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1. Introduction and Preliminaries

The Golden Proportion, also called the Golden Ratio, DivineRatio, Golden Section or Golden

Mean has been well known since the time of Euclid. There are many objects in the natural world

that possess pentagonal symmetry, such as the inflorescenceof many flowers and phyllotactic

objects that have a numerical description given by the Fibonacci numbers, which are themselves

based on the Golden Proportion. The Golden Proportion has also been found in the structure of

musical compositions, in the ratios of harmonious sound frequencies and in dimensions of the

human body [8].

Let us recall that the Golden Proportion partitions a line segment into a major subsegment and a

minor subsegment in such a way that both the ratio of whole segment and the major subsegment

and the ratio of major subsegment and the minor subsegment must equal the numberϕ =
1+

√
5

2
(the Phidias number), which is the real positive root of the equationx2− x−1= 0. This number

is often encountered when taking the ratios of distances in simple geometric figures such as the

pentagram, decagon and dodecagon. In the last few years, theGolden Proportion has played a

growing role in modern physics research [1, 2, 5]. The GoldenProportion also has interesting

properties in Special Relativity [4]. Although the generalization of mathematics is important in its

own right, the generalization of Golden numbers, which belong to the Lie groupR and which are

essential in the symmetries and beauty of natural phenomenato other sciences, especially mathe-

matics, can produce other symmetric and beauties in them. For instance, Golden numbers appear

in the representation of the finite dimensional Lie groups which have a fully physical application

ISSN 1309 – 6788c© 2014 Çankaya University
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[7]. This thought, together with examples which have been mentioned in the paper, can be an

essential motivation to find and study geometric Golden objects. In this paper, first, by using a

polynomial, an algebra is constructed and it is shown that the inverted elements of this algebra

present a Lie group. Then, the generalized Golden polynomials xn −Fnx−Fn−1 are defined where

Fn is the Fibonacci sequence. Next, using these polynomials, Golden algebras, Golden Lie groups,

Golden curve and Golden surface are introduced. Finally, some of their interesting properties are

proved.

2. Main results

Definition 1. Let R[x] be the algebra of all polynomials, andP(x) be a polynomial of degree

n, in R[x]. We defineAP, called the induced algebra with respect toP(x), to be the set of all

polynomials of degree less than n together with the additionand scalar product induced byR[x].

And the multiplication inAP is defined in such a way thatAP is isomorphic to the quotient algebra

R[x]/ < P(x)>.

Let A be a finite dimensional associative algebra overR with identity. Then, the group G of

invertible elements inA is an open submanifold ofA and with induced structure, it is a Lie group

(See for instance [9]). Thus, the invertible elements ofAP form an Abelian Lie group which is

shown byGP and it is called the induced Lie group with respect to polynomial P.

For convenience, throughout the paper, we use(a0, . . . ,an−1), instead ofX = an−1xn−1 + . . .+

a1x1+a0.

Theorem 1. The mapϕZ : AP → AP with ϕZ(X) = Z.X , is a linear transformation.

Proof. The proof is trivial.

Definition 2. (See for instance [6]) LetG be a Lie group andV be a vector space. A linear

transformation groupψ : G×V → V or equivalently, a homomorphismψ : G → GL(V ), is also

called a linear representation ofG onV .

Remark 2.1. We consider the matrix representation ofϕZ for all Z ∈ AP in the standard basis of

R
n in Theorem 1 and it is shown byAZ(n,R). Indeed,AZ(n,R) is the matrix representation for

Z ∈ AP. Now, we considerAP(n,R) = {AZ(n,R)|Z ∈ AP}. For convenience, we useAP(n,R)

instead ofAP.

The set of corresponding matrices with respect toGP is a subgroup ofGL(n,R).

Example 2.1. Let P(x) = x3−1. X = ∑2
i=0aixi andY = ∑2

i=0bixi ∈ Ax3−1. Then

ϕX(Y ) = X .Y = a0b0+a1b2+a2b1+(a0b1+a1b0+a2b2)x+(a0b2+a1b1+a2b0)x
2.
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The matrix representation ofϕX in the standard basis ofR3 is as follows:








a0 a2 a1

a1 a0 a2

a2 a1 a0









.

Example 2.2. Let (a,b) ∈ Ax2−a0x−b0
. The matrix representation of(a,b) in the standard basis of

R
2 is as follows:

A =

(

a bb0

b a+ba0

)

. (1)

In this case, we have

detA = a2+aba0−b2b0.

If x1 andx2 are the roots ofx2−a0x−b0 = 0, then

detA = (a+bx1)(a+bx2).

Remark 2.2. In Example 2.2, ifa0 = 0 andb0 =−1, then

A =

(

a −b

b a

)

.

A corresponds to the complex numberz= a+ ib. In general, for alla,b∈R, the matrix{
(

a −b

b a

)

,

will always represent the complex numbera+ ib.

Definition 3. The polynomialPn(x) = xn −Fnx−Fn−1 (Fn is the Fibonacci sequence) is called a

generalized Golden polynomial of degreen.

Remark 2.3. The generalized Golden polynomialPn(x) = xn −Fnx−Fn−1 is decomposed as fol-

lows:

Pn(x) = (x2− x−1)
(

n−2

∑
i=0

Fix
n−i−2),

wherex2− x−1 is the Golden polynomial.

Definition 4. Let Pn be a generalized Golden polynomial of degreen. The algebraAPn is called a

Golden algebra. And alsoGPn is called a Golden Lie group with respect toPn.

Example 2.3. Let x2 − x − 1 be the Golden polynomial. By (1) the matrix representationof

(a,b) ∈ Ax2−x−1 in the standard basis ofR2 is as follows:

A =

(

a b

b a+b

)

. (2)
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Since1+
√

5
2 and 1−

√
5

2 are the roots ofx2− x−1= 0, we have

detA =
(

a+(
1+

√
5

2
)b
)(

a+(
1−

√
5

2
)b
)

.

Thus,

Ax2−x−1 = {
(

a b

b a+b

)

∣

∣ a,b ∈ R},

and

Gx2−x−1 =
{

A =

(

a b

b a+b

)

∣

∣ detA 6= 0
}

.

We can associate to a complex 2×2 matrix A =

(

a b

c d

)

, the Möbius transformationf (z) =

az+b
cz+d

(See for instance [10]). According to the above lines, we have the following Lemmas:

Lemma 1. The graphs of all the Möbius transformations associated with the matrices
(

a bb0

b a+ba0

)

∈ Ax2−a0x−b0
(∀a,b ∈ R and b0 6= 0), (3)

intersect at the pointsM = (−x1,−x1) andN = (−x2,−x2) wherex1 andx2 are the roots ofx2−
a0x−b0 = 0.

Proof. Let f1(x) =
ax+bb0

bx+a+ba0
and f2(x) =

a′x+b′b0

b′x+a′+b′a0
be the Möbius transformations cor-

responding to

(

a bb0

b a+ba0

)

and

(

a′ b′b0

b′ a′+b′a0

)

, respectively. Supposef1(x) = f2(x), then

(ab′−ba′)(x2+a0x−b0) = 0. (4)

Case 1: Ifab′−ba′ = 0, then(a,b) = λ (a′,b′). It implies that

ax+bb0

bx+a+ba0
=

a′x+b′b0

b′x+a′+b′a0
.

Case 2: Ifab′ − ba′ 6= 0 then(x2 + a0x− b0) = 0. Let x1 and x2 be the roots of the equation

x2−a0x−b0 = 0. Thenx1+ x2 =−a0, andx1x2 =−b0. And it is trivial that−x1 and−x2 are the

roots of the equation (4).

Lemma 2. The graphs of all Möbius transformations associated with the matrices
(

a b

bb0 a+ba0

)

(∀a,b ∈ R and b0 6= 0),
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which are the transpose(s) of the matrices in (3), intersectat the pointsP = (A,A) andQ = (B,B)

where 1/A and 1/B are the roots ofx2−a0x−b0 = 0.

Proof. Let f1(x) =
ax+b

bb0x+a+ba0
and f2(x) =

a′x+b′

b′b0x+a′+b′a0
be the Möbius transformations

corresponding to

(

a b

bb0 a+ba0

)

and

(

a′ b′

b′b0 a′+b′a0

)

, respectively. Supposef1(x) =

f2(x), then

(ab′−ba′)(b0x2+a0x−1) = 0. (5)

Case 1: Ifab′−ba′ = 0, then(a,b) = λ (a′,b′). Consequently,

ax+b
bb0x+a+ba0

=
a′x+b′

b′b0x+a′+b′a0
.

Case 2: Ifab′ − ba′ 6= 0, then b0x2 + a0x− 1 = 0. Let x1 and x2 be the roots of the equation

x2−a0x−b0 = 0. Thenx1+ x2 =−a0 andx1x2 =−b0. SupposeA = 1/x1 andB = 1/x2. Since

A+B = a0/b0 and AB =−1/b0,

A andB are the roots of the equation (5).

Theorem 2. Let (a,b) ∈ Ax2−a0x−b0
. Then the tangent lines to the graph of the Mobius transfor-

mation
ax+b

bb0x+a+ba0
,

at the pointsP andQ which are introduced in the Lemma 2, intersect at a point which is on the

perpendicular bisector of the segmentPQ. Also asymptotes of the Mobius transformation intersect

at a point which is on the perpendicular bisector of the segment PQ.

Proof. One of the Möbius transformations which satisfies in Lemma 2is y = x. The segment

PQ coincides ony = x. The equation of the perpendicular bisector of the segmentPQ is x+ y =

−a0/b0. The equations of the tangent lines to the graph of
ax+b

bb0x+a+ba0
at the pointsP = (A,A)

andQ = (B,B) are

y =
a2+aba0−b2b0

(bb0A+a+ba0)2

(

x−A
)

+
aA+b

bb0A+a+ba0
,

y =
a2+aba0−b2b0

(bb0B+a+ba0)2

(

x−B
)

+
aB+b

bb0B+a+ba0
.

These tangent lines intersect at the point

C =
(

x0 =
−aa0−b(2b0+a2

0)

(2a+ba0)b0
,y0 =

−aa0+2bb0

(2a+ba0)b0

)

,
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such thatx0+ y0 =−a0/b0. So,(x0,y0) is on the perpendicular bisector of the segmentPQ.

The asymptotes ofy=
ax+b

bb0x+a+ba0
arex=−a+ba0

bb0
and y=

a
bb0

. These asymptotes intersect

at the point

D =
(

x1 =−a+ba0

bb0
,y1 =

a
bb0

)

,

such thatx1+ y1 =−a0/b0. Thus,(x1,y1) is on the perpendicular bisector of the segmentPQ.

Corollary 1. The product of the areas of the trianglesDPQ andCPQ in Theorem 2, is constant

and equal to(a2
0+4b0)

2/4(b0)
4.

Proof. The length of the segmentPQ is as follows:

|PQ|=
√

2
∣

∣

∣

√

a2
0+4b0

b0

∣

∣

∣.

The altitudes of the trianglesCPQ andDPQ are obtained as follows:

hCPQ =
√

2/2
∣

∣

∣

4bb0+ba2
0

(2a+ba0)b0

∣

∣

∣

and

hDPQ =
√

2/2
∣

∣

∣

2a+ba0

bb0

∣

∣

∣.

So, the areas of the trianglesCPQ andDPQ are

A(CPQ) = 1/2
b(4b0 +a2

0)
√

4b0+a2
0

b2
0(2a+ba0)

and

A(DPQ) = 1/2
2a+ba0

√

4b0+a2
0

bb2
0

.

Thus, by multiplication we obtain

A(CPQ)A(DPQ) = (a2
0+4b0)

2/4(b0)
4.

Definition 5. Let

C = SL(2,R)
⋂

Gx2−x−1 =
{

A=

(

a b

b a+b

)

∣

∣detA = 1
}

=
{

(a,b)
∣

∣ a2+ab−b2 = 1
}

.

Then, the graph ofC is called the Golden curve.

We have the equationa2+ab−b2 = 1, by considering

a = a1cosθ −b1sinθ ,b = a1sinθ +b1cosθ ,
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we have

a2
1(cos2θ − sinθcosθ − sin2θ)+a1b1(−4sinθcosθ + cos2θ − sin2θ)

+b2
1(sin2θ − sinθcosθ − cos2θ) = 1

(6)

and

cos2θ −2sin2θ = 0

thus,

cos2θ = 2
√

5/5,sin2θ =
√

5/5. (7)

By (6), we conclude that

(cos2θ −1/2sin2θ)(a2
1 −b2

1) = 1.

According to (7), we get

3
√

5/10(a2
1−b2

1) = 1.

Therefore,

a1 =

√

3
√

5/10cosht,b1 =

√

3
√

5/10sinht,

consequently,

a =

√

3
√

5/10coshtcosθ −
√

3
√

5/10sinhtsinθ ,

b =

√

3
√

5/10coshtsinθ +

√

3
√

5/10sinhtcosθ .

The curvature ofC is calculated as follows:

κ =
ȧb̈− ḃä

(ȧ2+ ḃ2)3/2
=

2
√

(3/2)
√

5

3(cosht)3/2
.

The graph ofC is a hyperbola and is plotted with Maple in Fig.1:

The Golden curveC is a Lie group. Letγ(t) =

(

a(t) b(t)

b(t) a(t)+b(t)

)

be a curve onC. The Lie

algebra of C is

TI =
{

V
∣

∣ γ(0) = I, γ ′(0) =V =

(

v w

w v+w

)

v = a′(0),w = b′(0)
}

.

Taking the derivative ofa2+ ab− b2 = 1, implies that 2aa′ + a′b+ ab′ −2bb′ = 0. Since 2aa′ +

a′b+ab′−2bb′ = 0 andγ(0) = I, we obtainw =−2v. Therefore,

γ ′(0) =V = v

(

1 −1

−2 −1

)

.
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FIGURE 1. Graph forC.

Example 2.4. Let x3 − 2x− 1 be a generalized Golden polynomial. Suppose thatX = ∑2
i=0 aixi

andY = ∑2
i=0 bixi ∈ Ax3−2x−1. Using Definition 1, we obtain

XY=a0b0+a1b2+a2b1+(a0b1+a1b0+2a1b2+2a2b1+a2b2)x+(a0b2+a1b1+a2b0+2a2b2)x
2.

Hence, the matrix representation ofX in the standard basis ofR3 is as follows:

A =









a0 a2 a1

a1 a0+2a2 2a1+a0

a2 a1 a0+2a2









. (8)

Therefore,

detA = a3
0+a3

1+a3
2+4a2

0a2−2a0a2
1+4a0a2

2−2a1a2
2−3a0a1a2,

and its decomposition is as follows:

detA =
(

a0−a1+a2
)(

a2
0−a2

1+a2
2+a0a1+3a0a2−a1a2

)

=
(

a0−a1+a2
)(

a0+φa1+(φ)2a2
)(

a0+(1−φ)a1+(1−φ)2a2
)

.

Interestingly−1,φ = 1+
√

5
2 and 1− φ = 1−

√
5

2 which are the coefficients ofa1 in the above de-

composition are exactly the roots of the polynomialP(x).

Now,

Ax3−2x−1 =
{









a c b

b a+2c 2b+ c

c b a+2c









|a,b,c ∈R

}

,
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and

Gx3−2x−1 =
{

A =









a c b

b a+2c 2b+ c

c b a+2c









|detA 6= 0
}

,

are the Golden algebra and the Golden Lie group with respect to x3−2x−1, respectively.

According to Examples 2.3 and 2.4, we have the following conjecture:

Let P(x) = xn − pn−1xn−1 − ...− p1x1 − p0 and AZ(n,R) be the matrix representation forZ =

(a0, ...,an−1) ∈ AP. If x1,x2, ...,xn are the roots of the equationxn − pn−1xn−1− pn−2xn−2− ...−
p0 = 0, then

detAZ(n,R) =
(n−1

∑
i=0

aix
i
1

)(n−1

∑
i=0

aix
i
2

)

...
(n−1

∑
i=0

aix
i
n

)

.

Remark 2.4. Let

S = SL(3,R)
⋂

Gx3−2x−1 =
{

A =









a c b

b a+2c 2b+ c

c b a+2c









∣

∣ detA = 1
}

,

namely,

S =
{

(a,b,c)
∣

∣ a3+b3+ c3+4a2c−2ab2+4ac2−2bc2−3abc−1= 0
}

.

By considering

f (a,b,c) = a3+b3+ c3+4a2c−2ab2+4ac2−2bc2−3abc−1,

we have

∇ f = (3a2+8ac−2b2+4c2−3bc,3b2−4ab−2c2−3ac,3c2+4a2+8ac−4bc−3ab) 6= 0

(∀(a,b,c) ∈ S). Hence, according to Implicit Function Theorem [11],S is a surface inR3.

The surfaceS is a Lie group. Let

γ(t) =









a(t) c(t) b(t)

b(t) a(t)+2c(t) 2b(t)+ c(t)

c(t) b(t) a(t)+2c(t)









,
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be a curve onS. The Lie algebra ofS is

TI(S) =
{

V
∣

∣ γ(0) = I, γ ′(0) =V =









x z y

y x+2z 2y+ z

z y x+2z









a′(0) = x,b′(0) = y,c′(0) = z
}

.

Sincea3+ b3+ c3+4a2c−2ab2+4ac2−2bc2−3abc−1= 0 andγ(0) = I, we getz = −3/4x.

Consequently,

γ ′(0) =V = x









1 −3/4 0

0 −1/2 −3/4

−3/4 0 −1/2









+ y









0 0 1

1 0 2

0 1 0









.

Definition 6. The graph ofS in Remark 2.4 is called the Golden surface.

The graph ofS, plotted using Maple is shown in Fig.2:

FIGURE 2. Graph forS.

The curvature ofS is as follows [11]:

κ =
−1
|∇ f |2













∂ 2 f/∂a2 ∂ 2 f/∂a∂b ∂ 2 f/∂a∂c ∂ f/∂a

∂ 2 f/∂a∂b ∂ 2 f/∂b2 ∂ 2 f/∂b∂c ∂ f/∂b

∂ 2 f/∂a∂c ∂ 2 f/∂b∂c ∂ 2 f/∂c2 ∂ f/∂c

∂ f/∂a ∂ f/∂b ∂ f/∂c 0













.
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It is calculated with Maple as follows:

κ =
15

|∇ f |2 .

Note that the curvature ofS is always positive.

Theorem 3. Let xi, i = 1,2,3, be the roots ofx3−2x−1= 0. Then, the maps

ϕi : Gx3−2x−1 → R−{0} i = 1,2,3,

such that

ϕi(a+bx+ cx2) = a+bxi + cx2
i ,

are group homomorphisms.

Also ψ : Gx3−2x−1 → (R−{0})3, such that

ψ(a+bx+ cx2) = (a+bx1+ cx2
1,a+bx2+ cx2

2,a+bx3+ cx2
3),

is a group isomorphism.

Proof. Suppose thatX = ∑2
i=0aixi andY = ∑2

i=0bixi ∈ Gx3−2x−1,

ϕi(X .Y ) = a0b0+a1b2+a2b1+(a0b1+a1b0+2a1b2+2a2b1+a2b2)x1

+(a0b2+a1b1+a2b0+2a2b2)x
2
1.

Sincex1 is the root ofx3−2x−1= 0, we have

ϕi(X)ϕi(Y ) = a0b0+a1b2+a2b1+(a0b1+a1b0+2a1b2+2a2b1+a2b2)x1

+(a0b2+a1b1+a2b0+2a2b2)x
2
1.

Thus,ϕi is a homomorphism. Similarly, we can show thatψ is a homomorphism. Also,ψ is one

to one and onto. Ifψ(∑2
i=0 aixi) = (1,1,1), then

2

∑
i=0

aix
i
1 = 1,

2

∑
i=0

aix
i
2 = 1 and

2

∑
i=0

aix
i
3 = 1. (9)

Solving the system (9), we have

a0 = 1, a1 = 0 and a2 = 0.
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Let (r1,r2,r3) ∈ (R−{0})3. There is a polynomiala+bx+ cx2 in Gx3−2x−1, such that

a =

∣

∣

∣

∣

∣

∣

∣

∣

r1 x1 x2
1

r2 x2 x2
2

r3 x3 x2
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣

∣

∣

∣

∣

∣

∣

∣

, b =

∣

∣

∣

∣

∣

∣

∣

∣

1 r1 x2
1

1 r2 x2
2

1 r3 x2
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣

∣

∣

∣

∣

∣

∣

∣

and c =

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 r1

1 x2 r2

1 x3 r3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣

∣

∣

∣

∣

∣

∣

∣

.

Hence,ψ(a+bx+ cx2) = (r1,r2,r3).

Theorem 4. Let xi, f ori = 1,2,3 be the roots ofx3+ ax2 + bx+ c = 0 such thatxi 6= x j, for all

i, j = 1,2,3. Then, the maps

ϕi : Gx3+ax2+bx+c → R−{0} i = 1,2,3,

such that

ϕi(a
′+b′x+ c′x2) = a′+b′xi + c′x2

i ,

are group homomorphisms.

Also ψ : Gx3+ax2+bx+c → (R−{0})3, such that

ψ(a′+b′x+ c′x2) = (a′+b′x1+ c′x2
1,a

′+b′x2+ c′x2
2,a

′+b′x3+ c′x2
3),

is a group isomorphism.

Proof. The proof is similar to Theorem 3.

One of the most important problems in linear algebra is the inverse eigenvalue problem. Let

λ1,λ2, ...,λn, be given. Using the above content, we obtain the matrices whose eigenvalues are

λ1,λ2, ...,λn. For example, usingλ1,λ2 and λ3, we produce the following polynomial:

P(x) = x3− (λ1+λ2+λ3)x
2+(λ1λ2+λ2λ3+λ1λ3)x−λ1λ2λ3.

According to Definition 1, we obtain an induced algebra with respect toP and consider the matrix

representation of(a0,a1,a2) ∈ AP. Hence,λ1,λ2 and λ3 are the eigenvalues of the matrix repre-

sentation of(0,1,0) ∈ AP. We therefore obtain a non-diagonal matrix withλ1,λ2 and λ3 as its

eigenvalues.

Example 2.5. Using the above lines, we construct the following polynomial for λ1 = −1,λ2 =

φ and λ3 = 1−φ :

x3−2x−1= 0.
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The matrix representation of(a,b,c) ∈ Ax3−2x−1 is as follows:








a c b

b a+2c 2b+ c

c b a+2c









.

By settinga = 0, b = 1 andc = 0, we have the matrix








0 0 1

1 0 2

0 1 0









,

whose the eigenvalues areλ1 =−1, λ2 = φ andλ3 = 1−φ .

3. Conclusions

This paper assigns to every polynomial an Abelian Lie group.It is well known that every Lie group

has a matrix representation. Hence, we can assign to every element of a Lie group a polynomial

(for example: a characteristic polynomial or minimal polynomial). Therefore, we appropriate an

Abelian Lie group to every element of the Lie group. Now the following question comes to mind:

What is the relationship between a Lie group and an Abelian Lie group which corresponds to an

element of the Lie group?

References

[1] M.S. El Nashie, Quantum Mechanics and the Possibility ofa Cantorian Spacetime,Chaos, Solitons and Fractals,

1(5), (1992), 485-7.

[2] M.S. El Naschie, The Concepts of E Infinity: An ElementaryIntroduction to the Cantorian-Fractal Theory of

Quantum Physics,Chaos, Solitons and Fractals, 22(2), (2004), 495-511.

[3] R. H. Fischler, The Shape of the Great Pyramid, Waterloo:Wilfrid Laurier University Press, (2000).

[4] S. H. Hendi, M. Sharifzadeh, Special Relativity and the Golden Ratio,Journal of Theoretical Physics, 1, (2012),

37-45.

[5] R. Heyrovska, The Golden Ratio Ionic and Atomic Radii andBond Lengths,Molecular Physics, 103, (2005),

877-82.

[6] W. Y. Hsiang, Lectures on Lie Groups, World Scientific, (2000).

[7] A. W. Joshi, Elements of Group Theory for Physicists, NewYork: J. Wiley, (1982).

[8] M. Livio, The Golden Ratio: The Story of Phi, the World’s Most Astonishing NumberΦ, Broadway Books,

(2002).

[9] E. Meinrenken, Lie Groups and Lie Algebra, Lecture NotesUniversity of Toronto, (2010).

[10] T. Needham, Visual Complex Analysis, Oxford University Press, (1997).

[11] V.V. Trofimov, Introduction to Geometry of Manifolds with Symmetry, P. Kluwer Academic Publishers, (1994).


