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Abstract 

In this study, effects of operator splitting methods to the solution of advection-diffusion equation are examined. 

Within the context of this work two operator splitting methods, Lie-Trotter and Strang splitting methods were used 

and comparisons were made through various Courant numbers. These methods have been implemented to 

advection-diffusion equation in one-dimension. Numerical solutions of advection and dispersion processes were 

carried out by a characteristics method with cubic spline interpolation (MOC-CS) and Crank-Nicolson (CN) finite 

difference scheme, respectively. Obtained results were compared with analytical solutions of the problems and 

available methods in the literature. It is seen that MOC-CS-CN method has lower error norm values than the other 

methods. MOC-CS-CN produces accurate results even while the time steps are great. 

Keywords: Advection-diffusion equation, Operator splitting methods, Method of characteristics, Finite difference 

1. Introduction 

Rivers, lakes and other natural waters have been the drain place of urban and industrial wastes 

since the early days of civilization. In the early days, the amount and composition of these 

wastes were not at very important levels, so they did not have a negative effect on aquatic 

environments. However, rapid population growth, rising living standards and the development 

of the industry have led to an increase in the amount of pollution discharged into the aquatic 

environment. In order to reduce or eliminate this pollution, the pollutant transport processes 

represented by the advection-diffusion equation should be well understood and the processes to 

be carried out should be adapted to the nature of these processes [1]. The one-dimensional 

mathematical expression of the advection-diffusion equation without the source term is as 

follows 

𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑥
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
 (1) 

Where 𝑡 is time, 𝑥 is spatial coordinate, 𝐶 is concentration of substance, 𝑈 is velocity of the 

flow and 𝐷 is diffusion coefficient. We denote the spatial and temporal step sizes by ∆𝑥 and 

∆𝑡, respectively. Also Courant number, Cr, is computed as 𝑈∆𝑡/∆𝑥 and the Peclet number, Pe, 

is obtained as 𝑈∆𝑥/𝐷𝑥. 
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Although advection and diffusion are simultaneous processes, they have very different effects 

on mass transport. The advection process is only influenced by the past, and it occurs along the 

characteristic line. However, the diffusion process takes place between the characteristic lines, 

which will be influenced by both the past and present conditions. This means that there is a 

need for a numerical method that simultaneously solves both hyperbolic term (advection) and 

parabolic term (dispersion). There is no numerical method that can completely overcome of this 

problem [2]. So the great effort has been made on developing the efficient and stable numerical 

techniques. 

Holly and Usseglio-Polatera [3] developed a sensitive numerical method to model the 

contaminant dispersion in two-dimensional tidal currents. This method uses the approach of 

high-order bi-cubic Hermite interpolation with characteristics in the solution of the advection 

part. The Crank-Nicolson scheme was used for the diffusion part in the study. Chen and 

Falconer [4] used a modified QUICK finite difference scheme for water quality modeling in 

rivers and coastal waters. Also, they did stability analysis of the modified method. Szymkiewicz 

[5] solved advection-diffusion equation with the help of Lie-Trotter operator splitting method. 

Cubic spline interpolation and standard Galerkin finite element method were used for advection 

and diffusion processes, respectively. Ahmad and Kothyari [6] proposed a new numerical 

scheme for the solution of the pure advection process. The basis of the proposed method is 

based on the backward time-line characteristics approach. Tsai et al. [7] investigated effects of 

the endpoint constraints which are used in the characteristics method with cubic spline 

interpolation, on the solution of advection process. Verma et al. [8], with the help of Lie-Trotter 

operator splitting method, used the MacCormack scheme and the Crank-Nicolson finite 

difference scheme for the solution of the advection and diffusion processes, respectively. Tian 

and Ge [9] have developed an exponential fourth-order compact alternating direction implicit 

method in which Crank-Nicolson scheme used for time discretization and an exponential 

fourth-order compact difference formula used for spatial discretization. Sari et al. [10] proposed 

high-order finite difference schemes for the solution of a one-dimensional advection-diffusion 

equation. Schemes are derived from Taylor series expansion. To get the solutions, they have 

integrated the fourth-order Runge-Kutta scheme in time with the finite difference schemes up 

to the tenth order in space. Gurarslan et al. [11] have produced numerical solutions to a one-

dimensional advection-diffusion equation using a Runge-Kutta scheme of fourth-order and a 

compact finite difference scheme of sixth-order in space. In the study by Gurarslan [12], 

numerical simulations of the advection-dispersion equation were performed with high-order 

compact finite difference schemes. Compact finite difference schemes were used in conjunction 

with MacCormack and Runge-Kutta schemes to obtain solutions with the accuracy of sixth-

order. 

In this study, appropriate schemes will be used for the physical structures of the advection-

diffusion problem. Advection process and diffusion process will be solved by characteristics 

method with cubic spline interpolation (MOC-CS) and the Crank-Nicolson scheme (CN), 

respectively. These two different methods will be combined through operator splitting methods. 

For this purpose, first-order Lie-Trotter and second-order Strang-Marchuk operator splitting 

methods which are frequently used in the literature were chosen and effects of them on the 

solution will be examined for a one-dimensional problem with sharp structure. The obtained 

results will be compared with the analytical solution of the test problem and the results in the 

literature. 
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2. Solution Procedures with Different Operator Splitting Methods 

The mathematical representations of Lie-Trotter and Strang-Marchuk operator splitting 

methods and when they are applied to advection-diffusion equation, solution procedures will 

be explained in the next sections. 

2.1. Lie-Trotter Operator Splitting Method 

The Lie-Trotter operator splitting method is a first-order operator splitting method and named 

as a sequential splitting method. By applying this method to the advection-diffusion equation, 

the problem is divided into two sub-problems: advection and diffusion. The application of the 

Lie-Trotter separation method to Eq. (1) is as follows 

𝜕�̂�1

𝜕𝑡
+ 𝑈

𝜕�̂�1

𝜕𝑥
= 0, �̂�1(𝑡𝑛, 𝑥) = 𝐶(𝑡𝑛, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (2) 

𝜕�̂�2

𝜕𝑡
= 𝐷𝑥

𝜕2�̂�2

𝜕𝑥2
, �̂�2(𝑡𝑛, 𝑥) = �̂�1(𝑡𝑛+1, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (3) 

Where �̂�1  is the concentration in the advection process and �̂�2  is the concentration in the 

diffusion process. Eq. (2) and Eq. (3) represents the pure advection equation and diffusion 

equation, respectively. In the solution process, Eq. (2) will be solved for a time interval of ∆𝑡 

using the initial condition of Eq. (1). The result obtained from there will be the initial condition 

of Eq. (3). Then Eq. (3) will be solved for a time interval of ∆𝑡 and the solution of Eq. (1) will 

be obtained for a time interval ∆𝑡 . Thus, the problems will be solved consecutively by 

combining them with the initial conditions [13]. 

2.2. Strang-Marchuk Operator Splitting Method 

The Strang-Marchuk operator splitting method is a second-order operator splitting method. By 

applying this method to Eq. (1), the problem will be divided into two sub-problems, namely 

advection and diffusion, similar to the Lie-Trotter operator splitting method. But this time these 

sub-problems will be solved in three steps in total. The application of the Strang-Marchuk 

opeator splitting method to Eq. (1) is as follows 

𝜕�̂�1

𝜕𝑡
+ 𝑈

𝜕�̂�1

𝜕𝑥
= 0, �̂�1(𝑡𝑛, 𝑥) = 𝐶(𝑡𝑛, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1/2] (4) 

𝜕�̂�2

𝜕𝑡
= 𝐷𝑥

𝜕2�̂�2

𝜕𝑥2
, �̂�2(𝑡𝑛, 𝑥) = �̂�1(𝑡𝑛+1/2, 𝑥), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] (5) 

𝜕�̂�1

𝜕𝑡
+ 𝑈

𝜕�̂�1

𝜕𝑥
= 0, �̂�1(𝑡𝑛+1/2, 𝑥) = �̂�2(𝑡𝑛+1, 𝑥), 𝑡 ∈ [𝑡𝑛+1/2, 𝑡𝑛+1] (6) 

Where Eq. (4) will be solved for a time interval of ∆𝑡/2 using the initial condition of Eq. (1). 

The solution of Eq. (4) will be used as the initial condition of Eq. (5) and Eq. (5) will be solved 

for a time interval of ∆𝑡. The obtained result of Eq. (5) will be the initial condition of Eq. (6). 

Lastly, Eq. (6) will solved for a time interval of ∆𝑡/2. Thus, the solution of Eq. (1) will be 

obtained for a time interval of ∆𝑡 [13]. 
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3. Method of Characteristics for Advection Process 

The method of characteristics approach is frequently used in the solution of advection process. 

This is because as the other schemes it does not have time and spatial discretization errors but 

only the error of the interpolation method. This is achieved by converting the pure advection 

equation in Eq. (2) into two ordinary differential equations. If both sides of Eq. (2) are 

multiplied by 𝑑𝑡, this equation can be written in total derivative form. In this case, Eq. (2) can 

be represented by the following two ordinary differential equations. 

 
Fig. 1. Finite difference grid structure and trajectory of concentration particle in one-dimension 

 

𝑑�̂�1

𝑑𝑡
= 0 (7) 

𝑑𝑥

𝑑𝑡
= 𝑈 (8) 

 

Integration of the Eq. (7) and Eq. (8) yields 

 

�̂�1|
�̂�,𝑛

= �̂�1|
𝑖+1,𝑛+1

 (9) 

 

Along 

𝑥𝑖+1 − �̂� = 𝑈∆𝑡 = 𝐶𝑟∆𝑥 (10) 

 

When the finite difference grid structure is generated for solution domain as can be seen from 

Fig. 1, each node representing concentration value can be taken as a concentration particle. We 

know the concentration particle moves with the velocity of the flow in the advection process, 

so we can follow its trajectory which is given by Eq. (8) and can be seen in Fig. 1. �̂�1|
𝑖+1,𝑛+1

 is 

the concentration value that needs to be calculated. �̂�1|
�̂�,𝑛

 is the concentration value at point �̂� 

between nodes. As we know from Eq. (9) those values are equal. Therefore we need an 

interpolation method to calculate the concentration value at �̂� by using the concentration values 

at all nodal points at time level 𝑛. The accuracy of the solution depends on the order of the 

 

2i   1i  i  1i  2i   

1n  
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interpolation method. In this study cubic spline interpolation method is picked because of its 

high-order accuracy [22]. 

Cubic splines use third-order polynomials generated at each interval for interpolation. Suppose 

there are 𝑀 + 1 data points (𝑥1, �̂�1|
1,𝑛

) , … , (𝑥𝑀+1, �̂�1|
𝑀+1,𝑛

) so that there are 𝑀 intervals and 

thus 𝑀 cubic polynomials. The general expression a cubic polynomial is as follows 

 

𝑃𝑖(𝑥) = 𝛼𝑖 + 𝛽𝑖(𝑥 − 𝑥𝑖) + 𝛾𝑖(𝑥 − 𝑥𝑖)
2 + 𝜃𝑖(𝑥 − 𝑥𝑖)3,     𝑖 = 1,2, … , 𝑀 (11) 

 

Where 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝜃𝑖  are the coefficients that should be calculated. Since we have 𝑀  cubic 

polynomials and there are 4 unknown coefficients in each polynomial, we need 4𝑀 equations 

so that these coefficients can be calculated. These equations derived based on the adjacent 

splines agree at interior knots and also first and second derivatives of the adjacent splines agree 

at interior knots. 

𝑃𝑀(𝑥𝑀+1) = �̂�1|
𝑀+1,𝑛

 (12) 

𝑃𝑖(𝑥𝑖) = �̂�1|
𝑖,𝑛

, 𝑖 = 1,2, … , 𝑀 (13) 

The established polynomials must provide the concentration values at those points as stated in 

Eq. (12) and Eq. (13). 

 

𝑃𝑖(𝑥𝑖+1) = 𝑃𝑖+1(𝑥𝑖+1), 𝑖 = 1,2, … , 𝑀 − 1 (14) 

𝑃𝑖
′(𝑥𝑖+1) = 𝑃𝑖+1

′ (𝑥𝑖+1), 𝑖 = 1,2, … , 𝑀 − 1 (15) 

𝑃𝑖
′′(𝑥𝑖+1) = 𝑃𝑖+1

′′ (𝑥𝑖+1), 𝑖 = 1,2, … , 𝑀 − 1 (16) 

 

Eqs. (14-16) represent the equality of the concentration values and first and second derivatives 

of polynomials at interior knots of adjacent splines. In this way 4𝑀 − 2 equations are created. 

The last 2 equations that we need will be obtained from the boundary condition. As we know 

there are various boundary conditions, the natural boundary condition will be used in this study. 

 
𝑃1

′′(𝑥1) = 0

𝑃𝑀
′′(𝑥𝑀+1) = 0

 (17) 

 

Eq. (17) represents the assumptions made in the natural boundary condition. The second 

derivative in the first and last points equals to zero. Thus 4M equations are obtained. First, 

𝑃𝑖(𝑥𝑖) = 𝛼𝑖 (𝑖 = 1,2, … , 𝑀) found from Eq. (11). By integrating this with Eq. (13) 

 

𝛼𝑖 = �̂�1|
𝑖,𝑛

, 𝑖 = 1,2, … , 𝑀 
(18) 

 

Eq. (18) obtained. We define the distance between the nodes as ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 (𝑖 = 1,2, … , 𝑀) 

and the following equations are obtained when all unknown coefficients are written in 𝛾. 
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𝛾1 = 0

𝛾𝑖−1ℎ𝑖−1 + 2𝛾𝑖(ℎ𝑖 + ℎ𝑖−1) + 𝛾𝑖+1ℎ𝑖 = 𝐾1 − 𝐾2,   𝑖 = 2,3, … , 𝑀
𝛾𝑀+1 = 0

 (19) 

Where 

 

𝐾1 =
3 (�̂�1|

𝑖+1,𝑛
− �̂�1|

𝑖,𝑛
)

ℎ𝑖
 (20) 

𝐾2 =
3 (�̂�1|

𝑖,𝑛
− �̂�1|

𝑖−1,𝑛
)

ℎ𝑖−1
 (21) 

 

As seen in Eq. (19), the first and last 𝛾  coefficients are calculated by natural boundary 

condition. The 𝛾 coefficients at the other points form a tri-diagonal matrix system consisting of 

𝑀 − 1 equations. As this system can effectively be solved by the Thomas algorithm, the 𝛾 

coefficients at all points are calculated easily. The values of 𝛼 coefficients are given in Eq. (18). 

The calculations of the remaining 𝛽 and 𝜃 coefficients with the help of the 𝛾 coefficients are as 

follows 

 

𝛽𝑖 =
�̂�1|

𝑖+1,𝑛
− �̂�1|

𝑖,𝑛

ℎ𝑖
−

1

3
(2𝛾𝑖 + 𝛾𝑖+1)ℎ𝑖 , 𝑖 = 1,2, … , 𝑀 (22) 

𝜃𝑖 =
𝛾𝑖+1 − 𝛾𝑖

3ℎ𝑖
, 𝑖 = 1,2, … , 𝑀 (23) 

 

Thus, a total of 𝑀 cubic polynomials are obtained. A detailed description of the arrangements 

is available from the work of Esfandiari [14]. 

4. Crank-Nicolson Scheme for Diffusion Process 

The Crank-Nicolson scheme is an implicit scheme and gives quite accurate results in the 

solution of the diffusion equation. The application to the diffusion equation given in Eq. (3) is 

as follows 

 

�̂�2|
𝑖,𝑛+1

− �̂�2|
𝑖,𝑛

∆𝑡

=
𝐷

2(∆𝑥)2
(�̂�2|

𝑖+1,𝑛
− 2�̂�2|

𝑖,𝑛
+ �̂�2|

𝑖−1,𝑛
)

+
𝐷

2(∆𝑥)2
(�̂�2|

𝑖+1,𝑛+1
− 2�̂�2|

𝑖,𝑛+1
+ �̂�2|

𝑖−1,𝑛+1
) 

(24) 
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The values at time level 𝑛 are known and the values at time level 𝑛 + 1 are unknown. By 

gathering the known values to the right side and the unknown values to the left side in the Eq. 

(24), the following equation is obtained. 

 

𝑎𝑖�̂�2|
𝑖−1,𝑛+1

+ 𝑏𝑖�̂�2|
𝑖,𝑛+1

+ 𝑐𝑖�̂�2|
𝑖+1,𝑛+1

= 𝑓𝑖 (25) 

 

The coefficients in Eq. (25) 

 

𝑎𝑖 =
𝐷∆𝑡

2(∆𝑥)2
 (26) 

𝑏𝑖 = −
𝐷∆𝑡

(∆𝑥)2
− 1 (27) 

𝑐𝑖 =
𝐷∆𝑡

2(∆𝑥)2
 (28) 

𝑓𝑖 = −�̂�2|
𝑖,𝑛

−
𝐷∆𝑡

2(∆𝑥)2
(�̂�2|

𝑖+1,𝑛
− 2�̂�2|

𝑖,𝑛
+ �̂�2|

𝑖−1,𝑛
) (29) 

 

Eq. (25) forms a tridiagonal system of equations. This system can be solved effectively by the 

Thomas algorithm [15]. 

5. Numerical Application 

In this section, a sharp structure one-dimensional advection-diffusion equation will be solved 

with different operator splitting methods which combine MOC-CS and CN. Effects of operator 

splitting methods will be examined for various Courant numbers. Obtained results will be 

compared with solutions available in the literature and exact solution. In addition, the accuracy 

of the methods will be evaluated by calculating the error norms. The error norms are calculated 

as follows. 

 

𝐿∞ = max
𝑖

|𝐶𝑖
𝑒𝑥𝑎𝑐𝑡 − 𝐶𝑖

𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙| 
(30) 

𝐿2 = √ ∑ |𝐶𝑖
𝑒𝑥𝑎𝑐𝑡 − 𝐶𝑖

𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|
2

𝑀+1

𝑖=1

 (31) 

 

Example: Velocity of the flow and diffusion coefficient are taken as 𝑈 = 0.01 𝑚/𝑠 and 𝐷 =
0.002 𝑚2/𝑠  in this experiment. Length of the channel picked as 𝐿 = 100 𝑚 . The analytic 

solution of this problem can be obtained by solving the following equation [5]. 

 

𝐶(𝑥, 𝑡) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥 − 𝑈𝑡

√4𝐷𝑡
) +

1

2
𝑒𝑥𝑝 (

𝑈𝑥

𝐷
) 𝑒𝑟𝑓𝑐 (

𝑥 + 𝑈𝑡

√4𝐷𝑡
) (32) 
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The used boundary conditions in the solution are as follows 

 

𝐶(0, 𝑡) = 1 (33) 

−𝐷 (
𝜕𝐶

𝜕𝑥
) (𝐿, 𝑡) = 0 (34) 

 
Fig. 2. Comparison of the exact and the numerical solution obtained with MOC-CS-CN method for 

∆𝑥 = 1 𝑚 and ∆𝑡 = 10 𝑠 

Initial condition of the problem can be obtained from the exact solution. In all calculations 

spatial step size picked as ∆𝑥 = 1 𝑚. Fig. 2 shows that comparison of exact solution and 

numerical solution with MOC-CS-CN method for time interval of ∆𝑡 = 10. As it clearly can 

be seen there is an excellent agreement between numerical solution and exact solution. As 

shown in Fig. 2, when the maximum calculation time is 3000 𝑠, the critical concentration 

values are between 18 and 42 𝑚. Therefore, the values at these points will be compared. 

Since the problem has a sharp structure, obtaining close results to the analytical solution is very 

difficult. For this reason, calculations start from a small time interval. The calculations in Table 

1 were made for ∆𝑡 = 1. Almost all of the methods have found the same values as the analytical 

solution. There is also no visible difference between operator splitting methods. For this reason, 

the time interval will be gradually enlarged until this difference appears to be clear. 

The calculations in Table 2 were made for ∆𝑡 = 10. This small change in time interval is 

enough for other methods to start to get away from the analytical solution. When the calculated 

concentration values are compared it seems clear that the MOC-CS-CN method has the closest 
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results to the analytical solution and lowest error norms for both operator splitting methods. 

Thus, it has become clear how effective is the MOC-CS-CN method in sharp problems. In 

addition, the effect of operator splitting methods on the solution seems to appear. 

Table 1. Comparison of obtained solution with exact and numerical solutions in the literature 

(∆𝑡 = 1 𝑠)  

x (m) 

[12] 

MC-

CD6 

[11] 

RK4-CD6 

[16] 

CuTBSM 

MOC-CS-CN 

Exact 
Lie-Trotter Strang 

0 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 1.000 1.000 1.000 1.000 1.000 

19 0.999 0.999 0.999 0.999 0.999 0.999 

20 0.998 0.998 0.998 0.998 0.998 0.998 

21 0.996 0.996 0.996 0.996 0.996 0.996 

22 0.991 0.991 0.991 0.990 0.990 0.991 

23 0.982 0.982 0.982 0.981 0.981 0.982 

24 0.964 0.964 0.964 0.963 0.963 0.964 

25 0.935 0.934 0.934 0.933 0.933 0.934 

26 0.889 0.889 0.888 0.888 0.888 0.889 

27 0.824 0.823 0.822 0.823 0.823 0.823 

28 0.739 0.738 0.736 0.738 0.738 0.738 

29 0.637 0.636 0.635 0.635 0.635 0.636 

30 0.523 0.523 0.522 0.522 0.522 0.523 

31 0.408 0.408 0.408 0.408 0.408 0.408 

32 0.301 0.301 0.301 0.301 0.301 0.301 

33 0.208 0.208 0.208 0.209 0.209 0.208 

34 0.135 0.135 0.136 0.137 0.137 0.135 

35 0.082 0.082 0.082 0.084 0.084 0.082 

36 0.047 0.046 0.046 0.048 0.048 0.046 

37 0.025 0.024 0.024 0.026 0.026 0.024 

38 0.012 0.012 0.012 0.013 0.013 0.012 

39 0.005 0.005 0.005 0.006 0.006 0.005 

40 0.002 0.002 0.002 0.003 0.003 0.002 

41 0.001 0.001 0.001 0.001 0.001 0.001 

42 0.000 0.000 0.000 0.000 0.000 0.000 

L2 0.0017 0.0017 - 0.0046 0.0046 - 

L∞ 0.0008 0.0008 - 0.0019 0.0019 - 

 

The calculated 𝐿∞ error values are compared with other errors in the literature for different time 

intervals in Table 3. Except for the error of extended cubic B-spline collocation method at ∆𝑡 =
1 𝑠, MOC-CS-CN always has smaller error values. In addition, the increase of the time interval 

makes the effect of the operator splitting method more noticeable. It is clear that the Strang 

splitting method improves the quality of the solution. 
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Table 2. Comparison of obtained solution with exact and numerical solutions in the literature 

(∆𝑡 = 10 𝑠)  

x (m) 

[12] 

MC-

CD6 

[11] 

RK4-CD6 

[16] 

CuTBSM 

MOC-CS-CN 

Exact 
Lie-Trotter Strang 

0 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 1.000 1.000 1.000 1.000 1.000 

19 0.999 0.999 0.999 0.999 0.999 0.999 

20 0.998 0.998 0.998 0.998 0.998 0.998 

21 0.996 0.996 0.996 0.996 0.996 0.996 

22 0.991 0.992 0.991 0.991 0.991 0.991 

23 0.982 0.982 0.982 0.981 0.981 0.982 

24 0.965 0.965 0.963 0.963 0.963 0.964 

25 0.936 0.936 0.933 0.934 0.934 0.934 

26 0.891 0.891 0.885 0.889 0.889 0.889 

27 0.827 0.827 0.818 0.824 0.824 0.823 

28 0.743 0.743 0.732 0.739 0.739 0.738 

29 0.642 0.641 0.631 0.637 0.637 0.636 

30 0.529 0.528 0.517 0.525 0.524 0.523 

31 0.414 0.413 0.404 0.410 0.410 0.408 

32 0.306 0.306 0.298 0.303 0.302 0.301 

33 0.213 0.212 0.207 0.211 0.210 0.208 

34 0.138 0.138 0.134 0.138 0.138 0.135 

35 0.084 0.084 0.081 0.085 0.084 0.082 

36 0.048 0.048 0.045 0.049 0.049 0.046 

37 0.025 0.025 0.023 0.026 0.026 0.024 

38 0.012 0.012 0.011 0.013 0.013 0.012 

39 0.006 0.006 0.005 0.006 0.006 0.005 

40 0.002 0.002 0.002 0.003 0.003 0.002 

41 0.001 0.001 0.001 0.001 0.001 0.001 

42 0.000 0.000 0.000 0.000 0.000 0.000 

L2 0.0148 0.0142 - 0.0073 0.0064 - 

L∞ 0.0060 0.0055 - 0.0028 0.0025 - 

 

Table 3. Comparison of 𝐿∞ error norms (∆𝑥 = 1 𝑚) 

∆t (s) 

[17] MOC-CS-CN 

BSCM ECuBSCM 
Lie-

Trotter 
Strang 

60 0.04330 0.04250 0.01942 0.01180 

30 0.01962 0.01961 0.00828 0.00567 

20 0.01270 0.01260 0.00512 0.00376 

10 0.00685 0.00608 0.00284 0.00251 

5 0.00409 0.00307 0.00222 0.00212 

1 0.00224 0.00127 0.00188 0.00187 
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The calculations in Table 4 were made for ∆𝑡 = 60. Examining Table 4, it can be seen that 

none of the methods have found close results to the exact solution. This indicates that selected 

time interval is quite large. When the results of the operator splitting methods are compared, 

the improvement provided by the Strang operator splitting method is clearly visible. But this 

improvement was not enough. 

Table 4. Comparison of obtained solution with exact and numerical solutions in the literature 

(∆𝑡 = 60 𝑠)  

x (m) 
[18] 

MOCS 

[5] 

MOCG 

[19] 

CBSG 

[20] [21] MOC-CS-CN 
Exact 

FEMLSF FEMQSF TC TG Lie-Trotter Strang 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

19 1.000 0.999 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999 

20 1.000 0.998 0.999 0.999 1.000 0.999 0.998 0.998 0.998 0.998 

21 1.000 0.996 0.996 0.997 0.999 0.999 0.996 0.996 0.996 0.996 

22 1.000 0.990 0.991 0.993 0.996 0.998 0.991 0.992 0.991 0.991 

23 1.000 0.978 0.981 0.985 0.989 0.994 0.980 0.983 0.982 0.982 

24 1.000 0.957 0.961 0.970 0.974 0.987 0.960 0.967 0.965 0.964 

25 1.000 0.922 0.927 0.943 0.946 0.972 0.926 0.940 0.937 0.934 

26 0.996 0.870 0.874 0.902 0.900 0.945 0.874 0.897 0.893 0.889 

27 1.013 0.799 0.800 0.842 0.832 0.902 0.800 0.836 0.830 0.823 

28 1.047 0.708 0.706 0.763 0.743 0.838 0.705 0.754 0.747 0.738 

29 0.897 0.602 0.596 0.666 0.638 0.755 0.595 0.654 0.647 0.636 

30 0.457 0.488 0.479 0.556 0.524 0.653 0.479 0.542 0.535 0.523 

31 0.067 0.375 0.366 0.442 0.411 0.541 0.366 0.427 0.420 0.408 

32 -0.036 0.272 0.265 0.332 0.306 0.427 0.264 0.318 0.312 0.301 

33 -0.010 0.185 0.181 0.235 0.218 0.320 0.181 0.222 0.218 0.208 

34 0.002 0.118 0.118 0.156 0.147 0.227 0.117 0.146 0.143 0.135 

35 0.000 0.070 0.072 0.096 0.095 0.152 0.072 0.090 0.088 0.082 

36 0.000 0.038 0.042 0.055 0.058 0.096 0.041 0.052 0.051 0.046 

37 0.000 0.020 0.023 0.030 0.034 0.057 0.023 0.028 0.027 0.024 

38 0.000 0.009 0.012 0.015 0.019 0.032 0.012 0.014 0.014 0.012 

39 0.000 0.004 0.006 0.007 0.010 0.017 0.006 0.007 0.006 0.005 

40 0.000 0.002 0.003 0.003 0.005 0.008 0.002 0.003 0.003 0.002 

41 0.000 0.001 0.001 0.001 0.003 0.004 0.001 0.001 0.001 0.001 

42 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000 

L2 - - - - - - - 0.0479 0.0300 - 

L∞ - - - - - - - 0.0194 0.0118 - 

 

6. Conclusions 

This paper deals with the solution of advection-diffusion equation based on operator splitting 

approach. Two different operator splitting methods were used such as Lie-Trotter and Strang-

Marchuk. The solutions of advection process and diffusion process were obtained by the 

method of characteristics with cubic spline and Crank-Nicolson scheme, respectively. These 

two different methods integrated through operator splitting methods and effects of them on the 

solution examined by a one-dimensional advection-diffusion problem which has a sharp 
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structure. The examination has been done by comparing error norm values and comparison with 

other results available in the literature. As a result, the MOC-CS-CN method achieved very 

good results. It has almost identical results when ∆𝑡 is small. Also it has been observed that the 

Strang operator splitting method improves the quality of the result when the time interval 

increases. In future studies, it is considered to extend this method to multi-dimensional 

problems by operator splitting methods. 
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