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 The proposed study aims to improve speech quality despite background noise, which often 

disrupts clear communication. We focus on developing efficient and effective models that 

work well on devices with limited resources. We draw inspiration from computational 

auditory scene analysis techniques to train proposed models to differentiate speech from 

background noise while keeping computational demands low. We introduce two models: 

CRN-WRC (Convolutional Recurrent Network without Residual Connections) and CRN-

RCAG (Convolutional Recurrent Network with Residual Connections and Attention Gates). 

Our thorough testing shows that proposed models significantly enhance speech quality and 

understanding, even in noisy environments with varying background noise levels. Notably, 

the CRN-RCAG model consistently outperforms the CRN-WRC, particularly in handling 

untrained noise types. We achieve impressive results by integrating residual connections and 

attention gates into proposed models while maintaining computational efficiency.  
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I. INTRODUCTION 

We are constantly surrounded by sound, whether indoors or outside. We are constantly surrounded by many sorts of 

noise like traffic noise, and street noise however, this noise can occasionally interfere with effective communication. 

Even automated speech recognition (ASR) [1] technologies face difficulties in understanding us. To fix this, speech 

enhancement becomes critical. It seeks to improve speech quality by converting noisy input into clearer output. 

However, typical voice-augmentation algorithms can be computationally intensive, particularly for devices with 

limited resources. The proposed research focuses on developing lightweight and efficient models designed primarily 

for low-power devices with limited memory and processing capability. We aim to remove background noise from 

your voice without draining your device’s resources. To achieve this, we use supervised learning techniques inspired 

by computational auditory scene analysis (CASA) [2], Supervised methods [3] involve creating separate models for 

speech and noise signals, with the parameters of these models learned using training examples that include both types 

of signals. We use masking and mapping [4] targets in the T-F domain to guide proposed models toward achieving 

optimal results without overwhelming them with complexity. The CRNN identifies critical speech components [5], 

[6], which analyses the time-frequency bands. As this is going on, the AG serves to let important information through 

while blocking out unwanted noise. The result: significantly enhanced speech quality, even in challenging acoustic 

environments. This research has significant implications for various applications. Improved speech quality and 

intelligibility directly benefit ASR systems, voice communication, and assistive hearing devices. By leveraging the 

magic of deep learning [7], we are paving the way for a future where clear communication is no longer hindered by 

noise. This paper contributes to this domain by offering a lightweight yet effective approach to single-channel speech 

enhancement, promising better speech quality and intelligibility. The proposed work bridges the gap between speech 

enhancement and resource constraints. By incorporating skip connections and attention gates within the CRNN 

architecture, we achieve remarkable results while ensuring computational efficiency. 

II. PROPOSED METHOD 

In proposed research, we employ two distinct models to tackle the task at hand. The first model, referred to as a 

conventional convolutional recurrent network without residual connections (CRN-WRC), integrates a recurrent block 

network for speech enhancement (SE). Meanwhile, the second model incorporates residual connections with (1×1) 

kernel size and attention gates (CRN-RCAG) within the CRNN architecture to enhance its performance.  

 

 
Fig. 1.  Supervised Approach to Noise Reduction: Speech and Noise Model Interaction 

 

A. Conventual CRN-WRC Model 

The architecture of proposed Convolutional Recurrent Network is depicted in Fig.2. shows the network architecture, 

which consists of five layers for the causal encoder and decoder, respectively, that are convolutional (Conv2D) and 

deconvolutional (Deconv2D) [8], [9]. Exponential linear units are used in all layers but the output layer, which uses 

soft-plus activation [10]. A Gated Recurrent Unit (GRU) layer models the latent feature sequences after inputs are 
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first encoded into a high-dimensional latent space [11]. Then the GRU layer’s output sequences are converted back 

into their original shape by the decoder. This method combines two powerful topologies convolutional neural 

networks (CNNs) [12] for feature extraction and recurrent neural networks (RNNs) [13] for temporal modelling to 

produce better outcomes In proposed study, we leverage residual connections to enhance information flow and 

address redundancy in speech enhancement. Specifically, we connect the encoder outputs to the decoder inputs using 

these residual connections as depicted in Fig.3. Additionally, we incorporate attention gates (AGs) [14] within these 

connections to effectively reduce redundant regions while emphasizing important spectral features. Given the large 

number of frequency components in the spectra, we recognize that formant frequencies dominate low-frequency 

areas, while high-frequency regions exhibit a sparse distribution. In speech, certain frequencies are more important 

than others. For example, low-frequency areas usually have more dominant sounds, while high-frequency areas have 

fewer sounds. So, it’s crucial to give more attention to the important parts of the speech signal. Therefore, it is crucial 

to differentiate distinct spectral locations with varying weights.  

 
Fig. 3.  CRN Architecture for Speech Enhancement with Residual Connections and Attention Gates 

 

B. Extending the Proposed Model 

The encoder’s job is to take the input features and find the important parts while making the information easier to 

work with. It does this by passing the input features through five layers that squeeze them down and make them more 

manageable. Then, special layers called GRU layers help the model understand the order of the information over 

time, and another layer helps adjust the features even more. AGs help the model focus on the most important parts 

of the input, ignoring the rest. These AGs work by comparing the features from different parts of the model and 

deciding what’s important. The decoder’s job is to take the simplified features and turn them back into the original 

input size. This completes the cycle, making the whole process like a mirror image. By adding Attention Gates, the 

decoder becomes even better at generating accurate results. Additionally, residual connections (1 x 1) kernel size 

helps the flow of information by linking the output of one part of the model to the input of another. This ensures that 

important information isn’t lost as it moves through the network. 

Figure. 2.  The architecture of Convolutional Recurrent Network without residual connections 



 

JSTER - VOL. 5 NO.1 (2024) 

 

 

81 

 

 

 
Fig. 4.  CRN Architecture for Speech Enhancement with Residual Connections and Attention Gates

C. Parallel GRUs For Temporal Modelling 

 In proposed experiments, we use Gated Recurrent Unit (GRU) models to help us predict what a future speech frame 

might look like based on past frames. We used a window of 11 frames, including 10 past frames and 1 present frame, 

to make this prediction. We fed a long vector of these 11 frames into the network at each step. GRU is a newer type 

of recurrent neural network known for its memory cells, which are good at understanding patterns over time. To 

capture the timing of speech signals, we added a GRU layer between the encoder and decoder parts of proposed 

model. The equations describe how GRU works, including terms like z, r, and h, and illustrate the update gate and 

reset gate, which helps the model learn from the data. 

 
𝑧𝑙 = 𝜎(𝑊𝑧[𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑧)                               (1) 

𝑟𝑡 = 𝜎(𝑊𝑟[𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑟)                                (2) 

ℎ‾ 𝑙 = tanh(𝑊ℎ[𝑟𝑙 ⊙ ℎ𝑙−1, 𝑥𝑙] + 𝑏ℎ)                 (3) 

ℎ𝑙 = (𝐼 − 𝑧𝑙) ⊙ ℎ𝑙−1 + (𝑧𝑙) ⊙ ℎ‾𝑡                     (4) 

To handle the input shapes required by GRUs, we used a technique from a previous study to group the large network 

into smaller, parallel networks. This helps the model process information more efficiently. 

III. EVALUATION METRICS 

To evaluate the proposed networks, we used two primary performance metrics: Short-Time Objective Intelligibility 

(STOI) and Perceptual Evaluation of Speech Quality (PESQ). 

A. STOI (Short-Time Objective Intelligibility) 

STOI is a metric used to measure the intelligibility of speech, particularly in noisy conditions. It is designed to 

predict the intelligibility of processed speech signals by comparing temporal envelopes of the original and degraded 

signals in short-time windows. Higher STOI values indicate better speech intelligibility. We chose STOI because it 

is highly correlated with human speech intelligibility scores, making it a reliable measure for our speech enhancement 

task.  
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B. PESQ (Perceptual Evaluation of Speech Quality) 

PESQ is a widely used objective measure for assessing the quality of speech signals. It compares an original clean 

signal with a processed or degraded version, providing a score that reflects perceived speech quality. PESQ takes 

into account various perceptual aspects of speech quality, making it a comprehensive metric for our evaluation. 

Higher PESQ scores indicate better speech quality. PESQ was chosen due to its robustness and its high correlation 

with subjective listening tests, which is crucial for evaluating enhancements in real-world noisy environments. 

C. Speech Dataset and Experimental Setup 

In proposed research study, we tested speech enhancement networks using a large dataset called LibriSpeech [15], 

which includes recordings of people reading audiobooks that contain 0.22 million spoken sentences from 2,000 

speakers. We focused on a subset of this dataset called LibriClean, which contains clean recordings, consisting of 

104,015 high-quality utterances from 92 speakers. To evaluate proposed networks, we randomly selected 5000 

speech samples from 40 speakers. Out of these speakers, we used 2 males and 2 females for testing whom the network 

hadn’t heard before, and the rest were used for training. We also used various types of noise during training to make 

sure the networks could handle different environments. For testing, we used challenging noise types like multi-talker 

babble, street noise, and cafeteria noise. We tested proposed models with both trained and untrained speakers to see 

how well they could handle different voices. The proposed networks were trained using a method called Adam 

optimizer and optimized to reduce prediction errors. 

IV. FINDINGS AND DISCUSSION 

Table 1 compares the performance of two speech enhancement models: CRN-WRC (Convolutional Recurrent 

Network without Residual Connections) and CRN-RCAG (Convolutional Recurrent Network with Residual 

Connections and Attention Gates). For each model, the results are presented for different noise conditions: babble 

noise, street noise, and cafeteria noise, across various signal-to-noise ratio (SNR) levels ranging from -6 dB to 6 dB.  

Under each noise condition and SNR level, two sets of results are provided: 1. noisy: Represents the speech signal 

before enhancement. 2. enh: Represents the speech signal after enhancement using the respective model. Comparing 

the results between CRN-WRC and CRN-RCAG models, it is observed that the CRN-RCAG model consistently 

outperforms the CRN-WRC model across all noise conditions and SNR levels, as indicated by higher STOI and 

PESQ scores. This suggests that CRN-RCAG with residual connections and attention gates provides superior speech 

enhancement compared to CRNWRC without residual connections. Both models effectively enhance speech quality, 

but CRN-RCAG stands out as the stronger performer across different noise conditions and SNR levels as illustrated 

in Fig. 5. 

A. Speech Enhancement Performance in Familiar Noisy Environments 

The table 1 compares the performance of two different speech enhancement models, denoted as CRN-WRC and 

CRN-RCAG. For each model, two metrics are evaluated: PESQ and STOI. PESQ measures the perceived speech 

quality, while STOI evaluates the speech intelligibility. Tables 2 and 3 display the results for various signal-to-noise 

ratios (SNR), ranging from -6 dB to 6 dB.  

Under each SNR condition, two scenarios are considered: “noisy,” representing the original speech signal before 

enhancement, and “enh,” representing the speech signal after enhancement using the respective model. Looking at 

the results, we observe that both CRN-WRC and CRN-RCAG models significantly improve speech quality and 

intelligibility compared to the original noisy speech across all SNR levels. For the CRN-WRC model, the PESQ 

scores range from 1.39 to 2.18 for noisy speech signals, and the STOI percentages range from 53.7% to 78.3%. After 

enhancement using CRN-WRC, there is a significant improvement in both PESQ scores (ranging from 2.26 to 3.01) 

and STOI percentages (ranging from 72.6% to 88.9%). Similarly, for the CRN-RCAG model, the PESQ scores range 

from 2.57 to 3.40 for enhanced speech signals, and the STOI percentages range from 83.7% to 95.3%. The 

enhancement provided by CRN-RCAG demonstrates superior performance compared to CRN-WRC, particularly 

evident in higher PESQ and STOI scores across different noise levels. 
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B. Speech Enhancement Performance in Unfamiliar Noisy Environments  

In Table 3, The models were tested on two different types of untrained noise environments, airport noise, and 

factory noise. We compared the performance of proposed models in noisy conditions with no training on those 

specific noises. We found that proposed models improved speech quality and intelligibility compared to the original 

noisy speech, especially in untrained noisy environments like factory noise and cafeteria noise. For noisy signal the 

PESQ scores range from 1.12 to 1.39, and the STOI scores range from 52.4% to 64.2% in the airport noise 

environment. In the factory noise environment, the PESQ scores range from 1.34 to 1.83, and the STOI scores range 

from 56.7% to 73.9%. After enhancement using CRN-WRC, the PESQ scores improve significantly to a range of 

1.83 to 2.26 in the airport noise environment and 2.13 to 2.26 in the factory noise environment. Similarly, the STOI 

scores increase to a range of 67.8% to 73.9% in the airport noise environment and 67.5% to 73.9% in the factory 

noise environment. When using CRN-RCAG, the PESQ scores further improve to a range of 2.19 to 2.48 in the 

airport noise environment and 2.31 to 2.48 in the factory noise environment. Correspondingly, the STOI scores 

increase to a range of 72.6% to 78.3% in the airport noise environment and 77.1% to 79.3% in the factory noise 

environment. However, CRN-RCAG demonstrates better performance, achieving higher PESQ scores and STOI 

percentages in both noise environments, indicating its effectiveness in enhancing speech signals corrupted by 

untrained noises. Table 4, illustrates how incorporating residual connections in the CRN-RCAG architecture affects 

performance. Adding residual connections is better than not adding them at all. While adding these connections 

improves the PESQ and STOI test scores, the best performance is achieved by including Conv (1 × 1) add-residual 

and Attention Gate Residual connections. 
 

 

TABLE I: Performance Evaluation of CRN Speech Enhancement Models: A Comparative Analysis with STOI and PESQ 

Metrics. 

Metric Model 
Noise Babble Noise Street Noise Cafeteria Noise 

SNR -6 -3 0 3 6 -6 -3 0 3 6 -6 -3 0 3 6 

STOI 
CRN-WRC 

noisy 54 60 68 73 80 58 66 72 73 83 56 62 67 71 77 

enh 72 81 84 86 88 74 80 85 87 91 75 82 85 87 89 

CRN-RCAG enh 84 87 90 92 94 85 87 91 94 97 80 85 88 93 94 

PESQ 
CRN-WRC 

noisy 1.4 1.4 1.8 1.9 2.1 1.6 1.6 1.7 1.9 2.0 1.5 1.6 1.7 1.9 2.3 

enh 2.2 2.6 2.7 2.8 2.9 2.3 2.6 2.7 2.9 3.0 2.4 2.5 2.7 3.0 3.0 

CRN-RCAG enh 2.4 2.7 2.9 3.2 3.3 2.6 3.0 3.1 3.3 3.4 2.6 3.0 3.1 3.3 3.4 

 
(a) STOI                        (b) PESQ 

Fig. 5.  PESQ and STOI Performance of CRN-WRC and CRN-RCAG Models Across Various Noise Conditions 
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TABLE II: Performance of Trained Noise Speech Enhancement under Various Noise Conditions. 

Model 
Metric PESQ STOI (in%) 

SNR -6 -3 0 3 6 -6 -3 0 3 6 

CRN-WRC 
noisy 1.39 1.48 1.63 1.86 2.18 53.7 61.7 66.3 72.1 78.3 

enh 2.26 2.48 2.62 2.88 3.01 72.6 79.3 82.7 87.1 88.9 

CRN-RCAG enh 2.57 2.91 3.17 3.38 3.40 83.7 89.5 92.1 94.6 95.3 

 
TABLE III: Performance of Untrained Noise Speech Enhancement under Various Noise Conditions. 

Model 

Noise Restaurant Street 

Metric PESQ STOI PESQ STOI 

SNR -6 -3 -6 -3 -6 -3 -6 -3 

CRN-WRC 
noisy 1.12 1.32 52.4 59.7 1.34 1.39 56.7 64.2 

enh 1.83 2.16 67.8 72.1 2.13 2.26 67.5 73.9 

CRN-RCAG enh 2.19 2.47 72.6 78.3 2.31 2.48 77.1 79.3 

 

 

TABLE IV: Analysing the Impact of Residual Connections on Model Performance 

Residual Types STOI PESQ 

No Residual 78 2.34 

Add Residual 83 2.49 

Conv Residual 87 2.73 

Residual-Attn  89 3.01 

V. CONCLUSION  

In this paper, we present a novel approach to speech enhancement tailored for resource-constrained devices operating 

in noisy environments. By leveraging supervised learning techniques and innovative model architectures, we have 

successfully developed lightweight yet efficient models capable of significantly improving speech quality and 

intelligibility. Our experiments demonstrate the superiority of the CRN-RCAG model over the CRN-WRC model, 

emphasizing the importance of incorporating residual connections and attention gates for optimal performance. The 

results highlight the effectiveness of the proposed models in enhancing speech signals across various noise conditions 

and signal-to-noise ratio levels. Furthermore, the proposed models exhibit promising performance even when tested 

with untrained noise types, showcasing their robustness in real-world scenarios. Overall, this research bridges the 

gap between speech enhancement and resource constraints, offering a practical solution for clear communication in 

noisy environments. 

Future work will focus on further optimizing and extending the proposed model architecture to enhance its 

applicability across a wider range of scenarios and devices. This includes: Exploring advanced techniques for model 

compression and acceleration to ensure even greater efficiency on resource-limited devices.Expanding the dataset to 

include a broader range of noise types and languages to enhance the model's generalizability and effectiveness in 
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different linguistic contexts. Collaborating with industry partners to implement and test the proposed models in 

practical applications, such as mobile communication systems and hearing aids, to facilitate seamless adoption and 

impact.By pursuing these future directions, we aim to further advance the state of speech enhancement technology, 

making high-quality, intelligible speech accessible in various challenging environments and on a wide array of 

devices. 
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