated by vacuum pressure 

actuator which is mechanically connected to the bypass 

valve. The source of the pressure inside the actuator is 

the vacuum pressure blender solenoid. This solenoid is 

controlled by PWM (Pulse Width Modulation) signal 

sent by ECU. As the Duty cycle of the PWM signal 

increases the amount of vacuum applied by solenoid is 

decreases so the valve is more likely to close. Closed 

valve results in increase in the turbocharger activity and 

boost pressure. . PWM is sent by ECU by using internal 

low-side drivers. Thus input signal constraints are taken 

directly as the maximum and minimum realizable PWM 

limits sent by the driver. 

[
𝑢max 𝑡𝑏𝑣

𝑢min 𝑡𝑏𝑣
] = [

90
0

]                                           (11) 

Third and the last type of constraints are the input rate 

constraints. Basically they are related with speed of the 

actuator. During this study the maximum and minimum 

rate of the Bypass valve is defined by using engine dyno 

experiment. Maximum rise of actuator is defined by 

sending PWM signal by applying maximum Duty 

Cycle. . This would allow to observe the rate of change 

of actuator control signal. 

 

4.  NONLINEAR ENGINE MODEL (DOĞRUSAL 

OLMAYAN MOTOR MODELİ)  

Nonlinear engine model is generated by using 3rd party 

package program, RICARDO WAVE RT. The 

modeling methodology used by WAVE-RT is physical 

based, crank-resolved model. The modeling scheme is 

using one-dimensional dynamics of the fluid flow. The 

capacitive and inertial properties of the fluid in the 

manifold and engine are seperated, meaning that 

capacitive properties (mass, pressure, temperature) are 

concentrated in finite volumes (capacities) while inertial 

properties (mass and energy flows) are taken into 

account in the duct branches connecting the capacities. 

[14]  

Figure 9 shows the steady-state and transient validation 

of WAVE RT model for boost pressure. Relative errors 

are generally below %10 which is sufficient to use 

model for engine control purposes. For steady state 

validation, mean relative error is %1.06.  Maximum 

error occurs operating points in which turbocharger 

speed are relatively low. Compressor mass flow rate 

estimation accuracy is lower in those points that 

correspond to reduction in volumetric efficiency thus 

manifold pressure. Transient validation shows absolute 

mean relative error of % 4.45 and maximum absolute 

relative error of % 6.64. It is essential to mention that 

model has steady state error, which can be priotirized as 

low because steady-state error can be eliminated by 

controller design. 

 

5. SIMULATION-EXPERIMENTAL RESULTS 

(BENZETİM-DENEYSEL SONUÇLAR)  

As the nonlinear model is validated, MPC controller is 

tested in terms of offline simulations. During 

simulations, MATLAB-SIMULINK is used. Controllers 

were designed by using MATLAB  RT model in 

SIMULINK. Fixed step simulation were performed with 

step time of 1 ms.  
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Figure 10: MPC Step signal simulation result (MPC kontrolcüsünün basamak girişi benzetimi) 

 

 
Figure 11: Experimental results from  real world driving (Gerçek sürüş koşulları için deneysel sonuçlar) 

 

Figure 10a shows the step response simulation results in 

which variable steps are applied as boost pressure 

setpoints. First simulations were performed with Initial 

Kalman filter gain of 0.45, but due to having steady 

state error, Kalman filter gain is modified with 0.34 to 

ensure that zero-steady state error tracking occurred. 

The rise time for 500 mbar step response is 1.8 seconds 

which satisfies controller objectives. Small step 

response results are shown in Figure 9b with controller 

signal in Figure 9c. The rise time for small steps are 

below 1.5 seconds which are below limit values. In 

addition, pressure overshoots are minimized to %1-2.  

Figure 11 shows the experimental results when using 

real-world drive cycle. The cycle includes transient 

maneouvers which are crucial to assess controller 

transient response. MPC controller shows better 

seperation over conventional PID controllers such that 

standard deviation of boost pressure is 240 mbars where 

conventional PIDs shows 290 mbars. Moreover, rise 

time of MPC controller is smaller when there is a step-

like boost pressure setpoint.  
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6. CONCLUSIONS (SONUÇLAR)  

This study introduces the Model Predictive Control 

design to satisfy boost pressure control requirements for 

a series sequential turbocharged diesel engine. Linear 

models are generated based on system identification 

principles. As it is impossible that a single linear model 

can represent whole engine operating points, linear 

models are formed for 5 different engine operating 

regions.  Controller design is based on 3 main points; 

defining prediction and control horizons, tuning of 

Kalman filter, constraint definitions and finaly 

weighting matrices. The effect of each factor is defined 

by series of simulations and engine dyno experiments. 

Initial controller design are tested by using high fidelity 

non-linear engine model. Simulation and experimental 

results were used to demonstrate the effectiveness of the 

proposed method.. Further study will include real-time 

test results performed in engine dynamometer or vehicle 

testing. In addition, utilization of Multi-Input Multi 

Output (MIMO) control framework by introducing LP 

bypass valve is ongoing research. 
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