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1. Introduction and Preliminaries

The Golden Proportion, also called the Golden Ratio, DiRadio, Golden Section or Golden
Mean has been well known since the time of Euclid. There amyrohjects in the natural world
that possess pentagonal symmetry, such as the infloresoémsany flowers and phyllotactic
objects that have a numerical description given by the Fiboihnumbers, which are themselves
based on the Golden Proportion. The Golden Proportion saskaen found in the structure of
musical compositions, in the ratios of harmonious soundueacies and in dimensions of the

human body [8].

Let us recall that the Golden Proportion partitions a lingnsent into a major subsegment and a
minor subsegment in such a way that both the ratio of wholesegjand the major subsegment

1++/5

2
(the Phidias number), which is the real positive root of thaationx? —x— 1 = 0. This number

is often encountered when taking the ratios of distancegmiple geometric figures such as the
pentagram, decagon and dodecagon. In the last few year§dlden Proportion has played a
growing role in modern physics research [1, 2, 5]. The GolBewportion also has interesting
properties in Special Relativity [4]. Although the geneation of mathematics is important in its
own right, the generalization of Golden numbers, which bglto the Lie grou@® and which are

and the ratio of major subsegment and the minor subsegmesitagual the numbep =

essential in the symmetries and beauty of natural phenotoesther sciences, especially mathe-

matics, can produce other symmetric and beauties in themingtance, Golden numbers appear

in the representation of the finite dimensional Lie groupsctvinave a fully physical application
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[7]. This thought, together with examples which have beemtioped in the paper, can be an
essential motivation to find and study geometric Goldenaibjeln this paper, first, by using a
polynomial, an algebra is constructed and it is shown thatirkierted elements of this algebra
present a Lie group. Then, the generalized Golden polynexia- F.x— F,_1 are defined where
F, is the Fibonacci sequence. Next, using these polynomialkled algebras, Golden Lie groups,
Golden curve and Golden surface are introduced. Finalimesof their interesting properties are
proved.

2. Main results

Definition 1. Let R[x] be the algebra of all polynomials, af{x) be a polynomial of degree
n, in RX. We definess, called the induced algebra with respecti(x), to be the set of all
polynomials of degree less than n together with the addaiech scalar product induced IR]x].
And the multiplication ine is defined in such a way thatp is isomorphic to the quotient algebra
R[X]/ < P(x) >.

Let A be a finite dimensional associative algebra aRewith identity. Then, the group G of
invertible elements il is an open submanifold & and with induced structure, it is a Lie group
(See for instance [9]). Thus, the invertible elements#fform an Abelian Lie group which is
shown by¥% and it is called the induced Lie group with respect to polyramR.

For convenience, throughout the paper, we (&g...,a, 1), instead ofX = a, X1 4... +
axt + ag.

Theorem 1. The mapgy; : o — op with ¢z(X) = Z.X, is a linear transformation.

Proof. The proof is trivial. [

Definition 2. (See for instance [6]) LeG be a Lie group and/ be a vector space. A linear
transformation grougy : G xV — V or equivalently, a homomorphisigh : G — GL(V), is also
called a linear representation GfonV.

Remark 2.1. We consider the matrix representationgaffor all Z € .o in the standard basis of
R"in Theorem 1 and it is shown by (n,R). Indeed,«z(n,R) is the matrix representation for
Z € ap. Now, we consider/(n,R) = {7z (n,R)|Z € @5 }. For convenience, we usep(n,R)
instead ofap.

The set of corresponding matrices with respec#itas a subgroup o6GL(n,R).

Example 2.1. LetP(x) = x3 — 1. X = T2 yaX andY = T2 obiX € s_;. Then

dx (Y) = X.Y = aghg + a1h, + asby + (aghy + arby + axbz)x+ (aghz + aghy + ashg)*2.
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The matrix representation @ in the standard basis & is as follows:

a @ A
a d @
a a dp

Example 2.2. Let (a,b) € 2,4 p,- The matrix representation ¢4, b) in the standard basis of

A:(a bbo ) (1)
b a+bag

detA = a2 + abag — b%hy.

RZ s as follows:

In this case, we have

If x; andx, are the roots ok? — agx — by = 0, then

detA = (a+bxq)(a+bxo).

Remark 2.2. In Example 2.2, ifag = 0 andbg = —1, then
a -b
A= .

a —b
A corresponds to the complex numbzet a-+ib. In general, for ala, b € R, the matrix{ ( b ) ,
a

will always represent the complex numlzetib.

Definition 3. The polynomialP,(x) = X" — F,x— Fn—1 (Fy is the Fibonacci sequence) is called a
generalized Golden polynomial of degnee

Remark 2.3. The generalized Golden polynomi(x) = X" — F,x— F,_1 is decomposed as fol-
lows:

Po(X) = (0@ —x—1) (Zj RX12),

wherex? — x— 1 is the Golden polynomial.

Definition 4. Let R, be a generalized Golden polynomial of degne@he algebra«, is called a
Golden algebra. And alsép, is called a Golden Lie group with respectRe

Example 2.3. Let X2 —x— 1 be the Golden polynomial. By (1) the matrix representatin
(a,b) € ., 4 in the standard basis & is as follows:

A a b @
“\b atb /)’
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Since1£y/5 and 1= are the roots of? — x— 1 =0, we have

detA = <a+(1+2\/§)b) <a+(1_2\/§)b>.
Thus,
a b
”Q{)(2X1:{< b atb > ‘ a>b€R}>
and

a b

Go x1={A= ( b aih >| detA+0}.

. . a
We can associate to a complex2 matrix A = (

b
g ) , the Mobius transformatiori (z) =
c

az+b

<id (See for instance [10]). According to the above lines, weetthe following Lemmas:

Lemma 1. The graphs of all the Mobius transformations associated the matrices

a bbg
( b a+ba ) € e g, (Va,beRandbp#0), 3

intersect at the point®l = (—xg, —x1) andN = (—xz, —x2) Wherex; andx, are the roots ok* —
agX— by = 0.

B ax+bb0
~ bx+a+bag

ax + o] bo

= bxtd 1 bag be the Mobius transformations cor-

Proof. Let f1(X) and f>(x)

b [ bbb
responding t a bo and a 0 , respectively. Supposk (x) = f»(x), then
b a+bag b a+bag
(ab’ — ba) (x* + apx — bg) = 0. (4)
Case 1: Ifab —ba =0, then(a,b) = A (d,b). It implies that
ax+ bbg a'x+b'bg

bx+a+bag bx+a+bag

Case 2: Ifab' —ba # 0 then(x2 +apx—bp) = 0. Letx; andx; be the roots of the equation
X% —agX— by = 0. Thenxy + X, = —ag, andxyxo = —bg. And it is trivial that —x; and—x, are the
roots of the equation (4). [

Lemma 2. The graphs of all Mobius transformations associated vghratrices

a b (Va,b € R and by # 0)
bby a+ bag ’ ’
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which are the transpose(s) of the matrices in (3), intersettte point® = (A,A) andQ = (B,B)
where YA and 1/B are the roots ok? — agx — by = 0.

ax+b ax+b .- _
Proof. Let f1(X) = bbox - a1 bag and fa(x) = bbox & 1 Dag be the Mdbius transformations
) a b a of _
corresponding t and , respectively. Supposé (x) =
bby a-+bag b'bg & +bag
f2(x), then
(ab’ — ba) (bpx® 4 apx — 1) = 0. (5)

Case 1: Ifab’ — ba’ = 0, then(a,b) = A (&,b'). Consequently,

ax-+b B ax+b
bbox+a+bag bbox+a +bag’

Case 2: Ifab/ —ba’ # 0, thenbox? +agx—1 = 0. Letx; andx, be the roots of the equation
X2 — agx — bg = 0. Thenxy + X = —ag andxyxz = —bg. Suppose = 1/x; andB = 1/x,. Since

A+B=ay/bpand AB = —1/by,

A andB are the roots of the equation (5). [

Theorem 2. Let (a,b) € @42, p,- Then the tangent lines to the graph of the Mobius transfor-

mation
ax+b

bbpx+ a+ bag’
at the pointd? andQ which are introduced in the Lemma 2, intersect at a point iwiscon the

perpendicular bisector of the segm®Q. Also asymptotes of the Mobius transformation intersect
at a point which is on the perpendicular bisector of the seqiR@.

Proof. One of the Mdbius transformations which satisfies in Lemmia Y= x. The segment
PQ coincides ory = x. The equation of the perpendicular bisector of the segmR@nis x+y =

—ap/bp. The equations of the tangent lines to the grapﬁt%:j_o#%mo at the point = (A,A)
andQ = (B,B) are
a2 + abag — b?hy aA+b
y= (bboA+ a+ bag)? (x=A)+ bboA+a+bag’
a2 + abag — b?by aB+b
y= (bboB + a4 bag)? (x=B)+ bbgB + a+ bag”
These tangent lines intersect at the point

—agg—b(2+ay) —aao+2bbo)

CZ("OZ (2a+bag)by  7° " (2a+ bag)bo
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such that + Yo = —ap/bo. S0, (Xo,Yo) is on the perpendicular bisector of the segnfe@t

B ax+b ~a+bag ! )
The asymptotes of= bbox + a1t bag arex = ~ by and y= bog’ These asymptotes intersect
at the point
B ~atba  a
D—(Xl_ bbo ayl_bb0>a

such that, +y; = —ag/bg. Thus,(x1,y1) is on the perpendicular bisector of the segnfe@t m

Corollary 1. The product of the areas of the trianglePQ andCPQ in Theorem 2, is constant
and equal tda3 + 4bg)?/4(bg)*.

Proof. The length of the segmeRQ is as follows:
. \/ 8+ 4o
Pol= vz L)

The altitudes of the trianglgSPQ andDPQ are obtained as follows:

B 4bbg + ba3
hepg = V2/2) a+ bag)b
and -
thQ = \/2/2‘ a;_boao

So, the areas of the triangl€®Q andDPQ are

b(4bo + a3)/4bo + a3

A(CPQ) = 1/2 7t b
and
2a+ bag/4bg + a2
A(DPQ) = 1/2 al TR
0

Thus, by multiplication we obtain

A(CPQ)A(DPQ) = (a3 + 4bg)?/4(bg)*.

Definition 5. Let

a b

C= S_(Z,R)ﬂgxz—x—l = {A:< b a+

) ) |detA = 1}={(a,b)| a®+ab—b*=1}.
Then, the graph o is called the Golden curve.

We have the equatiosf + ab— b? = 1, by considering

a= a;cosf — bysinf,b = a;sin6 + bycoso,
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we have
a2(cos?6 — sinfcosh — sin?0) + a by (—4sinBcosh + cos?6 — sin?H) ©)
+b2(sin?6 — sinfcosH — cos?H) = 1
and
cos26 —2sin28 =0
thus,

cos26 = 21/5/5,sin20 = v/5/5. 7)
By (6), we conclude that
(cos26 — 1/2sin26)(a2 — b?) = 1.
According to (7), we get
3v/5/10(a — b?) = 1.
Therefore,
a; = /3v/5/10cosht, by = 1/3v/5/10sinht,
consequently,
a=/3v/5/10coshtcosd — 1/3v/5/10sinhtsinG,
b = 1/3v/5/10coshtsing + \/3v/5/10sinhtcosh.
The curvature o€ is calculated as follows:

ab—ba  2/(3/2)V5
(@2+12)32 " 3(cosht)3/2

The graph ofC is a hyperbola and is plotted with Maple in Fig.1:

The Golden curv€ is a Lie group. Lety(t) = ( ) be a curve orC. The Lie

algebra of Cis

Vv w

T ={V| v(0) =1, V(O):V:( )v:a’(O),w:b’(O)}.

W V+Ww

Taking the derivative o0&+ ab — b? = 1, implies that 2a + ab+ aly — 2bb/ = 0. Since 2a +
ab+ab’ —2bb’ = 0 andy(0) = I, we obtainw = —2v. Therefore,

1 -1
V(O):V:v( > _1>.
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FIGURE 1. Graph forC.

Example 2.4. Let X3 — 2x— 1 be a generalized Golden polynomial. Suppose Xhat zizzoa;x‘
andY = 32 obiX € #s_, 1. Using Definition 1, we obtain

X¥eagho + agby + agbs + (aghy +a1bo + 283 by + 2azb; + axby ) x+ (aghy +a1by + apbp + 2a2b2)x2.
Hence, the matrix representationXfin the standard basis & is as follows:

a0 a =il
A=| a ay+2a 2a;+ap |- 8)
a a ap+ 2a

Therefore,
detA = a3+ a3 + & + 4aga; — 2a0a2 + 4apa5 — 22,185 — 3apady,

and its decomposition is as follows:
detA = (89— a1 + ) (8§ — af -+ 85+ aoay + 3aga, — a1dy)

= (a0 — a1+ ap) (a0 + 01 + (¢)°az) (a0 + (1— @)ar + (1 - ¢)%ay).
Interestingly—1, ¢ = ”T\@ and1— = 1*7\@ which are the coefficients af; in the above de-
composition are exactly the roots of the polynonié).

Now,
a c b

szfxa_z)(_lz{ b a+2c 2b+c |a,b,ceIR<},
C b a+2c
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and
a C b

Yo ox1= {A: b at+2c 2b+c ]detA;«éO},
C b a+2c
are the Golden algebra and the Golden Lie group with respeét-t 2x— 1, respectively.

According to Examples 2.3 and 2.4, we have the following ecijre:

Let P(X) = X" — pp_1x"1 — ... — pixt — po and % (n,R) be the matrix representation fa@r=
(ag,...,an_1) € @p. If X1,X2,...,%, are the roots of the equatiofl — pr_1x"1 — py_oX"2 — ... —
po = 0, then

deor(nB) = (3 ad) (3 o). (3 a0

Remark 2.4. Let

a C b
S=S|-(3,R)ﬂ€4xs_2x_1={A: b at+2c 2b+c \detA:l},
c b a+2c

namely,
S={(ab,c)| a+b*+c®+4a’c— 2ab® + 4ac’ — 2bc? — 3abc — 1 =0}.
By considering
f(a,b,c) = a®+b®+ ¢+ 4a’c — 2ab® + 4ac® — 2bc® — 3abc— 1,
we have
Of = (3a® + 8ac— 2b? + 4c? — 3bc, 3b? — 4ab — 2¢% — 3ac, 3¢c? 4 4a’ 4 8ac — 4bc — 3ab) # 0

(V(a,b,c) € S). Hence, according to Implicit Function Theorem [1$]s a surface iRS.

The surfaceSis a Lie group. Let
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be a curve ors. The Lie algebra o8is

X z y
TO={V|v0)=1,y(0)=V=]|y x+2z 2y+z
zZ y X+ 2z

a'(0) =x,b'(0) =y,c'(0) = z}.

Sincea® + b3 + ¢34 4ac — 2ab? + 4ac? — 2bc? — 3abc — 1 = 0 andy(0) = |, we getz= —3/4x.
Consequently,

1 -3/4 0 0

YO =V=x| 0 -1/2 —3/4 |+y]| 1

~3/4 0 -1/2 0

O O
SO N

Definition 6. The graph ofSin Remark 2.4 is called the Golden surface.

The graph ofS, plotted using Maple is shown in Fig.2:

FIGURE 2. Graph forS.

The curvature o&is as follows [11]:

0%f/da2  9%f/9adb 02f/dadc df/da
—1 | 0%f/9adb 9%f/ob? 92%f/dbdc Af/db
\Of2 | 92f/dadc 9%f/dbdc 92f/dc2  df/dc
df/oa  af/db af/dc 0
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It is calculated with Maple as follows:

Note that the curvature @is always positive.

Theorem 3. Letx;, i = 1,2,3, be the roots ok® — 2x— 1= 0. Then, the maps
i %Gz o1 —>R—{0} iI=1,23,

such that
¢i(a+bx+ @) = a+bx + o,

are group homomorphisms.
AlSo 1 Ga_p 1 — (R—{0})3, such that

W(a+bx+4cx?) = (a+ bxg 4 o, a+ bxo + X3, a+ bxz + €x3),

is a group isomorphism.

Proof. Suppose thaX = T2 qax andY = T2 obiX € Ga_p 1,
¢i(X.Y) = apho + a1bp + a2y + (agbs + a1bg + 2812 + 2azb; + azbz)x1

+(aghy +aib; + axbp + 2a2b2)x§.

Sincex, is the root ofx® — 2x— 1 = 0, we have
$i(X)¢i(Y) = aobo + a1by + @by + (agby + a1bo + 2a1bp + 2a2b; + a2bz)xq

+ (@b + arby + aphg + 285b2)%2.

Thus, ¢; is a homomorphism. Similarly, we can show tljats a homomorphism. Alsap is one
to one and onto. (3% ax) = (1,1,1), then

2 2 2
ax;=1 Sax,=1and Y ax3=1 9)
2,20=0 2 2,
Solving the system (9), we have

a=1a=0anda,=0.
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Let (ry,rz,r3) € (R—{0})3. There is a polynomiah+ bx+ cx? in %,s_,,_4, such that

n x x 11 x 1 x4 rp
2 % X3 11, X 1 % I
r3 X3 %3 1 r3 X2 1 x3 r3
a= , b= and c= .
1 x X 1 xq X 1 x X
1 % X 1 x X 1 % X5
1 x3 %3 1 x3 %3 1 x3 %3
Hence,(a+bx+cx?) = (ry,ra,r3). n

Theorem 4. Let x;, fori = 1,2,3 be the roots ok®+ ax? + bx+ ¢ = 0 such that # x;, for all
i,j =1,2,3. Then, the maps

bi: Goraeinye — R—{0} i=123,

such that

¢i (@ +b'x+x%) = a +b'x + %,
are group homomorphisms.
AlSO Y 1 Ga. pespxic — (R—{0})3, such that

W@ +b'x+cx%) = (@ +b'xg + %2, a 4+ b'xa + 33, + x4+ &x3),
is a group isomorphism.
Proof. The proof is similar to Theorem 3. [

One of the most important problems in linear algebra is tiverse eigenvalue problem. Let
A1,A0,...,An, be given. Using the above content, we obtain the matricesa/eenvalues are
A1,A2, ..., An. FOr example, usingi, A2 and Az, we produce the following polynomial:

P(X) = X3 — ()\1 +Ax+ )\3)X2 + ()\1)\2 + AoAz+ )\1)\3)X —A1A2A3.

According to Definition 1, we obtain an induced algebra wibpect td® and consider the matrix
representation ofap,a;,a) € «%. Hence,A1,A, and A3 are the eigenvalues of the matrix repre-
sentation of(0,1,0) € «/p. We therefore obtain a non-diagonal matrix with A> and A3 as its

eigenvalues.

Example 2.5. Using the above lines, we construct the following polyndnoa Ay = —1,A, =
pand A3=1—@:
xX—2x—1=0.
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The matrix representation ¢&,b,c) € #%s_,, 4 is as follows:

a c b
b a+2c 2b+c
C b a-+2c

By settinga= 0, b =1 andc = 0, we have the matrix

o ~— O
= O O
o N

whose the eigenvalues ate¢= —1, > = ¢ andAz =1— @.

3. Conclusions

This paper assigns to every polynomial an Abelian Lie grdtig.well known that every Lie group

has a matrix representation. Hence, we can assign to evaneat of a Lie group a polynomial

(for example: a characteristic polynomial or minimal palymal). Therefore, we appropriate an
Abelian Lie group to every element of the Lie group. Now thkof@ing question comes to mind:

What is the relationship between a Lie group and an Abeli@ngtoup which corresponds to an
element of the Lie group?
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