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Abstract: The vibration of two curved nanobeams with coupling radial springs is considered. A nonlocal 

Euler-Bernoulli curved nanobeam model has been assumed in order to investigate the radial vibration of 

the double-curved-nanobeam-system (DCNBS) embedded in an elastic medium. Natural frequencies for 

the DCNBS are obtained by using the Navier Method. Moreover, the effect of the angle of curvature on the 

natural frequencies is discussed. Comparison studies are also performed to verify the present formulation 

and solutions. It is shown that the results are in excellent agreement with the previous studies. Furthermore, 

it is shown that considering the effects of the curvature decreases the natural frequency of the DCNBS and 

that the natural frequency decreases by increasing the small scale coefficient. In addition, the variation of 

the frequency has been investigated based on the stiffness of the springs in a radial direction. 

Keywords: Radial vibration; Double curved nanobeam; Coupling radial springs. 
 

 
 
 
 
 

1. Introduction 

Nano materials have been highly attractive for many researchers in recent years due to the 

improvement of their quality and properties. Both experimental and atomistic modelling 

studies show that when the dimensions of the structures become very small, the size effect 

gains importance. Therefore, the size effect plays an important role in the mechanical 

behaviour of micro- and nanostructures [1]. Among the various nanostructures, nanobeams 

have many potential important applications [2, 3]. Thai [4] proposed a theory of nonlocal 
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beam for the buckling, bending and vibration of nanobeams. The solutions of deflection, 

buckling load, and natural frequency were obtained for simply supported nanobeams. 

The influences of various thermal environments on buckling and vibration of nonlocal 

temperature-dependent functionally graded beams are analysed by Ebrahimi and Salari [5] 

using the Navier Analytical Solution. In another work, Ebrahimi and Salari [6] investigated 

thermo-mechanical vibration of FG nanobeams with arbitrary boundary conditions applying a 

differential transform method. Furthermore, Ebrahimi et al. [7] explored the effects of linear 

and non-linear temperature distributions on the vibration of FG nanobeams. Ebrahimi et al. [8] 

investigated the vibration behaviour of size-dependent nanoscale beams based on nonlocal 

Timoshenko Beam Theory. Therefore, the nonlocal elasticity theory has been used within the 

Euler-Bernoulli beam model with von Kármán type nonlinearity. Boundary characteristic 

orthogonal polynomials have been investigated by Chakraverty and Behera [9] by using the 

Rayleigh-Ritz Method to survey free vibration within the framework of non-uniform Euler-

Bernoulli nanobeams based on nonlocal elasticity theory. Hence, the non-uniform cross 

section of nanobeams are considered by taking linear, as well as quadratic, variations of 

Young’s modulus and density along the space coordinate. In recent years, the vibration of 

curved nanobeams and nanorings has been utilized in many empirical experiments and 

dynamic molecular simulations [10]. Thus, a number of researchers are interested in studying 

vibration curved nanobeams. 

Yan and Jiang [11] have investigated a curved piezoelectric nanobeam’s electro mechanical 

response. In their paper, an Euler-Bernoulli curved beam theory was used to obtain the clearly 

explained solutions for the electroelastic fields of a curved simply-clamped beam when 

subjected to mechanical and electrical loads. However, a new numerical technique, namely 

the differential quadrature method, was developed for the dynamic analysis of the nanobeams 

in the polar coordinate system by Kananipour et al [12]. Additionally, Khater et al [13] have 

investigated the effect of surface energy and thermal loading on the static stability of 

nanowires. In this research, nanowires have been considered as curved fixed-fixed Euler-

Bernoulli beams. The Gurtin-Murdoch theory was used to represent the surface effects. The 

model takes into account both the von Kármán strain and the axial strain. Furthermore, Wang 

and Duan [10] have surveyed the free vibration problem of nanorings/arches. In their research, 

the problem was formulated on the framework of Eringen’s nonlocal theory of elasticity 

according to allowing for the small length scale effect. In this article, defects and elastic 

boundary conditions were investigated. The small length scale effect lowered the vibration 

frequencies. In addition, an explicit solution has been shown by Assadi and Farshi [14] for 
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size and geometry dependent free vibration of curved nanobeams with consideration of 

surface effects. In this paper, surface elasticity, surface residual stress and surface mass 

density were included in the study to popularize the existing classical theories. The deviations 

of actual dynamic characteristics from the classical theories for various geometries were found 

as new results in their research. 

Double-nanobeam systems are extremely important in nano-optomechanical systems and 

sensor applications. 

Vu et al [15] have investigated the vibration of a double-beam-system. The free transverse 

vibration of double beam systems has been presented by Oniszczuk [16]. In this research, 

simple support has been assumed to investigation of double beam system. The effects of 

compressive axial load on forced transverse vibrations of a double-beam system have been 

surveyed by Zhang et al [17]. Li et al [18] have presented an exact dynamic stiffness matrix 

for axially loaded double-beam systems. The nonlocal effects in the forced vibration of an 

elastically connected double-carbon nanotube system under a moving nanoparticle have been 

investigated by Şimşek [19]. Stojanovic and Kozic [20] have presented the forced transverse 

vibration of the Rayleigh and Timoshenko double-beam system with the effect of compressive 

axial load. The nonlocal vibration of a double-nanoplate system has been considered by 

Murmu and Adhikari [21]. The couple nanoplates are considered to be joined by an enclosing 

elastic medium. In the research, the expressions for free-bending vibration of double-

nanoplate systems have been investigated employing Eringen’s theory. The natural 

frequencies have been derived by employing an analytical solution. In addition, they 

considered the axial instability of Double-nanobeam systems. In this investigation, the 

nonlocal elasticity theory has been used for modelling double-nanobeam systems. The 

nonlocal model accounts for the small-scale effects due to the nanoscale [22]. However, a 

vibration analysis of a double nanobeam under primary compressive stresses has been 

investigated by Murmu and Adhikari [23]. In this paper, a scrutinizing method has been 

employed to determine the frequencies of the double nanobeam. However, the surface effects 

on the transverse vibration and axial buckling of a double-nanobeam have been surveyed 

within the framework of the Euler-Bernoulli Beam Theory by Hui Wang and Feng Wang [24]. 

For three typical deformation modes of the double-nanobeam system, they derived the natural 

frequency and critical axial load accounting for both surface elasticity and residual surface 

tension respectively. Moreover, Ciekot and Kukla [25] have investigated and considered a 

problem of transverse free vibration of a double nanobeam system. The nanobeams of the 

system are coupled by an arbitrary number of translational springs. Therefore, the solution to 
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the problem by using Green’s function properties was obtained. Incidentally, Ghorbanpour et 

al [26] was concerned with the size-dependent wave propagation of double-piezoelectric 

nanobeam-systems based on the Euler-Bernoulli Beam Theory. Two piezoelectric nanobeams 

were coupled by an enclosing elastic medium which has been simulated by the Pasternak 

Foundation. In this research, nonlocal elasticity theory has been used to derive the general 

differential equation based on Hamilton’s principal to include those scale effects. In addition, 

a theoretical study of the free longitudinal vibration of a nonlocal viscoelastic double nanorod 

system has been presented by Karličić et al [27]. It is assumed that a light viscoelastic layer 

continuously couples two parallel nonlocal viscoelastic nanorods. Moreover, Murmu and 

Adhikari [28] have investigated the transverse vibration of two nanobeams with coupling 

springs. The expression for free bending vibration of a double nanobeam has been established 

using the nonlocal elasticity model. In this research, an analytical method has been developed 

to obtain the frequencies. The two nanobeams are presumably joined by vertical springs. The 

mentioned springs can be representatives of the van der Waals forces due to optomechanical 

coupling between the two nanobeams, or an enclosed elastic medium’s stiffness. It is assumed 

that the coupled nanobeams in the double nanobeam were identical and the four boundary 

conditions on the four ends were simple. The effects of nonlocal parameter stiffness of the 

coupling springs and the higher modes of vibration on the resonance natural frequency of the 

nonlocal-double-nanobeam system are also investigated. 

To the best of the author’s knowledge, there has been no record regarding double curved 

nanobeams. Therefore, there is a strong scientific need to understand the vibration behaviour 

of double nanobeams when considering the effect of curvature. Hence in this paper, free 

vibration of DCNBS is investigated within the context of nonlocal elasticity theory. The 

natural frequencies of the DCNBS are obtained by using the Navier Solution. The prominent 

point of this study is the investigation of the curvature angles affects the radial vibration of 

DCNBSs. Comparison studies are also performed to verify present formulation and solutions. 

It has been shown that the results are in excellent agreement with previous studies and that 

considering the curvature effects decreases the natural frequency of the DCNBS. 
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2. Formulation 
2.1. Governing Equation 

First, we consider a curved beam with radius R, density ρ and cross-sectional area A, as 
depicted in Figure 1. 

 

FIGURE 1. Element of a curved beam 

Based on the Euler-Bernoulli beam theory, the equation of motion of the curved beam in the 

radial and tangential directions and the moment equation of motion in the middle plane of the 

ring can be expressed as 

2

2

F wP fR AR
t

ρ
θ
∂ ∂

+ + =
∂ ∂  

 (1) 
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P uF pR AR
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∂
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where F(θ,t) is the shearing force, P(θ,t) is the tensile force, f(θ,t) is the external distributed 

radial force, p(θ,t) is the distributed tangential force, ρ is the density, A is the cross-sectional 

area and R is the radius of the centre line of the ring [29]. Eliminating the normal stress 

resultant P from Eq. (1) and p=0 yields the single relation Eq. (4). 
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∂ ∂ ∂ ∂ ∂ ∂  
 (4) 

By ignoring the products of small quantities 
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u w
θ
∂

=
∂  

 (5) 

Substituting Eq. (5) into Eq. (4), and then simplifying the relation, obtains the equation of 

motion for an Euler-Bernoulli curved beam: 

4 4 2 2 2

2 2 4 2 2 2

1 1w M f M wAR R AR
t R R t

ρ ρ
θ θ θ θ

∂ ∂ ∂ ∂ ∂
+ − + =

∂ ∂ ∂ ∂ ∂ ∂  
                                                      (6) 

By using the nonlocal theory, the equation of motion for a nonlocal Euler-Bernoulli curved 

beam is 

2 2 2
(6) (4) (2) (2) (4) (4) (2)0 0 0

3 3 (3)

( ) ( ) ( )2 ( ) 0e a A e a e aEI EI EIw w w Rf f w A R w ARw
R R R R R R

ρ
ρ ρ+ + − + − + + − =              (7) 

2.2. Out-of-Phase Vibration of DCNBS; ( )1 2 0w w− ≠  

We consider a DCNBS which connects two curved nanobeams with radial distributed springs, 

as shown in Figure 2. The material properties are considered to be that of single-walled carbon 

nanotube (SWCNT). The elastic modulus, E, is taken as 0.971 TPa and the mass density, ρ, is 

taken as 2300 kg/m3. Employing Eq. (7), the governing nonlocal equations for the DCNBS, as 

shown in Figure 2, can be written as: 

Curved nanobeam-1: 

2
(6) (4) (2) (2) (2) (4) (4)01 1 1 1 1 1

1 1 1 1 1 2 1 23 3 3
1 1 1 1

2 2
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1 1

( )2 [ ] [ ]

( ) ( )( ) 0

e aE I E I E Iw w w R k w w k w w
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A e a e aw A R w A R w
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ρ ρ ρ

+ + + − − −

− + + − =  

  (8) 
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FIGURE 2. The configuration of a simply-supported DCNBS 

Curved nanobeam-2: 

2
(6) (4) (2) (2) (2) (4) (4)02 2 2 2 2 2

2 2 2 2 2 1 2 13 3 3
2 2 2 2

2 2
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We assume that 

1 1 2 2E I E I EI C= = =   (10) 

1 1 2 2A A A Cρ ρ ρ= = =   (11) 

1 2R R R C= = =   (12) 

Considering Eqns. (8) and (9) and using the assumptions from Eqns. (10), (11) and (12), we 

get 
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Curved nanobeam-2: 

2
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 (14) 

 

In the case of the DCNBS, a change in variables is used by considering w(θ,t) as the relative 

motion of curved nanobeam-1 due to curved nanobeam-2: 

1 2( , ) ( , ) ( , )w t w t w tθ θ θ= −   (15) 

Subtracting Eq. (14) from Eq. (13) gives 
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By employing Eq. (15) and using Eq. (16), we get 
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 (17) 

It is essential to note that if the small scale coefficient is eliminated and a single curved beam 

is assumed, Eq. (17) turns into the equation of a classical curved beam. 
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3. Solution Method 
3.1. Vibration of DCNBS 
By considering that the relative motion w(θ,t) is a natural mode of vibration, the Navier 

solution for Eq. (17) can be expressed as 

 

sin i tnw e wπ θ
α

 =  
   

 (18) 

where ω is the frequency, sin(nπθ/α) is the corresponding deformation shape of the DCNBS, 

and i is the conventional imaginary number 1− . Substituting Eq. (18) into Eq. (17) yields 
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 (19) 

Here, we define the dimensionless natural frequency, stiffness and nonlocal parameter as: 

 

( )42 2
n n

A R
EI
ρw αΩ =   (20.a) 

( )4k R
EI
α
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0e a
R

µ
α

=   (20.c) 

By employing Eqns. (19) and (20), the dimensionless natural frequency of the DCNBS is as 

follows: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

6 2 42
4 22

2 2 2

4 22
22

2 2

2 2
2

1
n

n n n
n n

n n
n

π π µ π
π α π k k

α α α
µ π π

µ π
α α

− + + +
Ω =

+ + +
 

 (21) 

 



 
 
CUJSE 13, No. 1 (2016) 67 

3.2. Both Curved Nanobeams of DCNBS are Vibrating in Phase; (w1 – w2 = 0) 
In this section, the in-phase vibration of the DCNBS will be surveyed. For the current 

DCNBS, the relative motion of the two curved nanobeams vanishes (w1 – w2 = 0). The 

dimensionless natural frequencies for this case can be expressed as 

 

( ) ( ) ( )

( ) ( ) ( )

6
4 22

2

4 22
22

2 2

2

1
n

n
n n

n n
n

π
π α π

α
µ π π

µ π
α α

− +
Ω =

+ + +
 

(22) 

The vibration of the DCNBS is not dependent of the stiffness of the radial spring for the in-

phase sequence. Hence, the DCNBS vibrates as one single curved nanobeam. 

 

3.3. One Curved Nanobeam of DCNBS is Stationary; (w2 = 0) 

Assume that the DCNBS that one of the two nanobeams is stationary (w2 = 0). By employing 

the equations from Eringen’s theory, the governing equation for the DCNBS [Eq. (17)] can be 

rewritten as 

 
2 2
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2
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ρ ρ

+ + + − −
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 (23) 

In this section, the DCNBS behaves as if the nanobeam is in a Winkler elastic foundation [30], 

and k can be defined as the stiffness of the Winkler elastic foundation. By employing the 

Navier solution, such as in the previous section, the natural frequency of DCNBS can be 

rewritten as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

6 2 42
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2 2 2

4 22
22

2 2

2

1
r

r r r
r r

r r
r

π π µ π
π α π k k

α α α
µ π π

µ π
α α

− + + +
Ω =

+ + +
 

 (24) 

where κ is the stiffness of the radial springs and μ is the nonlocal parameter as expressed in 

Eq. (20). In fact, the DCNBS behaves as a nanobeam on an elastic foundation when one of the 

nanobeams in the DCNBS is stationary (w2 = 0). 
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4. Numerical Results and Discussion 
In this section, the dimensionless natural frequency of DCNBS (Ω) is compared with the 

dimensionless natural frequency of a straight double nanobeam subjected to a differently sized 

scale coefficient (μ), as in Figure 3. In our survey we made an extreme decrease in the 

curvature angle to simulate the straight double nanobeam, such as reference [28]. We 

achieved reasonable results in this survey such that they can represent the validity of our 

research, as shown in Figure 3. 

 

 

FIGURE 3. Comparison of present cases results and reference cases results [28] 

 

 

4.1. Effect of Curvature Angle on Natural Frequency of DCNBS 

As a first example, the first three dimensionless natural frequencies against the various angles 

of curvature for different cases of DCNBS are presented in Table 1. Case 1, Case 2 and Case 3 

present the following conditions: (1) in-phase vibration of DCNBS ( )1 2 0w w− = , (2) when 
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one of the curved nanotubes in DCNBS is not moving or not intended to be moved ( )2 0w = , 

and (3) out-of-phase vibration of ( )1 2 0w w− ≠ , respectively. 

TABLE 1. The first three dimensionless natural frequencies against three angles of curvature 

for the three cases. 

Case α 
1Ω  2Ω  3Ω  

Case 1 0 5.3002 11.9743 18.4389 

 
4
π

 

4.8206 11.6962 18.2476 

 
2
π

 

3.5555 10.8908 17.6828 

 π  0 8.0326 15.5491 

Case 2 0 6.1719 12.3849 18.7081 

 
4
π

 

6.4855 12.5098 18.7840 

 
2
π

 

5.3518 11.7232 18.2248 

 π  3.1623 8.9735 16.1175 

Case 3 0 6.9349 12.7822 18.9735 

 
4
π

 

7.8029 13.2735 19.3055 

 
2
π

 

6.6814 12.5003 18.7511 

 π  4.4721 9.8246 16.6666 

The results are in the dimensionless form of the natural frequency. The dimensionless stiffness 

of the springs is assumed to be constant (κ = 10), and the nonlocal parameter (μ) is assumed to 

be 0.5. The SWCNTs here are referred to as nanobeams. By increasing the angles of curvature 

in the three cases, the dimensionless natural frequencies will decrease as presented in Table 1. 

The values of the dimensionless natural frequency for these cases are different. As can be 

seen, the values of the frequencies in Case 1 are less than those of Case 2, and the values of 
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Case 2 are less than those of Case 3. The reason for these changes in values originates from 

Eqns. (21), (22) and (24). From these equations, it can be seen that the effect of stiffness in 

Case 2 is less than that of Case 3; therefore, the values of the natural frequencies in Case 3 are 

greater than the values of the natural frequency in Case 3. Moreover, the values of the natural 

frequencies in Case 1 are independent of stiffness of the coupling springs. Hence, the values 

of the natural frequencies for Case 1 are less than the other values. It may be noticed that the 

frequency parameters (Ω) are decreasing with an increase in α, as shown in Figure 4. There is 

also a decrease in the value of the dimensionless natural frequency with regard to the 

assimilation of angle of curvature in the DCNBS. Hence, the angle of curvature in the 

nonlocal elastic model is reflected in the vibration of the DCNBS. A comparison of the three 

cases of DCNBS shows that the dimensionless natural frequency for Case 3 is greater than the 

dimensionless natural frequency for Case 1 and Case 2. The relative higher frequency in 

Case 3 [Eq. 19] originates from the coupling effect of the springs. 

 

 

FIGURE 4. Variation in the dimensionless natural frequency (Ω) against the angle of 
curvature (α) 

 

The presence of springs for Case 3 makes the DCNBS stiffer and increases the stiffness effect 

due to the system. For Case 2 the stiffness effect due to the auxiliary nanobeam (nanobeam 2) 

is absent. Hereupon there is effective lower stiffness parameter in Case 2. 
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4.2. Small-Scale Effect on Vibrating DCNBS 

The first two dimensionless natural frequencies against the various scale coefficients for 

different cases of DCNBS are shown in Figures 5, 6 and 7. The variations of the frequency 

parameter of DCNBS with respect to nonlocal parameters are depicted for α = π/2 in Figure 5. 

It is seen from the figure that the frequency parameter (Ω) decreases with the increase of the 

values of the dimensionless nonlocal parameter (μ). The decrease for the dimensionless 

natural frequency against the increasing nonlocal parameter occurs for all the three cases 

considered. The decrease is in the value of the dimensionless natural frequency with regard to 

the assimilation of small-scale effects in the DCNBS, hence the size effects in the nonlocal 

elastic model reflected in the vibration of the DCNBS. 

 

 

FIGURE 5. Variation in the dimensionless natural frequency (Ω) against the scale 

coefficient (μ) at (α = π/2) 
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FIGURE 6. Variation in the dimensionless natural frequency (Ω) against the scale 

coefficient (μ) at (α = π/2). 

To compare the three cases of DCNBS, the dimensionless natural frequency for Case 3 is 

greater than the dimensionless natural frequency for Case 1 and Case 2. The relative higher 

frequency in Case 3 [Eq. 19] originates from the coupling effect of the springs. The presence 

of springs for Case 3 makes the DCNBS stiffer and increases the stiffness effect due to the 

system. For Case 2, the stiffness effect due to the auxiliary nanobeam (nanobeam 2) is absent. 

Therefore, there is an effective lower stiffness parameter in Case 2. 

In addition to that, it is observed that the value of the dimensionless natural frequency for 

Case 2 is greater than the value of the dimensionless natural frequency for Case 1. In Case 1, 

the frequency is relatively less because the DCNBS becomes independent of the stiffness of 

the springs. The DCNBS vibrates in an in-phase sequence. For Case 1, the DCNBS becomes 

analogous to the frequency of the single nanobeam without the coupling effect of springs. In 

other words, the entire DCNBS can behave as a vibrating single nanobeam. The variation in 

the natural frequency with respect to scale coefficient of the curved nanobeam for three cases 

at the second mode of vibration is considered as Figure 6. Hence, the figure is expressed in 

higher modes and the natural frequencies of the three cases are in better agreement. 
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FIGURE 7. Variation in the dimensionless natural frequency (Ω) against the scale 

coefficient (μ) at α = π. 

 

Thus, the vibration behaviours of the DCNBS in higher modes become more similar to each 

other. 

The variation of the fundamental natural frequency with respect to the nonlocality parameter 

presented as it shown in figure 7. The figure reveals that the dimensionless natural frequency 

at curvature angle (α = π) is independent of the scale coefficient. 

 

4.3. Analysis of Higher Modes of DCNBS 

In this part, the higher natural frequencies of the DCNBS against the various angles of 

curvature for the different cases of DCNBS are tabulated in Table 2. In this case, the nonlocal 

parameter (μ) is assumed to be 0.5 and κ is considered to be 250. From Table 2, it can be seen 

that the dimensionless natural frequency increases with an increase in the number of modes 

(wave numbers). 
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TABLE 2. Variation in the dimensionless natural frequency (Ω) against the number of 
modes (n) for the three cases 

Case α  
1Ω  2Ω  3Ω  4Ω  5Ω  6Ω  

Case 1 0 5.3002 11.9744 18.4390 24.8203 31.1643 37.4887 

 
4
π

 
4.8206 11.6963 18.2477 24.6752 31.0476 37.3911 

 
2
π

 
3.5555 10.8908 17.6828 24.2439 30.6996 37.0997 

 π  0 8.0326 15.5491 22.5743 29.3367 35.9514 

Case 2 0 22.9803 25.3650 28.9827 33.4073 38.3564 43.6509 

 
4
π

 
22.2222 25.0821 28.8015 33.2704 38.2454 43.5572 

 
2
π

 
20.3136 24.2734 28.2696 32.8644 37.9145 43.2775 

 π  15.8114 21.5528 26.3016 31.3080 36.6253 42.1781 

Case 3 0 32.0639 33.8140 36.6059 40.2001 44.3984 49.0449 

 
4
π

 
31.0550 33.4876 36.4154 40.0622 44.2884 48.9527 

 
2
π

 
28.5069 32.5543 35.8560 39.6532 43.9609 48.6774 

 π  22.3607 29.4028 33.7901 38.0891 42.6871 47.5970 

 

The value of the higher natural frequency for Case 2 is greater than value of the higher natural 

frequency for Case 1. In Case 1, the higher frequency is relatively less because the DCNBS 

becomes independent of the stiffness of the springs. Similarly, this can be observed in Cases 2 

and 3. By comparison in Eqns. (21) and (24), it displays the effects of coupling springs in 

Case 2 being less than Case 3. 
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4.4. Effect of the Stiffness of the Coupling Springs on DCNBS 

In order to investigate the effect of higher and lower values of the stiffness of the coupling 

springs, diagrams have been drawn for the dimensionless natural frequency with respect to the 

dimensionless stiffness of the springs. The variation in values of the dimensionless natural 

frequency (Ω) with the dimensionless stiffness of the springs (κ) for the three angle of 

curvature of DCNBS (
4
πα = , 

2
π , π ) are depicted in Figure 8. The dimensionless stiffness 

of the springs is taken to be κ = 0 to 100. The dimensionless nonlocal parameter μ is assumed 

to be 0.5 in this section. It is seen from the figure that the dimensionless natural frequency 

increases with the increase in the dimensionless stiffness of the springs. In addition, the 

dimensionless natural frequencies decrease with an increase in the angle of curvature of the 

DCNBS. 

 

FIGURE 8. Variation in the dimensionless natural frequency (Ω) against the dimensionless 

stiffness of coupling springs (κ) for different angles of curvature at the 

fundamental mode of vibration 
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5. Conclusions 

In this study, the radial vibration of double curved nanobeams has been investigated. 

Theoretical nonlocal elasticity and equilibrium equations were developed to determine 

the governing equation of a double-curved-nanobeam-system (DCNBS). To the best 

of the authors’ knowledge, this is the first report regarding the vibration behaviour of 

double curved nanobeams. The numerical results have been determined by employing 

the Navier Method. The effect of various parameters, such as curvature angle, 

nonlocal parameters, stiffness of coupling springs and the mode number of natural 

frequencies of the DCNBS were investigated. This study has revealed that the 

curvature angle of the DCNBS plays an important role in their radial vibration 

wherein the natural frequencies decrease with increases in the curvature angle. In 

addition, nonlocal effects reduce the frequencies of the DCNBS. Moreover, in-phase 

and out-of-phase vibrations were surveyed with detail in this research. The 

frequencies of the in-phase vibration are independent of the stiffness of the springs, 

and the stiffness of the coupling springs are effective natural frequencies of the 

DCNBS. Hence, the natural frequencies of the DCNBS increase with an increase in 

the stiffness of the coupling springs. 
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