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ABSTRACT 

Combined MHD and electroosmotic Jeffery–Hamel flow of Nano fluid type inside a wedge (inclined walls) with non-linear 

viscosity and wall friction are investigated analytically. As a result of similarity relations, one nonlinear ordinary differential 

equation is obtained and solved analytically with the appropriate assumptions  2 0,0 20f f   . Moreover, excellent 

agreement was found between the obtained analytic solution and suggested simple parabolic approximation. Although it was 

found that in case where more effects are gradually being considered, a slight difference is emerged, but the most dramatic 

change between solutions occurs when solid to fluid ratio gets significant value. In addition, suitable match in the quantitatively 

and qualitatively aspects was found between literature results and obtained solution. In addition, analytical solution parametric 

investigation was performed for specific parameters choice. It was found that the normalized velocity was found to decrease 

gradually with the tangential direction progress and/or with friction coefficient increase. However, the normalized velocity 

profile gets higher values as long as the solid to fluid ratio increases. Additionally, Reynolds, Hartmann and solid volume 

fraction coefficient increase (separately or all together) have raised the normalized velocity function values. Finally, unprevail 

distinguished cases were introduced to understand flow complexity. It was found that the electrical field magnitude effect is 

significantly, especially for small friction coefficient values and for high wedge semi angle. Also, the combination between small 

friction coefficient values including small parameter flow values (Re and Ha numbers) and high electrically field may lead to un-

optimized course of normalized velocity profile. The last case that was examined is concerned with friction coefficient variation 

effect on the normalized velocity profile for different values of wedge semi angle with high electric field for specific parameters 

choice. It was found that increasing friction coefficient leads to normalized velocity profile consolidation. 

Keywords MHD; electroosmosis; Jeffery–Hamel flow; Nano fluid; slip conditions; friction; nonlinear ordinary 

differential equations; analytical solution; approximate solutions. 

1 INTRODUCTION 

Nano fluid mechanics interactions between various 

fluids type and different surfaces of various geometries 

have been investigated particularly during the last two 

decades. General theories on electro kinetic flows are 

being examined for more than six decades. For instance, 

in 1965 Rice and Whitehead [1] have presented their 

study on electro-kinetic flow in a narrow cylindrical 

capillary regarding the influence of the cylindrical 

capillary radius on electro-kinetic flow (Debye layer, 

interface potential). Moreover, nine years later, 

Sorensen and Koefoed [2] have introduced their study 

on electrokinetic effects in charged capillary tubes. 

They determined electrokinetic coefficients in a narrow 

tube filled with electrolyte solution and with a surface 

charge. Their model is suitable for stationary, laminar 

flow of Newtonian fluids under the validity of the 

linearized Poisson-Boltzmann equation. Their model 

solution is being coincided with Helmholtz solution in 

the limit region of the pores which are reported to be 

large enough compared with the Debye-Huckel length. 

One year later, Levine et al. [3] have published their 

study on electrokinetic flow in a narrow parallel-plate 

channel. Their flow model is composed of two charged 

walls of non-conducting, infinite parallel plates while 

the electrolyte has finite size. About three decades later 

in 2004, new phenomenon of ion enrichment/depletion 

connected to nano-channel structures has been 

discovered by Pu et al. [4]. They have found that after 

applying the voltage over the channel, ions are enriched 

quickly at the one end of the channel while depleted at 

the other end. Moreover, according their study, a direct 

link between enrichment/depletion and the extent of 

double-layer overlap does exist. Over the latter year, 

Plecis et al. [5] have proved the crucial influent of the 

electrostatic forces in nanofluidics by comparison 

between their analytical model and experiments. 

Strengthening the latter argument, analytical model of 

electrical double layer extension inside nano-channel 

with charged surfaces has been performed while 

resulting with the electrostatic exclusion of co-ions and 

enrichment in counterions, which affects the perm-

selectivity of such structures. The authors [5] have 

demonstrated this phenomenon together with 

quantitative measurements of the ionic permeability 

change of Pyrex nano-slit at low ionic strength. They 

also state that the chemical examination of the Pyrex-

water interface can be performed in less complex 

systems than the nano-slit. In addition, it was found that 

slit height parameter has an impact on the enrichment 

for small height values (thin channel) such as the 

channel should enable to reach higher perm-selectivity 
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for moderate ionic strength. Moreover, their model 

based on Poisson-Boltzmann equations can be applied 

in many aspects of biotechnological engineering and 

industry. It should be noted that according their study, 

the diffusive transport of charged species is valid 

whereas the concentration of is low enough compared to 

the bulk concentration. Two years later, Byun et al. [6] 

have published their study on electroosmosis based 

nanopipettor development. Their first version of their 

EO-driven nanopipettor pipe consists of a 

microfabricated EO pump, a polyacrylamide grounding 

interface and a nL-pL pipet-tip. According the study [6], 

good linear relationships between pipetted/dispensed 

volume and pipetting/dispensing time including the 

volume and the voltage applied to the pipettor has been 

obtained. However, the volume range that was applied 

in their study is from about 100 pL to about 300 nL, 

while it can be extended considerably. More details 

about volume range, pipetetting time and channel depth 

can be found in their study. One year later, new theory 

of thermodynamic efficiency optimization of an 

electroosmotic (EO) pump with a large surface area 

while being highly charged with nanoporous silica disk 

substrate was presented by Berrouche et al. [7]. The 

researchers have found that the optimum 

thermodynamic efficiency depends on the following 

parameters: temperature, silica zeta potential, viscosity, 

permittivity, ion valency, tortuosity of the nanoporous 

silica and mostly on the effective normalized pore 

radius of the substrate. Moreover, they found that by 

using de-ionized water as the pumping liquid, the 

optimized EO pump generates the maximum flow rate 

for specific pressure and under applied given voltage. 

During the same year, Chen et al. [8] have published 

their essay on new development of electroosmotic pump 

using nanosilica particles having an average size of 20-

30 nm with packed capillary of a 5 cm x 530 mum. 

Another study from the same year was presented by 

Chen et al. [9]. Their study deals with electroosmotic 

pumping flow with high flow rate at low applied voltage 

using relatively thin alumina nano-porous membrane 

and uniform electric field caused by a contact of 

perpendicular platinum mesh electrode with the nano-

channel inlet. They discovered that the flow rate values 

are usually high for low electrolyte (KCl) 

concentrations. In addition, flow rate drop occurs when 

concentration surpasses certain value. The latter study 

that was also published in the same year and provided 

by Seiler and Kirby [10] examines the computational 

modeling challenges of two dimensional fluid flow 

phenomenon governed by A/C electroosmosis in the 

micro and nano scales using COMSOL simulation 

program compared to numerical/analytical results. 

Initially, harmonic response of the ion flux with respect 

to the driving potential has been established and 

afterwards the Navier-Stokes application model was 

added. The model was solved and the A/C 

electroosmosis fluid flow was observed. Two years 

later, Ai et al. [11] have presented their study on the 

effects of electroosmotic flow on ionic current 

rectification in conical nanopores based on 

Nernst−Planck equations (ionic concentrations), the 

Poisson equation (electric potential) and Navier−Stokes 

equations (flow field). They informed that the 

preferential current direction of a negatively charged 

nanopore is toward the base (tip) under a relatively high 

ratio of the tip radius size to the Debye length while 

direction also changes with the charge polarity of the 

nanopore. In the same year, Piruska et al. [12] have 

published comprehensive review of Nanofluidics in 

chemical analysis. They emphasized the difference 

between nanofluidics and microfluidics systems 

including thoroughly discussion on chemical 

applications on various nano systems. Two years later, 

Aparajita and Satapathy [13] have presented a study on 

thermal transport analysis of combined electroosmotic 

and pressure-driven flow of power-law (shear-thinning 

and shear-thickening) nanofluids through a 

microchannel. They investigated the effect of different 

flow and electrolytic parameters on the thermal 

behavior of the flow under constant wall heat flux 

condition while taking into account the effects of 

viscous dissipation and Joule heating. Three nanofluidic 

parameters that have been taken into consideration are 

the viscosity, electrical permittivity and electrical 

resistivity. These parameters have been introduced as 

ratios with reference to the corresponding properties of 

a conventional fluid. On the one hand, they found that 

Nusselt number decreases with decreasing viscosity 

ratio and/or increasing permittivity ratio. On the other 

hand, Nusselt number increases with increasing 

resistivity ratio. Other distinguished studies from the 

same year of 2012 would be elaborated. The first study 

was presented by Avsec [14]. He has developed analytic 

model of nano-fluid motion including elektro-kinetic 

and electromagnetic forces together with heat transfer 

effects inside rectangular and circular micro-channels 

subjected to wall slip conditions. He has found that 

volume fraction of nano-particles has great influence on 

the velocity and also on the temperature distribution in 

the micro-channels. Second study was presented by 

Imani et al. [15] about Jeffery-hamel flow inside 

divergent channel and nano particles with high magnetic 

field using reconstruction of variational iteration method 

(RVIM) for solution. The latter study was performed by 

Kurtoğlu et al. [16]. Their study discusses the magnetic 

nano-particle suspensions and applications. The authors 

[16] claim that microscale technology permits the use of 

micropump while magnetically actuated ferro-fluids 

could have the potential to be used as an alternative 

micro pumping system. Last study that will be brought 

here and was published during 2012 is dealt with 

laminar, free convection boundary layer flow over a 

permeable isothermal truncated cone in the presence of 

a transverse magnetic field effect. A solution with 

suitable non-similarity analysis has been done by 

Ahmed and Mahdy [17] for the obtained one non-linear 

equation. The researchers have used different water 

http://fluidsengineering.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Y.+Berrouche&q=Y.+Berrouche
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species based on nano-fluids while solving the problem 

by using fourth order Runge-Kutta with shooting 

technique (Ag-nanoparticles give a higher rate of heat 

transfer while TiO2 nanoparticles yield with the lowest 

value). Excellent agreement was found between vertical 

plate problem solutions and their study. Moreover, they 

found that solid volume fraction increase leads to the 

increase of the heat transfer rate whereas the skin 

fraction decreases. Additionally, the model of spherical 

nano-particles was found to be most beneficial in the 

context of heat transfer rate. Finally, magnetic field 

parameter increase results with decreasing of both of the 

velocity and local skin friction coefficient and in 

increase of the fluid temperature as well as the rate of 

heat transfer. One year later, similar study as Imani et 

al. [15] was published by Khidir [18]. A new 

modification of the standard homotopy perturbation 

method (HPM) including the Chebyshev pseudo 

spectral methods for solving nonlinear boundary value 

problems of Jeffery-Hamel flow with the magnetic field 

and nanoparticle effects is presented in his study [18]. 

He has shown good agreement between the suggested 

solution and other numerical solutions. Moreover, he 

proved that his solution method (SHPM) is more 

efficient and converges faster than the standard 

homotopy perturbation method. During his study, he 

found that increase of volume fraction causes an 

increase in the fluid velocity profile of diverging 

channels while the velocity decreases for the converging 

channels case. Moreover, he also found that the fluid 

velocity increases with increasing Hartman numbers for 

both diverging and converging channels cases. During 

2013, numbers of distinguished studies of nano 

applications were emerged. For instance, Sadoughi et al. 

[19] have developed analytical method using 

reconstruction of variational iteration method (RVIM) 

based on  Pade' approximation and Keller's box method 

in order to solve the non-linear two-dimensional forced 

convection boundary layer magneto hydro-dynamic 

(MHD) incompressible flow of AL2O3 nanofluid over a 

horizontal flat plate with variable magnetic field. 

Another study from the same year was performed by 

Umavathi and Shekar [20] and similarly by Ganji and 

Azimi [21]. They solved Jeffery-Hamel flow problem in 

the case of nanofluid with magnetic effect. Their 

solution is mainly based on a semi-numerical-analytical 

technique called differential transform method (DTM) 

together with comparative numerical analysis based on 

Runge-Kutta shooting method (RKSM). Both methods 

results have excellent agreement. Moreover, they found 

that Reynolds numbers increase leads to the velocity 

profile decrease and also increasing Hartmann number 

may lead to backflow reduction. In addition, they have 

shown that nano-particles cause to increase fluid 

velocity value. One year later in 2014, Hatami et al. 

[22] have published their study on Jeffery–Hamel MHD 

flow of nano-fluid through non-parallel walls by 

analytical analysis. They used Maxwell–Garnetts (MG) 

and Brinkman models for calculating the thermal 

conductivity and nano-fluid viscosity. They proved by 

comparison to other semi-analytical methods (DTM and 

DTM–Padé) that least square method is most accurate. 

Moreover, they have found that velocity boundary layer 

thickness decreases with the increase of Reynolds 

number and nanoparticle volume friction and it 

increases according to Hartmann number increase. 

However, the skin friction coefficient was found to be 

directly dependent on Reynolds number, opening angle 

and nanoparticle volume friction, while being increasing 

with these parameters but decreasing with Hartmann 

number. During the same year, Mao et al. [23] have also 

presented their study on electroosmotic flow (pumping) 

through a nanopore that traverses an insulating 

membrane. They have assumed low uniform density of 

surface charge on the membrane such as the linearized 

Poisson-Boltzmann equation can be used.  The case of 

membrane with arbitrary thickness was solved 

numerically by solving the full Poisson–Nernst–Planck–

Stokes system of equations using a finite volume 

method. Another study on MHD Jeffery-Hamel flow 

with nanoparticle by Hermite- Padé approximation was 

performed by Alam and Khan [24]. They examined the 

effects of nanoparticle and magnetic field on the 

nonlinear Jeffery-Hamel flow by perturbation method 

and Hermite-Padé approximation while comparing to 

Adomian decomposition method (ADM). They have 

discovered that Reynolds number increase leads to 

reduction of velocity near the walls. Additionally, 

Hartmann number increase may cause to backflow 

reduction while high value is being required to decline 

of backflow which are resulted due to large semi-cone 

angles or Reynolds numbers. They also obtained that 

momentum boundary layer thickness increases with 

increasing nano-particle volume fraction. Additional 

two more studies that were published during 2014 have 

been done by Nayak [25] and Deng et al. [26]. Nayak 

has developed solution to Poisson, Nernst--Planck and 

the Navier--Stokes equations in order to increase the 

mixing potential of ion species in micro and nano 

channels with heterogeneous surface potential involved 

with the discussion on the generation of vertical flow 

due to the presence of wall heterogeneity at different 

locations in the channel. He has found that strong 

recirculation vortices which appear above the 

heterogeneities generate a strong pressure gradient 

which increases the mixing performance. Deng et al. 

[26] have examined the problem of ion current 

rectification link to the concentration gradient of KCl 

solutions in polyethyleneimine modified glass nano-

pipettes. One year later in 2015, the laminar 

axisymmetric flow of nanofluid over a non-linearly 

stretching sheet with the simultaneous effects of 

Brownian motion and thermophoretic diffusion of 

nanoparticles while no-slip boundary conditions were 

assumed, was presented and solved analytically using 

homotopy method by Mustafa et al. [27]. They have 

found that Brownian motion effect on the fluid 

temperature and wall heat transfer rate is insignificant. 
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Moreover, the nanoparticle volume fraction distribution 

was found to be negative near the vicinity of the 

stretching sheet. A study that combines thermal, 

electroosmotic, magnetic and pressure driven flow of 

nanofluids in microchannel into one problem was done 

by Ganguly & Sarkar et al. [28] using semi-analytical 

method. They have found that magneto-hydrodynamic 

effect reduces the transport of the liquid resulting in 

gradual reduction of heat transfer. Additionally, increase 

in nano-particle volume fraction leads to decrease in the 

rate of heat transfer. According [27]-[28], similar effects 

has been occurred with the increase in aggregate sizes 

of the nano-particles. Moreover, they also calculated the 

total entropy influence while it has been found to be 

highly effective at the thermally developing region 

where the nano-particles presence in the base fluid 

caused to reduction of the total entropy generation in the 

microchannel and therefore increasing nano-particle 

volume fraction where higher magnitude of total 

entropy generation has been observed near the channel 

walls region. The gradual increase in the liquid 

temperature with increase in Hartman number results in 

monotonically increasing values of the Nusselt number. 

However, at a particular value of Ha, with increasing 

nanoparticle volume fraction, Nu decreases indicating 

decrease in the heat transfer rate. Conical nanopore with 

the considering of electroosmotic flow (EOF) has been 

investigated analytically by solving a set of coupled 

Poisson, Nernst–Planck, and Navier–Stokes equations 

in the context of ionic current rectification (ICR) by Lin 

et al. [29]. During the same year, Laohakunakorn and 

Keyser [30] and also Moradi et al. [31] have presented 

studies on nano fluid while the first performed an 

experimental study on electroosmotic flows (EOFs) 

through conical nano-pores and the latter has made 

analytical study on the influence of heat transfer on the 

nonlinear Jeffery-Hamel flow problem in a nanofluid of 

three types of nano-particles (Cu, Al2O3, TiO2) by 

considering water as a base fluid in 

convergent/divergent channel, respectively. The 

solution was obtained by solving analytically (DTM) 

and numerically (Runge-Kutta) the nonlinear 

differential equation. Similarly, like former studies, the 

authors [30, 31] have found that the influence of solid 

volume fraction of the nano-particles on the heat 

transfer and fluid flow parameters is more pronounced 

when compared with the type of nano-particles. 

Moreover, they have also found that skin friction 

coefficient and Nusselt number for Al2O3 nano-fluid is 

highest in comparison to the other two nano-particles 

while the effect of solid volume fraction on the skin 

friction coefficient and Nusselt number in convergent 

and divergent channels are similar. On the other hand, 

the effects of fluid material parameters on skin friction 

coefficient and Nusselt number are opposite for the 

convergent and divergent channels. 

The current essay develops and solves analytically and 

numerically EO and MHD Jeffery–Hamel flow of nano-

fluid with wall slip conditions inside wedge channel 

based on the author previous studies on non-Newtonian 

Jeffery-Hamel flow wedge and in micro-channel [32], 

respectively. This essay continues the studies of 

Umavathi and Shekar [20], Alam and Khan [24] and 

Ganguly et al. [28].  

 

2 PROBLEM FORMULATION MODEL 

Consider a steady two-dimensional flow due to 

electrical source applied together with uniform magnetic 

field B of an incompressible conducting viscous fluid 

inside a wedge (non-parallel walls) with friction on the 

walls. The cylindrical polar coordinates ( zr ,, ) have 

been selected to model the flow system as shown in Fig. 

1 while the flow intersected in the z axis.  It is assumed 

that the motion is purely radially dependent on ,r 
only. Moreover, there are no changes with respect to z
axis. The governing equations of motion will be 

elaborated here as follows. Equation of continuity can 

be written using Bird et al. [33] formulation as: 

0 ( ) 0
nf

rru
r r

 
   


V .       (1) 

while , , ruV are the velocity vector, constant fluid 

density and the radial velocity vector, respectively. 

 
Fig. 1. Electro-magnetic wedge shape flow model illustration. 

Now, the general equation of momentum can be written 

by: 

  BF
t


 

       

V
V V p τ .           (2) 

while
BF and τ are the body forces and stress vectors, 

respectively. Body forces are assumed to be generating 

according to electro-magnetic source ([20], [23], [28]). 

This source is a combination of Lorentz force (magnetic 

source) and electrostatic source (uniform electrical field 

in the radial direction), while gravitational body forces 

are negligible, based on [34] development, according to: 

   2 2 2

0 0cos sin cos rB r r e rF F B e B u e E              E V B B

.       (3) 

where , , , , rF E V B are the constant electrical 

conductivity, induced electric field, fluid velocity 
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vector, external magnetic field and the electrical force, 

respectively. Lorentz force is created due to the flow of 

a conductive fluid under the influence of a uniform 

magnetic field. According to Faraday's law, eddy 

currents are generated by electromotive force due to 

conductive fluid movement through a magnetic field. As 

introduced by Thess [35] eddy current creates induced 

magnetic field based on Ampère's law. The interaction 

between eddy currents and the total magnetic field 

results with the opposite Lorentz force (against flow 

direction).  The magnetic force is composed of the 

magnetic field B with constant magnetic induction 

strength
0B , which is being applied in the transverse 

direction of the flowing fluid along unidirectional fully 

developed electroosmotic flow velocity ru . Moreover, 

assuming that the magnetic Reynolds number is 

sufficiently small, then the induced magnetic and 

electric fields can be neglected. In addition, since there 

are no electrical fields in the z axis direction (inside the 

sheet) only in the radial electric field, than no magnetic 

force can be generated in the  ,r  directions out of the 

forces mentioned in Eqs. (2)-(3). According to Ganguly 

et al. [28], the electroosmosis driving force part is 

induced by the interaction of an applied electric field in 

the radial direction
rE and the net charge density

e in 

the EDL (electric double layer). The viscosity term is 

expressed using the following components [28]: 

 
 2.5

, , 1
1

f nf

nf nf nf f s

nf

 
      


    



.  (8) 

While , , , ,nf nf f s     are the solid volume fracture, 

the nano-fluid effective kinematic viscosity, the nano-

fluid effective density, the base fluid density and the 

solid particles density, respectively. Integrative systems 

that combine between electric and magnetic forces 

including thermal effects are discussed by ([28], [36]). 

The Navier-Stokes equations in polar coordinates form 

([20] - [21], [24]) are: 

while the momentum equations are derived by using the 

fully cylindrical coordinates flow as developed by 

Membrado and Pacheco [37]. One step before 

completing the model formulation is to determine the 

net charge density
e . Using Poisson equation together 

with analogy comprehension with Ganguly et al. [28] 

studies, the following equation for the net charge is 

obtained in the tangential direction which is 

perpendicular to the wedge wall (in Cartesian 

coordinates it is represented in the perpendicular y

direction): 

 

 
2

cosh
( )

cosh
e w


   


        (9) 

according to 
 

 

2

2
0

, , 0e
w 



 
 

  




 
   

 

. While

is defined as Debye length and is calculated by

1
2 22

Bk T

e z n


 



 , where n and z are the bulk 

number concentration and the valence of ions, 

respectively. , , ,Be k T are the electric permittivity, 

elementary charge,  Boltzmann constant and the 

absolute temperature, respectively. Additionally, oR is 

 

2 2
2 2

02 2 2 2 2

1 1
ˆ :  

1 1 1
2 cos

rr
nf r rr r

nf nfr r r r r r r
nf r nf r e r

u P
r u r F

r r r r r r

u u u u u u uP
u B u E

r r r r r r r r r r

  
 



 
    

  

   
          

        
          

         

.                (4) 

while shear rate components behave according the assumptions that
  

0,  0zu u
z




  


: 

2 , 2 ,
nfr r r

rr nf nf r

u u u
p p

r r r
 


    



 
      

 
.  (5) 

The equation of momentum in the tangential axis is: 

 2

2

2

0

2 2

1 1 1ˆ : 0

21 1 2
cos sin 0

r

nf

nf nf nfr r
r r

nf nf nf nf

P
r

r r r r

Bu uP
u u

r r r r r





 

  

   
 

       

  
       

  
    

    

. (6) 

 

 

 

22 2
2 20

2 2 2 2 2

cosh1 2 1 1 1
cos 0

cosh

nf nfr r r r r r r r
nf r w r

nf nf nf nf nf

Bu u u u u u E uP
u u

r r r r r r r r r r

  
   

        

        
           

         

                (7) 
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the electrokinetic parameter that represents the ratio of 

the half channel height (change with angle and radius) 

to the EDL thickness. Hence, after inserting equation (8) 

into (5), we have: 

 With the appropriate slip boundary conditions as 

follows: 

   
u

mu  



  


                                          (11) 

while 0m  is the friction coefficient factor. These 

conditions represent the relative slip friction between 

the fluid and the wall. On the one hand, a smooth 

boundary is described by 0m  . On the other hand, 

perfectly rough wall is obtained for 1m  . It is based 

on recent research studies about Mises effective stress 

and attributed to both Tresca and Prandtl. Similar 

studies on wall friction condition (12) are available for a 

variety of non-Newtonian fluids like elasto-viscoplastic 

and structural fluids [32], [38]. A third condition is 

joined to the other two conditions (13), which 

supplements [32]: 

( )
r r

A
Q u dA u rd








                                 (15) 

while A represents the cross sectional radial surface area 

of the flow field with the element area𝑑𝐴 = 𝑟𝑑𝜃, within 

the deformation zone.𝛼represents the wedge semi angle 

where flow field domain is confined between two rigid 

rough smoothing walls (𝜃 = ±𝛼) that enables slip 

condition. Q is the steady state planar flow rate. In order 

to simplify the model, the following transformation will 

be applied using relation (1) as shown in Fig. 1: 

( )
r

f
u Q

r


                  (16) 

Differentiating equation (9) along the tangential direction leads to: 
3 32 2

2 22 22 2 2 32 2 2

2 2 2 2 2

2 2

11

1 2 2 1 1 1

1 1 1

r rr r

nf nf nf nf nfr r r r
nf

nf nf nf nf nf nf r r r r

u uu u

u u u uP r rr r

r r r r r r r u u u u

r r r r r r

       
             

 

    
                        

                 
         

 
 

2 2 3 2
20 0cos sin 2 sinh 0

cosh

w rr r r r
r r

nf nf nf

B B Eu u u u
u u

r r

   
  

      

   
     

    

                   (10) 

Multiplying equation (7) by r together with differentiation performance along the radial direction yields: 
2 222

2 2

2 22

0 0

2

1 1 1 2 2 2
...

2 2 2
sin 2 sin 2 0

2 2

nf nf nf nf nfr r r
r r

nf nf nf nf nf nf

nf nf nfr r r r
r

nf nf nf

u u uP
u u

r r r r r r r r r

B Bu u u u
u r

r r r r r r r

    

           

    
 

    

      
     

           

   
     

     

                                    (11) 

Therefore by adding equation (11) to equation (10), the following nonlinear differential equation is obtained: 
2 22 2 2 2

2 2 2 2 2 2 2 2

23 3 2

2 2 3 2

2 1 1 1 1 1 1

1 1 1 2 2

nf nf nf nf nfr r r r r r r r

nf nf nf nf nf

nfr r r r
nf r

nf nf

u u u u u u u u

r r r r r r r r r r r

u u u u
u

r r r r r r r r

    

            

 


      

            
       

              

     
      

        

 
 

2 22
20

2

2 2 3

0 0

1
cos ...

3 sin 2 sin 2 sinh 0
2 2 cosh

nf nfr r r r r r
r

nf nf

w rr
r

nf nf nf

Bu u u u u u
u

r r r r r

B B Eu
u r

r

 


     

   
  

   

     
    

        


   



                     (12) 

 

 

 

 

Thus the nonlinear differential equation (12) takes the following form after substituting (15) and dividing it by 

the density nf : 

2 2

2 2 3 2 3 3 3 3 3

2 2 22
20

2 3 3 2

2 1 4 4
...

2 2
2 cos

nf f nf nf nf

nf

nf nf nf nf nf

nf nf nf

nf nf nf nf

Q Q Q Q Q Q Q Q
f f f f f f f f

r r r r r r r r r r

Q B BQ Q Q Q
f f ff f f Q

r r r r r r r r

    


        

    


    

        
                        

  
       

     
 

2 3

0 sin 2 sinh 0
cosh

w r

nf nf

E
f

r

 
 

  
 

               (12) 

 

Applying the assumption of constant fluid viscosity constantnf  which means that also constantf 

according to (4), leads to the following non-linear differential equation: 

 
 

2 2 32
20 0

3 3 3

4
2 cos sin 2 sinh 0

cosh

w r
nf

nf nf nf

Q B B EQ Q Q Q
ff f f f f

r r r r r

   
   

   

 
         

 

  (13) 

Multiplying Eq. (17) by
3r and dividing it byQ and nf , yields: 

        
2.5 1.252

14 2Re 1 1 cos sin 2 1 sinh 0s

f

f f ff Ha f f c


      


 
             

  

                  (14) 
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Where  

 

3

1
cosh

w r

f

E r
c

Q

 

  
 . In addition, Reynolds and Hartmann numbers are defined ([34]) by

 
2

0 ,Re
f

f f

Q
Ha B r



 
 

, respectively. Note that 
1c and Ha numbers are dependent on r . In order to cancel this 

dependency and to have similarity solutions which dependent only on the wedge semi angle one can assume 

that
3

1
 or  or r wE

r
   and 0 2

1
 or B

r
 . Accordingly, 

 

2 2

0 0 0
1,

cosh

w r

f f

B E
Ha c

Q

   

  
      (17) 

While
0 0,  are constants. Integrating Eq. (18) along direction leads to the following equilibrium: 

       
1.25 2.52 2

14 1 cos 2Re 1 1 coshs

f

f Ha f f c d


     


 
            

  

 (18) 

with  2 2cos sin 2 cos ,cosh
2

e e
f f d f

 

    


    and d is the integration constant. 

Rearrangement of equation (20) members leads to one non differential equation which depends only on : 

     
1.25 2.52 2

14 1 cos 2Re 1 1
2

s

f

e e
f Ha f f d c

 
    



              
  

 (19) 

Based on previous studies, equation (21) can be treated as particular case of the general equation obtained by 

the author (Nagler – observe equation no. 25 there, [32]). In this stage we will try to solve Eq. (21) analytically. 

Suppose that
2f f  and

00 20  , then Eq. (21) will behave according the following form: 

 2 1 14 2
2

e e
f HaJ J f d c

 
      ,   (20) 

While 

     
2.5 1.252

1 2cos 1, 2 1 Re 1 , 1s

f

J J


    


 
      

  

.   (21) 

Equation (22) solution will be done by two stages – homogenous and particular, according to: 

   1 2 1 2 2 1 2 1

2 1 2 1

1 2 2 1

4 2 4 2

cos 4 2 sin 4 2 , 4 2 0

, 4 2 0
HaJ J HaJ J

h
a HaJ J a HaJ J HaJ J

a e a e HaJ J
f

 

 

    

       

   


 


 .  (22) 

While
1 2,a a are constants. The particular solution of equation (22) is: 

  1

2

2 1 2 14 2 2 4 2
p

cd e e
f

HaJ J HaJ J

 




 

    
                                                                          (23) 

The final approximate solution for small values of wedge semi angle over the range
0 00 20  is 

2 1 2 1

2 1

1
1 2 2

2 1 2 1

2 1

1

2

2 1 2 1

4 2 4 2

cos 4 2 sin 4 2
1 2 1 2 2 1

  IF 4 2 0 :  

4 2 2 4 2

    IF 4 2 0 :  

4 2 2 4 2

h p

HaJ J HaJ J

a HaJ J a HaJ J

HaJ J

cd e e
a e a e

HaJ J HaJ J
f f f

HaJ J

cd e e

HaJ J HaJ J

 

 

 

 









   
   
   

    

   

  



  

    
   

  


  

    









 (24) 

Now, in order to determine the constants
1 2,a a and d , the following transformed conditions (13) – (14) should 

be applied on relation (26) according to: 

   
   

 or 
(0) 0

f mf
f mf

f

 
   

  
      

 

        (25) 

Due to flow field symmetry assumption, both conditions can simply be written by the right column. The 

normalized transformed flow rate condition (14) is in the form: 

1f d








            (26) 
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Suggested functions based on the author relevant 

mathematical knowledge on micro fluid flow [32] will 

be introduced here. Parabolic approximation which 

fulfills boundary conditions (27)-(28) is brought as 

follows [32]: 

   
2

2 22
2

3
3

1 1 2
2

2

2 21 3 3

22

1
221

4
42

33

1 1
,

2
2

3

2

23

2
2

2 2

m

m mmf b b
m

m

b

m

b
m

b

m

m

m




 



    






 

 




    









 








(31) 

while 0  . 

In the next section, comparison will be performed and 

discussed between approximate analytical solutions and 

literature results. 

 

3 RESULTS & DISCUSSION 

In this section parametric investigation based on Eq. 

(29) through illustrative results will be presented and 

discussed. Initially, suppose that the following 

parameters are considered 

 0 4 12

0

1 kV
2.5 , 0,Re 250, 1000 , 50, 10 , 50[ V], 30[ ], 8.85 10 F/ms

w

f

Ha m E
nm m


    



 
            

 

. 

Seemingly, the normalized velocity  f was found to 

decrease gradually with the tangential direction progress 

as appear in Fig. 1. Moreover, friction coefficient  m

increase leads to normalized velocity profile values 

decrease as shown in Fig. 1. Many studies are usually 

using the no-slip boundary condition. Here, the case 

where friction coefficient  m value becomes large 

enough to represent "infinity" is for
610m  and 

condition (27) becomes   0f   . The obtained 

solution has full compatibility with [24], [28] and Dib et 

al. [39]. The opposite extreme case where 0m  or

  0f   is illustrated in Fig. 2 by horizontal line 

parallel to the axis while good agreement has been 

achieved [32]. Further explanation for this phenomenon 

will be brought in the next section. However, increase 

of wedge semi angle value leads to increase of the 

normalized velocity profile as appear in Fig. 3. 

Concentrating on the solid to fluid ratio /s f  teaches 

us that the normalized velocity profile gets higher value 

as long as the fracture increases as illustrated in Fig. 4. 

Initial observation at two distinguished characteristics of 

the flow: Reynolds  Re and Hartmann  Ha numbers 

show that an increase in these numbers raises the 

normalized velocity function values as shown in Figs. 5-

6. In addition, solid volume fraction coefficient    

increase is accompanied with normalized velocity 

profile result increase. 

Next, the discussion will revolve around the comparison 

between the approximate analytical solution (29) and 

suggested approximate parabolic solution (31). In case 

where flow effects (including inertia, magnetic, 

electrically, etc.) can be neglected, both solutions are 

coincided for each value of the wedge semi angle and 

friction coefficient as illustrated in Fig. 7. (a-b), 

respectively. In case where more effects are gradually 

being considered, a slight difference is emerged, but the 

most dramatic change between solutions occurs when 

solid to fluid ratio /s f  gets significant value as 

shown in Fig. 9. 

Hence, the final solution coefficients are: 

   

2 1

1
15 22 25 1 2

1 3 32 1 1
1 2 2

4 1 3 4 1 3 1 1 4 1 3 1

2 1

2
1 1 2
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1 2

1 1 1

IF 4 2 0 :

2 /1 2,
2 4
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1
2 2
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cos sin

HaJ J
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m T T mT c TT T TT c m T

a a d
mT TT mT TT T T mT TT T
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c d T T c
T m T

T
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 








 



  

 
               

    
 

  

 
   

   


 

 

1 2 51
1 1

6

1

1 6

2
sin

2 2

1 sin

c T mT
T T

T
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T

TT




 




 
 

 



               (27) 

Where, 

   

1 1 1 1 1
1 2 1 2 3 4 52 2 2 2

1 1

6 1 1 1

4 2 , , , , ,
2

cos sin

T T T T ce e e e
T HaJ J T T e e T e e T

T T

T m T T T

   
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 

 

 
  

        
 

 

                               (28) 
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Next section will discuss on the influence of small 

friction coefficient values through special cases. 

 

Fig. 2. Normalized velocity  f  for various values of 

friction coefficient ( m ) while

0 41
2.5 , 0,Re 250, 1000 , 50, 10s

f

Ha
nm


  



 
      

 

. 

 

Fig. 3. Normalized velocity  f  for various values of semi 

wedge angle ( ) while 

4 61
0,Re 250, 1000 , 50, 10 , 10s

f

Ha m
nm


 



 
      

 

. 

 

Fig. 4. Normalized velocity  f  for various values of solid 

to fluid fraction coefficient /s f  while 

0 61
2.5 , 0.01,Re 250, 1000 , 50, 10Ha m

nm
  

 
      

 

 

Fig. 5. Normalized velocity  f  for various values of 

Hartman number ( Ha ) while

0 6 41
2.5 , 0,Re 250, 1000 , 10 , 10s

f

m
nm


  



 
      

 

. 

 

Fig. 6. Normalized velocity  f  for various values of 

Reynolds number ( Re ) while

0 6 41
2.5 , 0, 50, 1000 , 10 , 10s

f

Ha m
nm


  



 
      

 

.

 

Fig. 7. Normalized velocity  f  for various values of solid 

volume fraction ( ) 
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while

0 6 41
2.5 ,Re 250, 50, 1000 , 10 , 10s

f

Ha m
nm


 



 
      

 

 

4 DISTINGUISH FLUID BEHAVIOR 

EXAMINATION DUE TO SMALL FRICTION 

COEFFICIENT VALUES  

In this section three unprevail distinguished cases will 

be brought for discussion. These cases represent the 

fluid mechanics complexity and may be used for further 

future studies investigations. Firstly, the case where 

friction coefficient becomes zero will be analyzed. 

Suppose that

0 1
20 , 0,Re 0, 1000 , 0, 0, 50[ V]s

w

f

Ha m
nm


   



 
        

 

. As a result of substitution into Eq. (29), the horizontal 

line is slightly varied with the electrical field as shown 

in Fig. 10. In conclusion, the increase of the electrical 

field causes to the normalized velocity to decrease 

slightly gradually while the wedge semi angle was 

chosen to obtain maximum value  020  such as 

this phenomenon will be identified clearly. The second 

 

Fig. 8. Normalized velocity  f  comparison between Eqs. (29) and (31) for various values of a. wedge semi angle ( ) while 

110m  . where 0,  1
Re 0, 1000 , 0, 0s

f

Ha
nm






 
    

 

.b. friction coefficient ( m ) while 

 

Fig. 9. Normalized velocity comparison between Eqs. (29) and (31) based on gradual parametric variation (evolution) while

0 62.5 , 10m   are constants through process. 

 

 

 

 f 
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phenomenon that will be introduced shows that for 

specific parameters choice  

1 kV
0.5, 0.03,Re 25, 1000 , 5, 2000, 50[ V], 30s

w r

f

m Ha m E
nm m


  



    
                 

the optimal normalized velocity is not determined by 

choosing specific wedge semi angle but may vary along 

the course and optimal value may be achieved in some 

point over the tangential direction for other wedge semi 

angle than initially specified as appear in Fig. 11. The 

last case that will be brought here concerns the effect of 

friction coefficient  m variation on the normalized 

velocity profile for different values of wedge semi angle 

  with the following parameters choice

4

1
0.02,Re 250, 1000 , 50,

kV
10 , 50[ V], 150s

w r

f

Ha
nm

m E
m

 






  
     

  
  

     
  

. One can 

infer from the friction coefficient variation that the 

difference between the normalized velocity profiles for 

different values of is decreased as long as the friction 

coefficient is increased as presented in Fig. 12 (a-d). 

Moreover, choosing large values of m leads to profiles 

convergence. For instance, in case where the friction 

coefficient represents "infinity" (
610m  ) the profiles 

are coincided as appear in Fig. 12. (e). 

 

 

Fig. 10. Normalized velocity for various values of the electrical field (
rE ). 

 

Fig. 11. Normalized velocity for various values of the wedge semi angle ( ). 

 
 
 

 f 

 f 
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5. CONCLUSIONS 

In this essay, a model of combined MHD and 

electroosmotic Jeffery–Hamel flow of nano fluid type 

inside a wedge (inclined walls) with non-linear viscosity 

and wall friction was derived and expressed by one 

nonlinear ordinary differential equation with appropriate 

boundary conditions based on similarity relations. The 

obtained equation can be solved analytically by 

assuming that
2f f and

00 20  . Moreover, the 

obtained analytic solution was compared to simple 

parabolic approximation while excellent agreement was 

found. Although it was found that in case where more 

effects are gradually being considered, a slight 

difference is emerged, but the most dramatic change 

between solutions occurs when solid to fluid ratio

/s f  gets significant value. In addition, literature 

results were also being compared, while solutions were 

 
Fig. 12. Normalized velocity for various values of the wedge semi angle ( ) in accordance to the following cases: 

a. 0m  . b. 0.5m  . c. 500m  . d.
410m  . e. 

610m  . 

 

 f  
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found to have suitable match in the quantitatively and 

qualitatively aspects.  

Moreover, analytical solution parametric investigation 

was performed for specific parameters choice. It was 

found that the normalized velocity  f was decreased 

gradually with the tangential direction progress and/or 

with friction coefficient  m increase. However, the 

normalized velocity profile gets higher values as long as 

the solid to fluid ratio /s f   increases. Additionally, 

Reynolds  Re , Hartmann  Ha and solid volume 

fraction coefficient    increase (separately or all 

together) have raised the normalized velocity function 

values. 

Finally, three unprevail distinguished cases were 

introduced to understand flow complexity. It was found 

that electrical field magnitude effect is being significant, 

especially for small friction coefficient values and for 

high wedge semi angle. In addition, the combination 

between small friction coefficient values including 

small parameter flow values (Re and Ha numbers) and 

high electrically field may lead to un-optimized course 

of normalized velocity profile. The last case that was 

examined deals with friction coefficient  m variation 

effect on the normalized velocity profile for different 

values of wedge semi angle   with high electric field 

for specific parameters choice. One can infer from the 

variation of friction coefficient that the difference 

between the normalized velocity profiles for different 

values of  decreases as long as the friction coefficient 

increases. Moreover, choosing large values of m leads 

to profiles convergence such as in case where the 

friction coefficient represents "infinity" (
610m  ) the 

profiles are coincided. 
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