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Abstract: Borumand and Mohtashamnia in [1] introduced the notion ef ftight and left) stabilizer in
residuated lattices and proved some theorems which deterime relationship between this notion and some
types of filters in residuated lattices. In this paper, wenstimat a part of Theorem 3.10 [1] is not correct.
Borumand and Mohtashamnia proved Theorem 4.2 [1] with samnditons. We prove this theorem without
any condition. Also, we prove Theorem 3.8 and part (4) of Bsiton 3.3 in [1] more generally and finally
obtain some new and useful theorems on stabilizers in ra@ddattices.

Keywords: Residuated lattices, stabilizer, implicative filter, ivg implicative filter, fantastic filter, obsti-
nate filter.

1. Introduction

Residuated lattices are the algebraic counterparts otrsehgral logics, including most fuzzy
logics [2]. Filters are important tools in analyzing fuzngics. Borumand and Mohtashamnia
in [1] introduced the notion of (right and left) stabilizar residuated lattices, stated and proved
some theorems which determine the relationship betwesnnthtion and some types of filters
in residuated lattices. In this paper, we correct some #msrin [1] with improvement of their
conditions. For instance, Borumand and Mohtashamnia gr@®eF ) is a filter in any residuated
lattice A, whereF andG are filters ofA. We show(X,F )y is a filter in any residuated lattiog,
whereX is a subset oA and obtain a quotient of residuated lattices via this filted atudy its
properties.

2. Preliminaries

A residuated lattice ([2],[5]) is an algebra= (A, A, V,*,— 0,1) with four binary operations\,
V, %, — and two constants 0,1 such that:

1. (A,V,A,0,1) is a bounded lattice,
2. (A x,1) is a commutative monoid,
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3. * and— form an adjoint pair, i.exxz<yifand only ifx<z—vy, forallx,y,z€ A,

Lemma 1([3], [6]). In any residuated lattica, the following relations hold for ak,y,z € A:
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Definition 1 ([4]). A nonempty subset of residuated latticé is called a filter ofA if:

1
2

An alternative definition for a filter F of a residuated ladti& is the following:

1
2

Definition 2 ([1],[7]). A nonempty subsef of residuated latticd is called
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Ll Xx=xX—>x=1,
.x<yifandonlyifx > y=1,
L XkY <XAY,

X<y =X,

X= (Y= 2) = (Xxy) 2> z2=y— (X— 2),
fx<y,theny—»z<x—zandz—=x<z—vy,
S XVY S ((X=y) = Y) A (Y = %) = X),
X=y<(Yy—=2) = (X—2),

X=Y< (22X = (z—y),

fx<ythenxxz<yxz
Yy X =X

X< (Y= X) =X,
A(A(X=y)=y) o y=XxX—y.

. xxyeF,forallx,yeF,
.x<yandxeF implyyeF.

.1leF,
. IfxeFandx—yeF,thenyeF.

. an implicative filter if: 1€ F andx — (y —2z) e F andx —y € F imply x— z€ F,

. a positive implicative filter if: £ F andx — ((y —2z) —y) € Fandxe F implyye F,

. afantastic filter if: = F andz— (y — x) € F andze F imply (x—y) —y) - xeF,

. an obstinate filter ifF is a proper filter ana,y ¢ F imply x -y € F andy — x € F, for alll

X,y,Z€ A

Theorem 1 ([1],[7]). (Extension property) LeF and G be filters of residuated latticA such
thatF C G. If F is an (positive) implicative, fantastic or obstinate filtdrenG is an (positive)

implicative, fantastic or obstinate filter.
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Theorem 2([4]). LetF be afilter of a residuated lattide Define:
x=gyifandonlyifx —-yeF andy — x e F.

Then=g is a congruence relation da The set of all congruence classes is denoted Ay, i.e,
A/F ={[X | xe A}, where[x] = {y € A| x=r y}. If we defineA,V,*,— on A/F as follows:

X [y] =[xy, [} = [y] = X = YL, A Y] = XAYL XV Y] = XV,

thenA/F = (A/F, A, V,*,—,[0],[1]) is a residuated lattice which is called the quotient regitlia
lattice with respect t&.

3. On the Stabilizers in Residuated Lattices

Let X andY be non-empty subsets of residuated latéceBorumand and Mohtashamnia in [1],
defined
Xg={acAla—x=xYxe X}
X'={acA|x—a=aVxeX}
and denoted the stabilizer Bfby X* = Xz N X*. They defined the stabilizer of with respect to
Yor (X,Y)* = (X,Y)gN(X,Y)[, where
X,)Y)r={aceA|(a—x) —xeV,¥xe X}
(X,Y) ={acA|(x—a) —acV,vxeX}.

Moreover, they provedG,F )y is a filter in any residuated lattiok, whereF andG are filters of
A. In the following theorem, we prove only the conditiofR be a filter” is necessary.

Theorem 3. If F is a filter of residuated lattica andX C A, then(X,F)j is a filter of A.

Proof. Let F be a filter of residuated lattic& and X C A. Since(1 — x) — x=1¢ F, for all
x € X we have 1e (X,F)g. Leta,b e (X,F)s. Then(a— x) —xe F and(b— x) — xe F, for
all xe X. Using Lemma 1,

(@a—=x)—=X) = ((b—x) —=x) = ((ab—x) = X)) =

(@b—x) — (((a—x) > x) = (b—x)) =

(ab—x) — (b—(a—x)=1cF.
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SinceF is a filter, (ab — x) — x € F, for all x € X and soab € (X,F)%. Now leta <b and
ae (X,F)s. Thena < b implies (a — x) - x < (b — x) — x, for all x € X and so we get
b e (X,F)g. Therefore(X,F)g is afilter for allX C A.

It is easy to see that

Proposition 1. In any residuated lattica , F C (X,F)*((X,F)&, (X,F){), whereF is a filter of
AandX C A

Using the extension property, we obtain

Corollary 1. If F is an (positive) implicative, fantastic, obstinate filtéresiduated latticé then
(X,F)&is a (positive) implicative, fantastic, obstinate filterreBiduated latticé.

Borumand and Mohtashamnia provedrifand G are filters of residuated lattick andF is an
obstinate (Boolean) filter, the(G, F ) is an obstinate (Boolean) filter [Theorems 4.3 and 4.4, 1].
Using the above Corollary, these theorems become clear.

Corollary 2. If F is afilter of residuated latticA andX C Athen(X,F)g/F = (X/F)g.

Proof.
(X,F)r/F ={[a |ac (X,F)r} = {[a] | (a—Xx) = xe€ F,¥xe X}
={@ [[(@a—=x) —x = [1],¥xe X}
={[@ [[& = =, vxeX}
= (X/F)r.
Borumand and Mohtashamnia in part (10) of Theorem 3.10 [aygul (X, Yi) g = (NXi,NY))&-

In the following example, we show that the equality does ratth We note thaf(X;,Yi)g C
(NXi,NY;)g- However, in generalNX;,NYi)g Z N(X, Yi)&-

Example 1. Let A= {0,a,b,c,1}. Definex,— as follows:

= O T 9 O *
O 0O 0o o o|o
®» o 9 ® oW
O T T 9 oOo|T
(@] (@] o 9 o0
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then (A,x,—,A,V,0,1) is a residuated lattice [1]. It is easy to check tlift},F)s; = A and
({0,1},F)sf = F, whereF = {c,1}. Also ({1},F)xnN ({0,1},F)s = ANF =F and ({1} N
{0,1},F)r = ({1},F)r = A. Hence({1},F)r N ({0,1},F )z # ({1} N {0, 1},F NF)x.

Borumand and Mohtashamnia in Theorem 4.2 [1] provetI @ A andXj is a fantastic filter oA
such thatA, Xg)& # 0, then(A, X3)& C (A, Xg){ . In the following, we see that the conditioXg is
a fantastic filter ofA such that A, X3) 5 # 0” is not necessary. Beyond thé8, Xg)s = (A, X3)| =
Xg. At first we prove two Lemmas:

Lemma 2. If F is a filter of residuated latticA, X C A and Oc X then

X,F)y*=(<X>,F)*=F,
X,F)=(<X>F)=F.

A
—

Proof. 1. LetF be a filter ofA, X C A, 0 X . By Proposition 1F C (X,F)*((< X >,F)*).
Letae (X,F)* then(a— x) - x€ F and(x — a) — ac F, for all xe X. Forx= 0, we have
a=(0—a) »acF. ThismeangX,F)* C F. ThereforeF = (X,F)*. Using Theorem 3.10,
part 5 [1] we geF C (< X >,F)* C (X,F)* =F. HenceF = (< X >,F)*.

We can similarly prove part 2.

In the following example, we show that in gener@d, F )i # F, where 0c X:

Example 2. Let A= {0,a,b,c,1}. Definex, — as follows:
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Then(A,x,—,A,V,0,1) is a residuated lattice [3]. It is easy to see that {c,1} is a filter and
F 7& {aa b,c, 1} = ({O}7F)>Ik?

Lemma 3. If F is a filter of residuated lattica, then

- (AF)R
- (AF)
. (AF)*

F.
F.
F.

w N

Proof. 1. Using Proposition 1F C (A,F)4. Now leta e (A,F)s. Then(a— x) — x € F, for all
xe A Forx=a a=(a—a) »acF.HenceAF)sCF.
By Lemma 2, we get parts 2. and 3.

Let A be a residuated lattice arXi C A. Then X3 is a filter of A [Theorem 3.4, 1]. Hence
(A XR)R = (A, XR)[ = X&. Therefore, we prove Theorem 4.2 [1] without any condition.

Borumand and Mohtashamnia in Proposition 3.3 (part 4) [@}ed ifh: A— Ais a homomor-
phism anda € Athenh({a})* C {h(a)}*. In the following, we prove a stronger result:

Proposition 2. If h: A— Bis a homomorphism of residuated lattices, then foXadl A:

1. h(X*) Ch(X)*,
2. h(X3) € h(X)z,
3. h(X}) € h(X);.

Proof. 1. Leth: A— B be a homomorphism of residuated lattices Znd A. Considely € h(X*)
then there exista € X* such thay = h(a). Letze h(X) then there existg € X such thaz= h(xo).
Sincea € X* andhis a homomorphism we get

y —z=h(a) — h(Xo) = h(a— Xo) = h(x0) = ,

z—y=nh(x) —h(a)=h(xp —a) =h(a) =Y.
Thereforey € h(X)*.

The proof of parts 2. and 3. is similar to the proof of part 1.
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Lemma 4. If X is a subset of residuated lattiéehen

1. XNX5=0orXNXs = {1},
2. XNX: =0orXnX; = {1},
3. XNX* =0 orXNX* = {1}.

Proof. 1. LetX C Asuch thalX N X3 # 0. Considea € XN X5 thena € X anda— x = X, for all
xe X.Forx=a,wegetl=a—a=a

The proof of parts 2. and 3. is similar to the proof of part 1.

Theorem 4. If F andG are filters of residuated lattiok then

1. FNG= {1} ifand only if F C Gp.
2. FnG={1}ifand only if F C G{.
3. FnG={1}ifand only if F C G*.

Proof. 1. LetF andG be filters of residuated lattick. Considei- NG = {1} anda € F. We have
a,x < (a—Xx) —x forall xe G. Hence(a — x) - x € F NG = {1}. Thereforea — x =X, for

all x e G. This means € Gp.

Conversely, iff C Gi. Then by the above Lemma, (we note that &N G and soGN Gy # 0.)
we haveF NG C GNGk = {1}.

The proof of part 2. is similar to the proof of part 1. Part 3sibbtained from parts 1. and 2. and
G"=GxrNG;.

Using the extension property and the above theorem we obtain

Corollary 3. Let F and G be filters of residuated latticA such thatF NG = {1}. If F is an
(positive) implicative, fantastic, obstinate filter AfthenG is a (positive) implicative, fantastic,
obstinate filter ofA.

Proposition 3. Let A be a residuated latticé, a filter of A andX a subset ofA such that- C X.
Then

1. (X,F)aNX =F,

2. (X,F)inX=F,
3. B3)X,F)* NX=F.

Proof. 1. LetF be a filter of A and X a subset ofA such thatF C X. By Proposition 1 and
assumptionF C (X,F)5NX. Considera € (X,F)5N X thenae X and(a— x) — x € F, for all
x € X. Forx=a, we geta= (a— a) —ac F. Hence(X,F)sn X CF.

2. Itis similar to the proof of part 1.
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3. Consider
(X,F)'nX=(X,F);n(X,F)rNX
= (X,F)[ NF (by part 1.)
= F (by Proposition 1)

Proposition 4. If F is a filter of residuated latticA andX C A, then

1 (X, F)anX,Fla=A,
2. (X,F)i NX,F)i =A
3. (X,F)*NX,F)* = A

Proof. 1. Letac A. Considex € (X,F)sNX. Then(x—y) —»yeF, forally e X andx € X. For
y =Xxwe getx = (X — X) — x € F. Using Lemma 1x < (a — X) — x. Hence(a— X) — X € F,
for all x e (X,F)gNX. Thismeans e ((X,F)gNX,F)g.

The proof of parts 2. and 3. is similar to the proof of part 1.

Theorem 5. If {F}ic is a family of filters of residuated latticd and X C A then\(X,F)g =
(X, NF)R NXF)E = (X NR)E andN(X, F)* = (X,NF)".

Proof.

ac((X,Rreac (X,RiViel
& (a—X) —»xehR,Wxe X, Viel
& (a—Xx) = xe[)R,Vxe X

sac (X,N/)i

We can similarly prove)(X,F){ = (X,NF){. HenceN(X,F)* = (X,NFK)".

Theorem 6. If {F}ic is a chain of filters of residuated lattid¢eandX a finite subset oA, then
UX,F)r = (X,UR)gr, UX,F){ = (X,UR){ andU(X,F)" = (X,UR)".

Proof. Let {F }ic| be a chain of filters anX a finite subset oA. It is easy to see thay, F is

a filter. Leta € |J(X,F)g then there exists € | such thata € (X,F)&. This means there exists
i €| such thatla — x) — x € K, for all xe X. Then(a— x) — x € |JF, for all xe X and so
ac (X,UR)g. Therefore| J(X,F)g C (X,UR)g.

Conversely, led € (X,UF)g. Then(a— x) — x e |JF, for allx € X. SinceX is a finite subset and
{Fi}iel a chain of filters we get there exisiis | such thata — x) — x € Fj, for all x € X. Hence
a€ (X,Fj), for somej € | and soa € U(X,F)g. Therefore,(X,UR)g € U(X,F)g. . Similarly
UX,R)f = (X,UR);. Therefore] J(X,F)* = (X,UR)*.
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Corollary 4. ((X,—)&.N), (X,—){,N) and((X,—)x,N), are meet semi-lattices where,
Fil(A)}, Fil (A) ={F | Fisa filter of A} andX a subset of residuated latti¢e

Proposition 5. If F is a filter of residuated latticd andX,Y C Athen(X,F)gN (Y,F)g = (XU
Y,F)& X F)EN(Y,F)f = (XUY,F)gand(X,F)" N (Y,F)" = (XUY,F)*.
Proof.
e (X,F)rN(Y,F)g<& (a— x) > xe Fvxe Xand(a— x) - xe F,¥xeY
< (a—X) > xe Fv¥xe XUY
< ac (XUY,F)i
We can similarly provéX,F); N (Y,F); = (XUY,F)gand so(X,F) N (Y,F)" = (XUY,F)*.

Corollary 5. ((—,F)g,N), ((—,F)f,N) and((—,F)*,N) are meet [{-???? HUH?] semi-lattices,
whereF is a filter of residuated latticé and(—,F )5 = {(X,F)& | X C A}, (—,F){ ={(X,F){ |
X C A} and(—,F)* = {(X,F)* | X C A}.

Theorem 7. If F andG are filters of residuated lattioc®andX C A, then

!

A/X,FNG)r=A/(X.F)i [ A/(X,G)x,

whereA/(X,F)x al A/(X,G)r={XxFrNMxex | XxrzNVxey;# 0}
Proof. Let [X|(x Fra); € A/(X;FNG)g. Then
[x](XFmG . ={yeA|x—ye (X,FNG)gand y— xe (X,FNG)i}
={yeA|x—=ye (X,F)gN(X,G)gand y— x e (X,F)gN(X,G)g} (by Theorem 5)
={yeA|x—yand y—Xxe (X,F)E}ﬂ{ye A|x—yand y—xe (X,G)xr}
=NxrpNNxoep
HenceA/(X,FNG)g C A/(X,F)i ﬂ A/(X,G)k. Now, if [X](X’F)*Rm M(x,e); e A/(X,F)i ﬂ/
A/(X,G)rthen[X|x k). N[YIx c); # 0- Letze [X|ix r);, N Yl x,0)- HencelZx k), = [X|x r), and
[Z](KG)E = M(xg)*R- Therefore,
XxFNMxer = [dxrNdxe): = ZxFnexk

This meangX|x r), N [Ylx.c); € A/(X,FNG)i. HenceA/(X,F)z N A/(X, G)r CA/(X,FN
Gk
Lemma 5. Let F andG be filters of residuated latticesandB then

FxG={(ab)jc AxB|acF and be G}
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is a filter of A x B where

d) = (aAnc,bAd)
V(c,d) =(avc,bvd)
(c,d)=(a—c,b—d)
c,d) = (axc,bxd)
(c,d)<a<candb<d

for alla,c € Aandb,d € B.

Lemma 6. If X,Y are subsets of residuated lattioksind B, respectively andr € Fil (A), G €
Fil (B) then

. (XxY,FxG)ig=

1 (X,
2. (XxY,F xG)f =
3

X,F)gx (Y,G)k.
X,F)l %

X, F)Lx (Y, ).
(X xY,FxG)" = (X,F)*x (Y,G)*.
Proof
(XxY,FxG)g={(ab) e AxB| ((a,b) = (xy)) = (Xy) € F x G,V(X,y) € X x Y}
={(ab)c AxB|((a—=X) =X (b—y) =y e FxGV(Xy € XxY}
={(ab)c AxB|(a—X) »xeF (b—y) —»yeG¥xeXandvycY}
={(a,b) e AxBlae (X,F)gand be (Y,G)g} = (X,F)g x (Y,G)&

We can similarly prove parts 2. and 3.

Theorem 8. If X,Y are subsets of residuated lattic®sind B, respectively andr € Fil (A), G €
Fil (B) then
AxB/(XXY,FxG)r= (A/(X,F)r) x (B/(Y,G)r).

Proof. We define¥ : Ax B — (A/(X,F)g) x (B/(Y,G)g) such thatV(a,b) = ([a], [b]). Itis easy
to see that! is a well-defined and onto homomorphism. Consider

Using Homomorphism Theorem and the above LerdmaB/(X x Y,F x G)5 = (A/(X,F)R) X
(B/(Y,G)r).
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4. Conclusion

Borumand and Mohtashamnia in [1] introduced the notion ef {fight and left) stabilizer in
residuated lattices. They proved some theorems whichrdieterthe relationship between this
notion and some types of filters in residuated lattices. is plaper, we corrected and promoted
some theorems in [1] with the improvement of their condiian addition to obtaining some
results on stabilizers in residuated lattices.
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