

Çankaya University Journal of Science and Engineering
Volume 13, No. 1 (2016) 040-057

ISSN 1309 – 6788 © 2016 Çankaya University

Resource Efficient Implementation of the

Keccak, Skein & JH Algorithms on a

Reconfigurable Platform

Dur-e-Shahwar Kundi, Arshad Aziz, Kashif Latif

Department of Electrical Engineering (PNEC), National University of Sciences and Technology (NUST),
H-12 Islamabad, Pakistan

e-mail: shahwar@pnec.nust.edu.pk, arshad@nust.edu.pk, kashiflatif99@gmail.com

Abstract: In this work, we present a compact hardware implementation of cryptographic hash algorithms;

[Keccak, Skein & JH] on Field Programmable Gate Array (FPGA) by using an efficient primitive level

programming approach. All the logic is not only mapped onto Look-Up-Table (LUT) but also effectively

utilizes FPGAs internal dedicated logical resource, such as Fast Carry Chain logic with MUXCY and

XORCY to reduce overall hardware resources. This approach results in the usage of a minimized chip area

with a good balance between resources and speed for selected hash algorithms. All the implementation has

been done on the latest Xilinx FPGAs and their results comparisons are presented in the form of chip area

consumption, throughput and throughput per area with previous up-to-date implementations. The results

show a substantial improvement as compared to all the previously reported works.

Keywords: Cryptographic Hash Functions, FPGA, JH, Keccak, Skein, SHA-3.

1. Introduction

Cryptographic hash functions are an essential component in many information security

applications such as digital signatures, message authentication codes (MACs) that require

authentication, and data integrity. A secure cryptographic hash function must have two

important properties: it should be irreversible and it should be collision free. However, many

previous hash functions and cryptographic hash functions, such as SHA-0, SHA-1, RIPEMD,

MD4, MD5, and HAVAL, have been found vulnerable to pre-image and collision attacks and

should not be used because of their weaknesses [1-4].

mailto:shahwar@pnec.nust.edu.pk
mailto:arshad@nust.edu.pk
mailto:kashiflatif99@gmail.com

CUJSE 13, No. 1 (2016) 41

Therefore, to ensure the long-term robustness of applications that use hash functions, the

National Institute of Standards and Technology (NIST) USA has selected Keccak as a new

cryptographic hash algorithm called SHA-3 [5] in 2012. Though Keccak is selected as a

standard hash algorithm, the four remaining proposed hash algorithms candidates (Skein,

BLAKE, JH and Grøstl) were also equally as good and provide flawless security [6].

Similarly, the design of JH and Grøstl are strongly inspired by AES [7] and both can be a

good choice once we require unified architecture with encryption algorithm, such as AES.

Therefore, in this paper, we provide an efficient hardware implementation of only three

selected SHA-3 candidates: Keccak as SHA-3, Skein and JH with respect to unified

architecture on the latest Field Programmable Gate Array (FPGA) technologies from Xilinx.

FPGAs are the best known leading reconfigurable platform for hardware implementation. All

modern Xilinx FPGAs [8] are equipped with Configurable Logic Blocks (CLBs) that contain

not only Look-Up-Tables (LUTs) but also dedicated hardware resources, such as Fast Carry

Chain logic, MUXCY and XORCY gates. These resources can be effectively utilized to speed

up the operation of cryptographic hash algorithms with minimum area resources.

The remainder of this paper is organized as follows: An overview of related work is discussed

in Section 2. In Section 3, the methodology adopted for our hardware implementation of

Keccak, Skein & JH is described. The resource efficient hardware architectures for Keccak,

Skein & JH with their brief overview are given in Section 4. In Section 5, we present the

implementation results and comparisons with previously reported work. Section 6 provides

performance evaluation of Keccak, Skein & JH. Finally, we conclude our work in Section 7.

2. Related Work

Various groups around the world provide the hardware implementation for the above selected

algorithms on both the FPGA and ASIC platforms in two main categories of implementation:

high speed designs and compact designs. The high speed ASIC implementations are reported

in [9-11]. A number of efficient compact FPGA implementations of these algorithms are

reported in [12-15]. In this work, we focus on high-speed implementations of FPGAs as it

provides a direct snapshot of the basic operations cost for a given algorithm. The SHA-3 Zoo

website [16] reports the comprehensive results of the reported work, in which most are

focused on high speed architectures. In Table 1, we provide a snapshot of the high-speed

implementations results for FPGAs from different groups. The comprehensive studies on the

above selected algorithms are reported by Baldwin et al. [17], Matsuo et al. [18], Gaj et al.

42 Kundi et al.

[19], Shahid et al. [20] and Homsirikamol et al. [21, 22]. In [17-22], the authors have

investigated different design strategies and have implemented various architectures for every

algorithm using pipelining, folding and loop unrolling approaches. However, here we have

selected only the results of the basic iterative architecture (x1) for Keccak, basic iterative

architecture with 4 unrolled stages (x4) for Skein and basic iterative architecture (x1) with

memory for JH.

TABLE 1. SHA-3 Candidates Implementations

SHA-3
candi-
dates

Author(s) Device
256-bit 512-bit

𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻 𝑻𝑻𝑨 𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻 𝑻𝑻𝑨

Keccak

Keccak Team [27] Virtex-5 122.00 1330 5.20 3.91 - - - -

Strömbergson [23] Spartan-3 85.00 3393 4.80 1.41 - - - -
Strömbergson [23] Virtex-5 118.00 1483 6.70 4.52 - - -
Baldwin et al.[17] Virtex-5 195.73 1971 6.26 3.17 195.73 1971 8.52 4.32
Matsuo et al. [18] Virtex-5 205.00 1433 4.20 2.93 - - - -
Akin et al. [24] Spartan-3 81.40 2024 3.46 1.71 - - - -
Akin et al. [24] Virtex-4 142.90 2024 6.07 3.00 - - -
Gaj et al. [19] Virtex-5 - 1375 12.75 9.27 - 1283 7.18 5.60
Homsirikamol et al. [22] Virtex-6 - 1165 11.84 10.17 - 1231 7.23 5.87
Homsirikamol et al. [22] Virtex-5 - 1395 12.77 9.16 - 1220 6.56 5.37
Shahid et al.[20] Virtex-5 248.2 1338 11.25 8.41 - - - -

Skein

Baldwin et al. [17] Virtex-5 - - - - 83.58 2756 0.97 0.35
Matsuo et al. [18] Virtex-5 115.00 854 0.283 0.33 - - - -
Gaj et al. [19] Virtex-5 - 1245 3.13 2.51 - 1348 2.97 2.20
 Long [25] Virtex-5 114.94 931 0.407 0.44 114.94 1758 0.82 0.46
Tillich [26] Virtex-5 68.40 937 1.751 1.87 69.04 1632 3.535 2.17
Tillich [26] Spartan-3 26.14 2421 0.669 0.28 26.66 4273 1.365 0.32
Homsirikamol et al. [22] Virtex-6 - 1216 3.52 2.90 - 1591 3.11 1.96
Homsirikamol et al. [22] Virtex-5 - 1476 2.94 1.99 - 1658 2.81 1.7
Shahid et al.[20] Virtex-5 95.2 1306 2.56 1.96 - - - -

JH

Baldwin et al.[17] Virtex-5 144.11 1763 1.64 0.93 144.11 1763 1.64 0.93
Matsuo et al. [18] Virtex-5 201.00 2661 0.733 0.27 - - - -
Gaj et al. [19] Virtex-5 - 1001 4.54 4.54 - 1125 4533 4.03
Homsirikamol et al. [22] Virtex-6 - 847 5.70 6.73 - 896 5.34 5.95
Homsirikamol et al. [22] Virtex-5 - 909 4.62 5.09 - 1020 4.73 4.64
Shahid et al.[20] Virtex-5 354.7 985 5.04 5.12 - - - -

𝐹𝑚𝑚𝑚 in MHz, 𝐴𝐴𝐴𝐴 in Slices, 𝑇𝑇 in Gbps and 𝑇𝑇𝐴 in Mbps/Slice

CUJSE 13, No. 1 (2016) 43

3. Implementation Methodology

We have implemented the 256-bit and 512-bit variants of the selected SHA-3 candidates:

Keccak, Skein & JH. Our designs are fully autonomous with complete I/O interfaces. We

targeted them for efficient implementations; however, we kept in mind the fair hardware

performance comparison for these candidates.

3.1. I/O Interface

The input/output interface is shown in Fig. 1(a). Each I/O transaction is sampled at the rising

edge of the system clock. The input cycle is started by setting the load signal to high. After

that, the Hash Module sets the ack signal to high if it is able to receive input data. The input

data is then received in the form of 64-bit words at every rising edge of the clock, and during

this transaction, the ack signal remains high. When the Hash Module has received the desired

amount of data_in, then this ack signal is set to low by it, and if no further transactions are

required, then the load signal is pull down to low by the I/O Interface. Similarly, when the

final hash value becomes available by the Hash Module, then hash_valid is set to high by it.

The output data is then transferred in the form of 64-bit words on each rising edge of the clock

until the desired hash length is received.

3.2. Control and Data Paths

The hash module has two major parts: the control path and the data path. The block diagram

of the hash module is given in Fig. 1(b). The control path consists of the Finite State Machine,

State register, clock and counter, while the data path consists of input and output registers, the

Hash Core and intermediate registers. The input registers of the data path consists of registers

D
at

a
P

at
h

hash_done

hash_en

select

reset

 clock

Clock

Counter

FSM
Logic

State
Reg

Input Registers

Hash Core

Output Register

Intermediate
Registers

 input

 output

C
on

tro
l P

at
h

(b)

64

hash_valid

data_in

data_out

ack
load
reset

clock

I/O
Interface

Hash
Module

64

(a)

FIGURE 1. (a) Common I/O Interface (b) Hash Module separated in Control and Data paths

44 Kundi et al.

to store messages and other input parameters, such as the Initialization Vector (IV) in the case

of JH. The Hash Core is the main arithmetic logic unit of the hash algorithm. Intermediate

registers are utilized to store intermediate results of the hash algorithm. The output register

contains the resulting hash output.

3.3. Xilinx FPGA Architecture and its Implication on the Design of SHA-3

Algorithms

The architectures of the latest FPGA families from Xilinx (Virtex-6, Virtex-7, and Spartan 6)

are based on 6-input LUTs, named LUT6 [8]. A CLB Slice of a Xilinx FPGA consists of four

such LUTs and the Fast Carry Chain logic. Each LUT6 has six independent inputs and two

independent outputs. These LUTs may be configured and used in many different ways. A

LUT6 may be used as an independent 5-input LUT using the LUT5 primitive from the Xilinx

HDL library, as shown in Fig. 2(a). On the other hand, it is possible to implement any two 5-

input logic functions with shared inputs using the LUT6_2 primitive, as shown in Fig. 2(b). In

this case, the LUT input 𝑖5 selects between two 5-input logic functions to connect to output

LUT5

Attributes
INIT= 00000000

5-Input Look-Up

𝑖0
𝑖1
𝑖2
𝑖3
𝑖4

𝑂

(a)

LUT5

LUT5

𝑖0

𝑖1

𝑖2
𝑖3

𝑖4
𝑖5

Attributes
INIT=0000000000000000

6-Input Look-Up

LUT6_2

𝑂5

𝑂6

(b)

FIGURE 2. LUT5, LUT6_2 and CARRY4 primitives in the Xilinx HDL library

CYINIT

D(0)

CI

D(1)

D(2)

MUXCY

MUXCY

MUXCY

XORCY

XORCY

XORCY

D(3)
MUXCY

XORCY

DI(3:0)

S(3:0)

S(0)

S(1)

S(2)

S(3)

CO(0)

CO(1)

CO(2)

CO(3)

O(3:0)

CO(3:0)

CARRY4

(c)

CUJSE 13, No. 1 (2016) 45

𝑂6. The same LUT6_2 primitive may be used to draw two independent outputs from a LUT6

with shared 5-inputs. In this case, input 𝑖5 should be tied to logic high (i.e. 1). The INIT value

in hexadecimal, shown under the attributes in Fig. 2(a) and 2(b), configures the LUT to

perform the desired operation at its inputs. The INIT value is derived by laying down the truth

table for all possible combinations of the LUT inputs and outputs. The Fast Carry Chain logic

in Fig. 2(c) is useful for the implementation of logical functions such as AND, OR and NOT. It

consists of four multiplexers and four XOR gates that connect to the LUTs in the same Slice

through dedicated routing to form more complex functions. We have used these primitives

excessively in the architectural designs of Keccak, Skein & JH. We also exploit the techniques

presented in [28] for efficient utilization of modern FPGA resources.

4. Proposed Implementation
4.1. Keccak Design

Keccak [27] is a family of sponge functions (Keccak [r, c]) parameterized by bitrate r and

capacity c. It is restricted to the set of seven permutations {25, 50, 100, 200, 400, 800, and

1600} formed by the sum of r + c. Keccakf[1600] is the initial proposal for SHA-3 with

different r and c values for each desired length of the hash output. For the 256-bit hash output

r = 1088 and c = 512, and for the 512-bit hash output r = 576 and c = 1024, Keccak-f[1600]

consists of 1600 bits of an input state array that are arranged in the form of a 5×5 matrix of

64-bit words. The permutation function of Keccak-f[1600] comprises 24 rounds, with each

round having a total of five steps: theta (𝜃), rho (𝜌), pi (𝜋), chi (𝜒) and iota (𝑖). These five

steps consists of bitwise operations such as XOR, NOT, AND and bitwise cyclic shift operators

[27].

46 Kundi et al.

FIGURE 3. Architectural detail of Keccak

LUT5

Attributes
INIT= 96696996

5-Input
Look-Up Table

𝑖0
𝑖1
𝑖2
𝑖3
𝑖4

𝑂

𝑂 = 𝑖0 ⊕ 𝑖1 ⊕ 𝑖2 ⊕ 𝑖3 ⊕ 𝑖4

(b) 5-bit XOR for first
equation of θ step

h

c

r + c

r + c

r + c

hash

RC
ROM

Trunc. r

Concat.

Reg

msg

0’s

r

θ || ρ
 π || χ ||i 64

counter

(a) Data path of Keccak

 4-bit XOR for θ & i
step

CYINIT D(0)

VCC

CI D(1)

CI D(2)

MUXCY

MUXC

MUXCY

XORCY

XORCY

XORCY

𝑂1

LUT3

Attributes
INIT= 96
3-Input

Look-Up Table

𝑖0
𝑖1
𝑖2

𝑂2

LUT3

Attributes
INIT= 96

3-Input
Look-Up Table

𝑖0
𝑖1
𝑖2

𝑂3

LUT4

Attributes
INIT= 9669
4-Input

Look-Up Table

𝑖0
𝑖1
𝑖2
𝑖4

3-bit XOR for Equ 2 &
3 of θ step

𝑂2 = 𝑖0 ⊕ 𝑖1 ⊕ 𝑖2

3-bit Logic used in χ step
𝑂𝑂𝑂 = 𝑂3 ⊕ (~𝑂1 & 𝑂2)

(c) 10-bit Implementation of
Integrated θ, χ & i step

𝑂𝑂𝑂

The sequential design of Keccak is shown in Fig. 3(a). The Reg represents the 𝐴 matrix

register on which processing of the Keccak algorithm takes place with the width defined to

r + c (bits). As defined above for Keccak-256, r is specified as 1088-bits while c is specified

as 512-bits; similarly for Keccak-512, r is specified as 576-bits and c as 1024-bits.

Accordingly Reg will be 1600-bits. Initially, the content of Reg is initialized with all zeros.

The input message block of r is directly copied to Reg after concatenating it with c number of

zeros with the help of the Concat block in Fig. 3(a). The compression function of Keccak

consists of five steps; 𝜃,𝜌,𝜋,𝜒 and i. In Fig. 3(a), each step is denoted by the symbol as

specified in the Keccak specifications. Wherever possible, we have combined these steps

during implementation. We have implemented the second and third equations of 𝜃 and 𝜌 as a

single step. Moreover, we integrated 𝜋,𝜒 and i in the next step. The arithmetic operations,

and the XOR, AND & NOT operations are implemented using LUT primitives from Xilinx

specific libraries. The following are details of the implementation of each step:

4.1.1. Theta (𝜽) and Rho (𝝆) Step

There are three equations in the 𝜃 step. The first equation is implemented using the LUT5

primitive for XOR logic, as shown in Fig. 3(b). The INIT value in hexadecimal, shown under

CUJSE 13, No. 1 (2016) 47

attributes in figure, configures the LUT to perform an XOR operation at its inputs. The INIT

value is derived by laying down the truth table for all possible combinations of LUT inputs.

To XOR five 64-bit operands of the equation, the LUT5 primitive is instantiated 64 times. For

complete implementation of the equation, five 64 LUT5 primitives are required. We combine

the remaining two equations of the theta step with 𝜌. The cyclic shift constant r[x,y] is fixed

and known for each position of matrix A. The LUT3 primitive is used for XOR logic in the

second equation of θ, as shown in Fig. 3(c), while the one-bit rotation of the last operand in

the third equation of θ and 𝜌 are implemented through rewiring.

4.1.2. Pi (𝝅), Chi (𝝌) and Iota (𝒊) Steps

The π is a permutation step and it is also combined with Chi (χ) and Iota (i) Steps. In the 𝜒

step, three logical operations, XOR, NOT and AND, are implemented by using Fast Carry

Chain logic with in same CLB instead of using the FPGA LUT primitive, as shown in

Fig. 3(c). The𝑖 step involves a simple XOR of a round constant with the least significant 64

bits of Reg, i.e. A[0,0]. It is also combined with the equations of the 𝜃 step and implemented

using the LUT4 primitive, as shown in Fig. 3(c).

The round constants (RC) are stored in a distributed ROM of 24×64 bits, implemented by

using LUTs in a single port configuration. The round constant for each round is selected by

means of a round number which is used as the ROM address. The whole Keccak algorithm

takes 24 clock cycles to complete 24 rounds. After completion of 24 rounds on a message

block, resulting r-bits of the state of Reg are XORed with the next message block and the same

round sequence is repeated. This process continues until the end of all message blocks.

Finally, the state of Reg is truncated to the desired length of the hash output.

48 Kundi et al.

4.2. Skein Design

Skein [29] is a group of cryptographic hash functions for the three internal state sizes: 256,

512 and 1024 bits. It consists of three components: Threefish Block Cipher, Unique Block

Iteration (UBI), and Optional Argument System. The core of Skein is built upon the tweakable

block cipher that makes every instant of the compression function of Skein unique. For every

input message, it divides the block into equal sizes of 64-bit words and performs a simple

non-linear MIX operation and permutation for every pair of words. The MIX function consists

of an addition, a cyclic shift and an XOR operation.

The data path implemented for Skein is shown in Fig. 4(a). The Add_Subkey module consists

of eight 64-bit adders that are implemented using fast carry chain logic available in Xilinx

FPGAs. The Threefish compression function of Skein is implemented in the form of Round_A

and Round_B. Both of these modules are identical except for the value of the left shift

constant R involved in the MIX operation, which is different. Initially, the plaintext message

has been added to the input key before being provided to the system. The first multiplexer

selects between the input data only for the first clock cycle and for the feedback data for the

remaining 72 rounds. The resulting output is then passes to the de-multiplexer that assigned

date to either Round_A or Round_B. Both the de-multiplexer and second multiplexer are

control by the same select input S2. The output of second multiplexer is then fed to the

Add_Subkey module to add it with round subkey.

FIGURE 4. Architectural detail of Skein

(c) 2-bit XOR in MIX operation

𝑦1 = 𝑥0 ⊕ 𝑦0

LUT2

Attributes
INIT= 6

2-Input

𝑦0

𝑥0
𝑦1

(a) Data path of Skein

b

Key_Schedule

Add_SubKey

 msg

msg
 hash

Round_A Round_B

S1

S2

b: 256/512
h: 256/512 b

b h

tweak
128

(b) Round_A & Round_B

MIX
Permute

MIX
Permute

MIX
Permute

MIX
Permute

14
52
23
5

16
57
40
37

MIX
Permute

MIX
Permute
MIX

Permute
MIX

Permute

25
46
58
32

33
12
22
32

CUJSE 13, No. 1 (2016) 49

The complete design for both the Round_A and Round_B modules are given in Fig. 4(b). In

the Round_A module, four unrolled rounds are partially implemented from 1 to 4 with their

rotational constants, while in the Round_B module, rounds 5 to 8 are implemented. Each

round consists of MIX and Permutation operations with constant R values and these four

rounds are then iteratively used to complete 72 rounds of the compression function. We have

efficiently implemented the second step in the MIX module using a LUT2 primitive depicted

in Fig. 7(c). The Add_Subkey module is a 256-bit adder having input keys from the key

scheduler; however, here in our design, we calculate the subkeys on-the-fly. The execution of

both the modules (Round_A and Round_B) which occurs on the rising edge of each clock

pulse and the next subkey is available on the falling edge of the same clock. In this manner,

the complete four rounds of the module and subkey addition is executed in one clock cycle.

Therefore, to complete 72 rounds and 19 subkey additions of Skein-256, 18 clock cycles will

be required instead of 72 clock cycles. The final hash value will be available after the latency

of 18 cycles at the output of the XOR gate.

4.3. JH Design

JH [30] is based on the idea that large block ciphers can be constructed through small

components and a constant key. Its methodology is highly inspired by the AES design to high

dimensions. It uses two types of S-boxes and a selection of each S-box for a given 4-bit

substitution is controlled by the respective bit value of a round constant. JH has four variants,

i.e. JH-224, JH-256, JH-384 and JH-512, with only a difference in the initial values (IV) and

the output hash lengths. The JH compression function is constructed from the bijective

function 𝐸 with a total of 42 rounds. Each round is composed of a 4-bit S-box substitution, a

linear transformation and a series of three permutations [30].

The data path implemented for JH is shown in Fig. 5(a). The state_reg represents the

intermediate JH state register, on which processing of the JH algorithm takes place and is

initialized with the IV of a desired hash digest size. The JH hash function uses the same

algorithm for all JH variants with only a difference in IV and the hash output registers. Then a

complete JH compression is processed by setting msg and the round constant RC to zero. The

higher order 512 bits of the resulting state of the JH compression is then XORed with first

message block and stored in state_reg. Then the contents of state_reg are processed through a

JH compression function with their respective round constants. The Trunc. block represents

the truncation operation, while the Concat. block represents the concatenation operation. The

grouping and de-grouping blocks are used to perform grouping and de-grouping of JH state

50 Kundi et al.

bits into 4-bit pairs as specified in JH [30]. In terms of hardware implementation, these steps

are achieved through a simple rewiring of the interconnects at no cost to resources.

4.3.1. JH Arithmetic Logic Unit (ALU)

JH ALU consists of S-boxes (S) and linear transformation units (L). For S-box, we used the

LUT6_2 primitive (Fig. 2(b)) and we used both of its outputs, i.e. 𝑂5 and 𝑂6. Using this

approach, the 4 S-boxes are adjusted within a single slice. Here, the S-box logic of JH ALU

consists of only 128 slices. The implementation of a single S-box using this approach is

depicted in Fig. 5(b). The INIT values (in hexadecimal), shown in the figure, are actual

configuration values for each LUT to perform the S-box operation. The linear transformation

is also implemented using the same optimized approach. The LUT6_2 primitive, with both

outputs 𝑂5 and 𝑂6, is used. Implementation of a single linear transformation unit (L) is

depicted in Fig. 5(c). The INIT values (in hexadecimal), shown in the figure, are actual

configuration values for each LUT to perform the L operation. The same variables are shown

for the inputs and outputs in Fig. 5(c), as denoted in the linear transformation equations in the

specification document [30].

FIGURE 5. Architectural detail of JH

(a) Data path of JH

1024

hash

counter

Trunc. Concat.

state_reg

msg

grouping

JH
Compression

degrouping

1024

1023…
512 511…0

IV

512

256

1024

1024

RC
ROM

LUT5

LUT5
𝑠
𝑥0
𝑥1
𝑥2
𝑥3

Attributes
INIT=73259EC81 6-Input Look-Up

LUT6_2

𝑦0

𝑦1

LUT5

LUT5
𝑠
𝑥0
𝑥1
𝑥2
𝑥3

Attributes
INIT=F18AC2B94 6-Input Look-Up

LUT6_2

𝑦2

𝑦3

(b) 5-to-4 bit S-box (c) Linear Transformation

LUT5

LUT5
𝐵0
𝐵3
𝐴1
𝐴2
𝐴3

Attributes
INIT=966969963 6-Input Look-Up

LUT6_2

𝐷0

𝐶1

LUT5

LUT5

𝐵3
𝐴0
𝐴2

Attributes
INIT=969696963 6-Input Look-Up

LUT6_2

𝐷3

𝐶0

LUT5

LUT5
𝐵1
𝐴0
𝐴2
𝐴3

Attributes
INIT=6996699696 6-Input Look-Up

LUT6_2

𝐷1

𝐶2

LUT5

LUT5

𝐵2
𝐴1
𝐴3

Attributes
INIT=969696963 6-Input Look-Up

LUT6_2

𝐷2

𝐶3

CUJSE 13, No. 1 (2016) 51

The round constants (RC) are stored in a single port distributed ROM of 43×256 bits. The

round constant for each round is selected by means of a round number which is used as the

ROM address. The completion of 42 rounds of the JH compression function (ALU) takes a

total of 42 clock cycles. After the completion of 42 rounds, the resulting lower order 512 bits

of the JH compression state is XORed with msg in order to obtain the next chaining hash

value, while the higher order 512 bits of the resulting chaining hash value is XORed with the

next message block. It is then stored in state_reg and the same compression sequence is

repeated on it. This process continues until the end of all the message blocks. Finally, the

resulting lower 512 bits of chaining hash value is truncated to the desired length of the hash

output

5. Implementation Results and Comparisons

All the proposed designs have been implemented using the Xilinx ISE 14.7 platform by

targeting latest Xilinx Virtex-7 as well as the Virtex-5 family devices. All the designs were

synthesized using Xilinx Synthesis Technology (XST) v.14.7. Furthermore, the functionality

of each design was tested and verified by an ISim simulator. Detailed device specifications

include: Virtex-5 LX30T, speed grade 3, package FF323 (5vlx30tff323-3) and Virtex-7

LX585T, speed grade 3, and package FFG1761 (7vlx585ffg1761-3).

Table 2 shows the achieved area consumption (Area), clock frequency (F_max), throughput

(TP) and throughput per area (TPA) for our implemented designs. The Block Size is the block

size of the message in bits and N_clk is the number of clock cycles required for the hash of a

single message block. The results for Virtex-5 were provided for comparison purposes as no

implementation results were available on Virtex-7, while the Virtex-7 results were provided

for future applications that will be using the new technology of FPGAs in their designs.

52 Kundi et al.

TABLE 2. Implementation results for the 256-bit and 512-bit variants for the SHA-3

candidates

SHA-3
Candi-
dates

Device

256-bit 512-bit

𝑩𝑩𝑩𝑩𝑩
𝑺𝒊𝑺𝑨
[bits]

𝑵𝑩𝑩𝑩
[cycles]

𝑭𝒎𝒎𝒎
[MHz]

𝑨𝑨𝑨𝒎
[Slices]

𝑻𝑻
[Gb/s]

𝑻𝑻𝑨
[Mbps/
slice]

𝑩𝑩𝑩𝑩𝑩
𝑺𝒊𝑺𝑨
[bits]

𝑵𝑩𝑩𝑩
[cycles]

𝑭𝒎𝒎𝒎
[MHz]

𝑨𝑨𝑨𝒎
[Slices]

𝑻𝑻
[Gb/s]

𝑻𝑻𝑨
[Mbps
/slice]

Keccak
Virtex-5 1088 24 277 1217 12.56 10.31 576 24 270 1200 6.48 5.4

Virtex-7 1088 24 300 998 13.60 13.63 576 24 298.68 983 7.17 7.27

Skein
Virtex-5 256 18 109.63 450 1.56 3.46 512 18 110 980 3.13 3.19
Virtex-7 256 18 139.23 465 1.98 4.26 512 18 120 1020 3.41 3.34

JH
Virtex-5 512 42 287.44 865 3.50 4.05 512 42 292.48 888 3.57 4.02
Virtex-7 512 42 329.49 587 4.02 6.84 512 42 338.41 679 4.13 6.08

For comparison purposes, we repeat only the Xilinx Virtex-5 results given by previous

implementations in Table 1, as Table 3 with the inclusion of our Virtex-5 FPGA results only

as no implementation results are available on Xilinx Virtex-7 FPGA. We achieved significant

improvements in the implementation results from previously reported work. We take

advantage of LUT and Carry Chain resources, available in Xilinx FPGAs, to reduce chip area

consumption with a balanced area and speed ratio. The use of resource primitives from Xilinx

specific libraries allowed us to design optimal hardware with a minimal use of resources.

TABLE 3. Comparison with previous work

SHA-3
Candidate Author(s) FPGA

256-bit 512-bit

𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻𝑨 𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻𝑨

Keccak

Our work Virtex-5 277 1217 10.31 270 1200 5.4
Baldwin et al.[17] Virtex-5 195.73 1971 3.17 195.73 1971 4.32

Matsuo et al. [18] Virtex-5 205.00 1433 2.93 - - -
Gaj et al. [19] Virtex-5 - 1375 9.27 - 1283 5.60
Shahid et al.[20] Virtex-5 296.7 1369 9.83 - - -
Homsirikamol et al. [22] Virtex-5 - 1395 9.16 - 1220 5.37
Strömbergson [23] Virtex-5 118.00 1483 4.52 - -
Keccak Team [27] Virtex-5 122.00 1330 3.91 - - -

Skein

Our work Virtex-5 109.63 450 3.46 110 980 3.19
Baldwin et al. [17] Virtex-5 - - - 83.58 2756 0.35
Matsuo et al. [18] Virtex-5 115.00 854 0.33 - - -
Gaj et al. [19] Virtex-5 - 1245 2.51 - 1348 2.20
Shahid et al.[20] Virtex-5 95.2 1306 1.96 - - -
Homsirikamol et al. [22] Virtex-5 - 1476 1.99 - 1658 1.7
Long [25] Virtex-5 114.94 931 0.44 114.94 1758 0.46
Tillich [26] Virtex-5 68.40 937 1.87 69.04 1632 2.17

CUJSE 13, No. 1 (2016) 53

In Table 3, we show our exceeding results in bold font. Most of our results for Virtex-5 are

exceeding from the previously reported work in terms of throughput per area. Only JH is the

case where our throughput per area results are slightly less than that of [20] and [22] on

Virtex-5. However, in the case of Keccak and Skein, our throughput per area results are ahead

of previously reported work with an exceptional use of a smaller area.

6. Performance Comparison of Keccak, Skein & JH

Figures 8 and 9 represent the performance comparison of 256-bit and 512-bit variants,

respectively, in a graphical view based on our results. It is clear from the graphs that Keccak

is far ahead of the other two candidates, on both Virtex-5 and Virtex-7, in terms of throughput

(TP) and throughput per area (TPA) for both 256-bit and 512-bit variants. The difference is

large for the 256-bit variant; however, in the case of the 512-bit variants, the performance of

JH and Skein is nearer to Keccak. For 256-bit variants, JH gives better throughput per area

performance than Skein. In terms of area consumption, Skein leads all of the other candidates

by consuming less area for the 256-bit variants, while for the 512-bit variants, the area

consumption by JH is lower.

JH

Our work Virtex-5 287.44 865 4.05 292.48 888 4.02
Baldwin et al.[17] Virtex-5 144.11 1763 0.93 144.11 1763 0.93
Matsuo et al. [18] Virtex-5 201.00 2661 0.27 - - -
Gaj et al. [19] Virtex-5 - 1001 4.54 - 1125 4.03
Shahid et al.[20] Virtex-5 403.5 1004 5.72 - - -
Homsirikamol et al. [22] Virtex-5 - 909 5.09 - 1020 4.64

𝐹𝑚𝑚𝑚 in MHz, 𝐴𝐴𝐴𝐴 in Slices and 𝑇𝑇𝐴 in Mbps/Slice

54 Kundi et al.

FIGURE 8. Performance comparison of 256-bit variants of SHA-3 finalists

FIGURE 9. Performance Comparison of 512-bit variants of SHA-3 Finalists

0

2000

4000

6000

8000

10000

12000

14000

16000

Area TP TPA Area TP TPA

Virtex 7 Virtex 5

Keccak-256

JH-256

Skein-256

0

1000

2000

3000

4000

5000

6000

7000

8000

[Slices] [Mbps] [Kbps/Slice] [Slices] [Mbps] [Kbps/Slice]

Area TP TPA Area TP TPA

Virtex 7 Virtex 5

Keccak-512

JH-512

Skein-512

CUJSE 13, No. 1 (2016) 55

Hence, in a resource constrained environment, Skein (256-bit variants) is the better option

because of its lower area consumption as compared to Keccak and JH, whereas for 512-bit

variants, JH is compact. In terms of throughput, again Keccak is far ahead for 256-bit digest

sizes. For TP and TPA, Skein is well behind the performances of Keccak and JH. Skein has

computationally intensive designs as compared to other algorithms. If we consider throughput

per area as the major deciding factor for performance comparisons, we can easily rank Keccak

first followed by JH and Skein.

7. Conclusions

In this work, we have presented efficient hardware implementations of Keccak as SHA-3,

Skein and JH with respect to a unified architecture. Dedicatedly mapped LUT resources on

FPGAs with a combination of Fast Carry Chain, MUXCY and XORCY are used to enhance

the hardware performance of these cryptographic hash algorithms in terms of area. Reported

implementation results of 256-bit and 512-bit variants of each algorithm on Xilinx Virtex-5

and Virtex-7 FPGA shows significant improvements in terms of area, throughput and

throughput per area.

References

[1] X. L. Xiaoyun Wang, D. Feng, H. Yu., Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199, (2004), 1-4.
URL: http://eprint.iacr.org/2004/199

[2] M. Szydlo, SHA-1 collisions can be found in 263 operations, CryptoBytes Technical
Newsletter, (2005).

[3] M. Stevens, Fast collision attack on MD5. Cryptology ePrint Archive, Report 2006/104,
(2006), 1-13, URL: http://eprint.iacr.org/2006/104.pdf

[4] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, L. Wang, Preimages for Step-Reduced SHA-
2, In: Advances in Cryptology ASIACRYPT, Lecture Notes in Computer Science, 5912,
Springer Berlin /Heidelberg, (2009), 578-597.

[5] National Institute of Standards and Technology (NIST). SHA-3 Winner announcement,
(2012), URL: http://www.nist.gov/itl/csd/sha-100212.cfm

[6] I. F., Alshaikhli, M. A., Alahmad, K. Munthir, Comparison and Analysis Study of SHA-3
Finalists, International Conference on Advanced Computer Science Applications and
Technologies, (2012), 366-371.

[7] J. Daemen, V. Rijmen, The Design of Rijndael – AES Advanced Encryption Standard.
Springer-Verlag Inc., New York USA (2002).

http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2006/104.pdf
http://www.nist.gov/itl/csd/sha-100212.cfm

56 Kundi et al.

[8] Xilinx: 7 Series FPGAs Configurable Logic Block user guide. v1.7, Technical report
(2014), URL:
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

[9] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, F. K. Gurkaynak, Developing a
hardware evaluation method for SHA-3 candidates, Proc. Cryptographic Hardware and
Embedded Systems, (2010), 248-263.

[10] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A. Szekely, High-
Speed Hardware Implementations of Blake, Blue Midnight Wish, Cubehash, ECHO,
Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, Shavite-3, SIMD, and Skein,
Cryptology ePrint Archive, Report 2009/510, (2009), URL:
http://eprint.iacr.org/2009/510.pdf

[11] F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Rogawski, H.
Kaeslin, J. -P. Kaps, Lessons Learned from Designing a 65nm ASIC for Evaluating Third
Round SHA-3 Candidates, 3rd SHA-3 Candidate Conference, (2012), 1-21.

[12] B. Jungk, M. Stöttinger: Among slow dwarfs and fast giants: A systematic design space
exploration of KECCAK. 8th International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip), (2013), 1-8.

[13] S. Kerckof, F. Durvaux, N. Charvillon, F. Regazzoni, G. Meurice, F. Standaert, Compact
FPGA Implementations of the Five SHA-3 Finalists, CARDIS 2011, LNCS, Springer
Berlin Heidelberg, 7079, (2011), 217-233.

[14] B. Jungk, Compact Implementations of Grøstl, JH and Skein for FPGAs, ECRYPT II
Hash Workshop 2011, (2011), 1-15.

[15] X. Guo, S. Huang, L. Nazhandali, P. Schaumont, On The Impact of Target Technology in
SHA-3 Hardware Benchmark Rankings, Cryptology ePrint Archive, Report 2010/536,
(2010), URL:http://eprint.iacr.org/2010/536.pdf

[16] The SHA-3 Zoo Hardware Implementations, URL: http://ehash.iaik.tugraz.at/wiki/SHA-
3_Hardware_Implementations

[17] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. Neill and W. P. Marnane,
FPGA Implementations of the Round Two SHA-3 Candidates, 2nd SHA-3 Candidate
Conference, (2010), 1-18.

[18] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, K. Ota,
How Can We Conduct Fair and Consistent Hardware Evaluation for SHA-3 Candidate?
2nd SHA-3 Candidate Conference, (2010), 1-15.

[19] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, M. U. Sharif, Comprehensive
evaluation of High Speed and medium speed implementations of five SHA-3 finalist
using Xilinx and Altera FPGAs, 3rd SHA-3 Candidate Conference, (2012).

[20] R. Shahid, M. U. Sharif, M. Rogawski, K. Gaj, Use of embedded FPGA resources in
implementations of 14 round 2 SHA-3 candidates, IEEE International Conference on
Field-Programmable Technology, (2011), 1-9.

http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://eprint.iacr.org/2009/510.pdf
http://eprint.iacr.org/2010/536.pdf
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations

CUJSE 13, No. 1 (2016) 57

[21] E. Homsirikamol, M. Rogawski, K. Gaj, Throughput vs. Area Trade-offs in High-Speed
Architectures of Five Round 3 SHA-3 Candidates Implemented Using Xilinx and Altera
FPGAs, Cryptographic Hardware and Embedded Systems, LNCS, Springer Berlin
Heidelberg, 6917, (2011), 491-506.

[22] E. Homsirikamol, M. Rogawski, K. Gaj, Comparing Hardware Performance of Round 3
SHA-3 Candidates using Multiple Hardware Architectures in Xilinx and Altera FPGAs,
ECRYPT II Hash Workshop 2011, (2011), 1-15.

[23] J. Strömbergson, Implementation of the Keccak Hash Function in FPGA Devices, (2008),
1-4, URL: http://www.strombergson.com/files/Keccak_in_FPGAs.pdf

[24] A. Akin, A. Aysu, O. C. Ulusel, E. Savas, Efficient Hardware Implementations of High
Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for Single- and
Multi-Message Hashing, 2nd SHA-3 Candidate Conference, (2011).

[25] M. Long, Implementing Skein Hash function on Xilinx Virtex-5 FPGA platform, (2009),
URL: http://www.skein-hash.info/sites/default/files/skein_fpga.pdf

[26] S. Tillich, Hardware implementation of the SHA-3 candidate Skein, Cryptology ePrint
Archive, Report 2009/159, (2009), URL: http://www.eprint.iacr.org/2009/159.pdf

[27] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, The Keccak SHA-3 Submission
version 3, (2011), 1-14, URL: http://keccak.noekeon.org/Keccak-submission-3.pdf

[28] K. Latif, A. Aziz, A. Mahboob, Optimal Utilization of Available Reconfigurable
Hardware Resources, Elsevier Computer and Electrical Engineering, 37(6), (2011),
1043-1057.

[29] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, J.
Walker, The Skein Hash Function Family Version 1.3, (2010), 1-100, URL:
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

[30] H. Wu., The Hash Function JH, (2011), 1-54, URL:
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

http://www.strombergson.com/files/Keccak_in_FPGAs.pdf
http://www.skein-hash.info/sites/default/files/skein_fpga.pdf
http://www.eprint.iacr.org/2009/159.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

