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 Wind power generation forecasting is crucial for the optimal integration of renewable 

energy sources into power systems. Traditional forecasting methods often struggle to 

accurately predict wind energy production due to the complex and nonlinear 

relationships between wind speed, weather parameters, and power output. In recent 

years, deep learning techniques have emerged as promising alternatives for wind power 

forecasting. This paper presents a review of the deep learning technique for wind power 

forecasting with a special focus on Long Short-Term Memory (LSTM) networks for 

short-term wind energy production prediction. This paper demonstrates the effectiveness 

of LSTM networks in capturing temporal dependencies in wind data and improving 

forecast accuracy. The study provides high accuracy prediction to improve the 

integration of wind energy into power systems and reduce energy costs.        
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1. Introduction 

Wind energy is an important component of the shift 

to more sustainable energy systems, providing a 

renewable and ecologically beneficial alternative to 

traditional fossil fuel-based power generation [1]. 

However, the variable and intermittent nature of wind 

presents considerable issues for power system 

managers, needing precise forecasting of wind 

energy generation [2]. Traditional forecasting 

methods, such as statistical and physical models, 

frequently fail to capture the intricate dynamics of 

wind behavior, yielding unsatisfactory results [3]. 

Deep learning techniques, a subset of machine 

learning approaches inspired by the structure and 

function of the human brain, are increasingly popular 

in a variety of sectors, including wind power 

generation forecasts. Among deep learning 
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architectures, LSTM networks have demonstrated 

potential in capturing long-term dependencies in 

sequential data, making them ideal for time series 

forecasting tasks like wind power prediction [4]. The 

purpose of this work is to discuss the most recent 

advances in LSTM-based approaches for forecasting 

wind power generation and provide insights into their 

efficacy and prospective applications [5]. Recent 

advances in wind power generation forecasting, 

notably the use of LSTM deep learning techniques, 

highlight the importance of this field in incorporating 

renewable energy into the power grid [6]. Scholars 

have worked extensively to improve forecasting 

models' accuracy and dependability, with major 

contributions by Zhao et al. [7] and Li et al. [8], who 

proposed hybrid and attention-based LSTM models, 

respectively. 
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Sørensen et al. [9] and Liu et al. [10] highlight the 

importance of understanding the link between model 

complexity, data availability, and forecasting 

accuracy. Traditional forecasting methods frequently 

fail to capture complicated wind data correlations, 

spurring the use of deep learning systems such as 

LSTMs, which automatically learn non-linear 

relationships without requiring manual feature 

engineering [11]. 

LSTMs avoid standard recurrent neural network 

constraints, such as the vanishing gradient problem, 

and can learn long-term dependencies in wind data 

[12, 13]. Despite its promise, LSTMs require a lot of 

high-quality data to train effectively [14]. 

The importance of wind power forecasting in 

renewable energy integration is demonstrated by 

studies on storage technologies and deployment 

restrictions [14, 15]. Recent research, including work 

by Taylor and McSharry [16], Liu et al. [17], and 

Chen et al. [18], has demonstrated the efficiency of 

LSTM networks in collecting wind data temporal 

patterns. 

To summarize, recent advances in LSTM networks 

show great potential for improving wind power 

generation forecasting accuracy and facilitating the 

transition to a sustainable energy future, despite 

persistent hurdles. This article is organized as 

follows. In Chapter 2, preliminary information 

regarding LSTM and its architecture is provided. In 

Chapter 3, data was analyzed to estimate wind power 

using LSTM. Initially, wind turbine data was studied. 

The projected and actual values were compared using 

one-day consumption data. In Section 4, the 

simulation and prediction outcomes are assessed. 

2. Long Short-Term Memory (LSTM) 

Architecture  

LSTM is a type of recurrent neural network (RNN) 

architecture specifically designed to address the 

vanishing gradient problem and capture long-term 

dependencies in sequential data [19]. Unlike 

traditional RNNs, LSTM networks incorporate 

memory cells and gates to selectively retain and 

forget information over time, allowing them to 

effectively learn and remember patterns in time-

series data. The key components of an LSTM unit 

include the input gate, forget gate, memory cell, and 

output gate, each serving a unique role in processing 

sequential inputs and updating the network's internal 

state [20]. By learning to maintain and update 

memory over extended time periods. 

• Cell State: Known as the "memory," it flows 

horizontally through the network, preserving 

information across time steps and aiding in 

learning and retaining information over long 

sequences.  

• Forget Gate: Implemented as a sigmoid 

layer, it determines which information in the 

cell state to discard based on the previous 

hidden state and current input, allowing for 

selective retention or forgetting. 

• Input Gate: Composed of a sigmoid layer for 

deciding which new information to store in 

the cell state and a tanh layer for generating 

new candidate values to add to the cell state, 

facilitating the incorporation of relevant new 

information. 

• Output Gate: This sigmoid layer determines 

which information from the cell state to 

output, considering the current input and 

previous hidden state, thus regulating the 

flow of information to the next time step. 

• Hidden State (Output): Also termed the 

output state, it carries information from one 

time step to the next, calculated based on the 

cell state and input using the output gate, 

thereby influencing subsequent predictions 

and computations. 

 

Figure 1 Architecture of LSTM Model 

LSTM networks excel in tasks such as natural 

language processing, speech recognition, time series 

prediction, and more. Their ability to handle long-

range dependencies and mitigate the vanishing 

gradient problem makes them a popular choice for 
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modeling sequential data with complex temporal 

dynamics. 

3. Material and Method  

3.1. Case Study: LSTM-Based Wind Power 

Forecasting 

This study investigates how well LSTM networks 

can predict wind power generation. Referencing 

Salihi and Danismaz's [21], it utilizes SCADA data 

from the Penmanshiel Wind Farm (UK) acquired 

from Zenodo. The data covers a period from 2020 to 

mid-2021, including wind speed, direction, 

temperature and power (KW). Before using the data 

to train the LSTM model, crucial preprocessing steps 

were taken cleaning to ensure data quality, selecting 

relevant features, and normalization for efficient 

training. 
Table 1 Wind Turbine Data Set   

 Wind 

speed 

(m/s) 

Wind 

direction (°) 

Power(kW) Temperature 

(°C) 

count 49603 49603 49603 49603 

mean 7.87723 196.869 744.691 16.7376 

std 4.36993 82.9756 733.142 3.54051 

min 0.16917 0.00588183 -14.9246 8 

25% 4.68003 151.43 94.4476 14 

50% 6.93356 208.875 461.654 16 

75% 10.2398 253.425 1382.31 19 

max 25.7975 359.989 2076.73 28.9583 

 

Table 1 Presented is a summary table detailing data 

statistic derived from wind turbine measurements. 

Across the observation period, 49,603 readings were 

gathered encompassing wind speed, wind direction, 

power output, and hub temperature. Notably, the 

average wind speed stood at 7.88 meters per second, 

exhibiting a standard deviation of 4.37 meters per 

second, indicative of the varied wind conditions 

experienced. Likewise, the average power output 

registered at 744.69 kW, with a considerable standard 

deviation of 733.14 kW, suggesting notable 

fluctuations in power generation. Wind direction data 

also demonstrated substantial variability, with an 

average of 196.87 degrees and a standard deviation 

of 82.98 degrees. Furthermore, the average hub 

temperature was recorded at 16.74 degrees Celsius, 

accompanied by a standard deviation of 3.54 degrees 

Celsius. 

 

 

3.2. Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is pivotal in 

the development of LSTM models for wind 

power generation. EDA provides researchers 

with crucial insights into the wind power 

dataset's characteristics and patterns, informing 

the design and optimization of LSTM 

architectures. By analyzing features such as wind 

speed, direction, and temperature, EDA helps 

identify relationships with power output. 

Additionally, EDA detects outliers, missing 

values, and anomalies, which can significantly 

impact model performance. Understanding the 

data distribution and dynamics facilitates 

informed decisions on data preprocessing, 

feature selection, and model hyperparameter 

tuning. This comprehensive approach enhances 

the accuracy and robustness of LSTM models for 

wind power generation forecasting, making EDA 

a fundamental step in constructing effective 

predictive models to leverage wind energy 

resources fully. 

 

Figure 2 Relationship between wind direction and 

wind speed 

Figure 2, depicts the wind direction and wind speed 

relationship, revealing that the weakest winds 

emanated from the East, as indicated by darker 

shades, while the strongest winds originated from the 

West. This visual representation should be regarded 
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as a momentary depiction of the wind conditions at 

the specified location and time. Wind characteristics 

can significantly differ across various locations and 

timeframes. Factors such as time of day, season, and 

weather conditions can lead to variations in wind 

direction and velocity. 

 
Figure 3 Correlation matrix 

 

In Figure 3, a correlation matrix displays linear 

relationships among wind power generation variables 

such as wind speed, direction, power output, 

theoretical energy production, and hub temperature. 

Correlation coefficients, ranging from -1 to +1, are 

represented by shades, with darker tones signifying 

stronger correlations. For instance, a darker shade 

between wind speed and power suggests a positive 

correlation, indicating that higher wind speeds 

correspond to. This correlation matrix is crucial for 

informing the wind power generation LSTM model 

by elucidating the relationships among various 

factors influencing power generation. It helps 

understand relationships among factors like wind 

speed, direction, and temperature affecting power 

output. This analysis facilitates model training by 

prioritizing the learning of influential variables and 

potentially streamlining the input feature selection 

process. Additionally, the matrix aids in detecting 

unexpected relationships that may indicate technical 

issues or data inaccuracies within the wind turbine 

system. It serves as a valuable starting point for 

understanding the data, guiding model development, 

and improving forecasting accuracy for wind power 

generation. 

 

 
 

Figure 4 power consumption (in kW) of a household 

over a 24-hour period 

 

The chart displays active power consumption over a 

24-hour period. The X-axis represents time (hours of 

the day), while the Y-axis shows the active power 

consumption in kilowatts (kW). The fluctuations in 

the graph illustrate how power consumption changes 

throughout the day. 

At the beginning of the day, power consumption is 

low, around 0.5 kW. It then increases in the early 

morning hours, reaching up to approximately 3.0 kW, 

which could correspond to people waking up and 

starting to use electrical appliances. Following this, 

there is a decrease in consumption during the mid-

morning and an increase again in the afternoon. 

Midday consumption levels are relatively low, with 

the lowest point being around 1.0 kW. Consumption 

rises again towards the evening, likely when people 

return home and begin using various electrical 

devices. Towards midnight, consumption starts to 

decline once more. 

Overall, the graph indicates typical fluctuations in 

power consumption throughout the day and reflects 

changes tied to different levels of activity during 

various times. 

This data holds significance for wind power 

generation for various reasons. Firstly, it aids in 

predicting electricity demand, assisting wind farm 

operators in planning operations to meet peak 

demand periods. In essence, understanding the 

fluctuations in active power consumption throughout 

the day is crucial for wind power generation. It 

facilitates demand prediction and informs the 

development of LSTM algorithms, empowering 

operators to optimize generation strategies and meet 

consumer needs effectively. 
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3.3. Model Configurations 

The LSTM model employs a layered architecture. 

Each layer contains LSTM units that process 

sequences of historical data. These sequences include 

wind speed, direction, temperature, and other 

relevant weather factors. By processing these 

sequences, the model learns the intricate 

relationships between the variables and aims to 

generate accurate predictions of future wind power 

generation. 

 

3.4. Result And Experiment 

This work evaluates the LSTM model's performance 

in wind power forecasting using two established error 

metrics: Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE). These metrics are presented 

within an evaluation matrix, providing a quantitative 

assessment of the model's accuracy. 

MAE: Represents the average absolute difference 

between predicted (Pi) and actual wind power values 

(Oi), as (n) is the sample size, indicating the average 

magnitude of the model's errors. Lower MAE 

signifies better forecasts, as they are closer to the 

actual values [19].   

                                                                                        

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)2 𝑛
 𝑖=1                      (1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)2 𝑛
 𝑖=1                  (2) 

 

RMSE: As shown in the equation (2), the RMSE is 

calculated by squaring the error between the 

observed value (Oi) and the projected value (Pi) and 

then averaging the results.  This metric penalizes 

larger errors more heavily compared to MAE [20]. 

Like MAE, lower RMSE suggests superior model 

performance [19]. 

In wind power generation LSTM models, MAE and 

RMSE serve as crucial metrics for evaluating model 

performance, these metrics are vital for assessing the 

LSTM model's ability to forecast wind power 

generation accurately, essential for efficient energy 

planning. Ultimately, MAE and RMSE quantitatively 

assess the accuracy and precision of wind power 

generation forecasts, enabling informed decision-

making and supporting the transition to sustainable 

energy systems. 

 

 
Figure 5 True values and Predicted values  

 

Figure 5 displays a comparison between predicted 

and actual power generation. 

 The graph illustrates the wind power generation over 

a period, with each data point representing 

measurements taken hourly. The x-axis denotes the 

time steps, representing consecutive hours, while the 

y-axis indicates the wind power generation in 

kilowatts. 

The graph displays the predicted and actual wind 

power generation values for one day. Notably, the 

predicted values consistently appear higher than the 

actual values across the entire time. This discrepancy 

suggests that the model overestimated wind power 

generation. 

In certain instances, particularly noticeable in 

specific segments of the graph, there exists a 

substantial difference between the predicted and 

actual values. This indicates areas where the model's 

predictions deviate significantly from the observed 

data. Overall, the graph indicates that the model's 

performance in predicting wind power generation 

requires improvement. It suggests that the current 

model may not accurately capture the dynamics of 

wind power generation over time. 

Furthermore, the result indicates that this model is 

better in predicting short-term wind power generation 

compared to longer-term predictions. 
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Table 2 shows the results of the model prediction in 24 hours. 

 Actual Values Predicted Values MSE RMSE MAE 

0 233.884967 294.378845 26994.798083 164.300938 102.279917 

1 389.535538 260.284515 26994.798083 164.300938 102.279917 

2 421.667401 405.193237 26994.798083 164.300938 102.279917 

3 383.933072 417.644806 26994.798083 164.300938 102.279917 

4 483.707760 384.408752 26994.798083 164.300938 102.279917 

5 406.767236 
476.337952 
 

26994.798083 
 

164.300938 
 

102.279917 
 

6 455.113559 406.248016 26994.798083 164.300938 102.279917 

7 423.971927 459.741699 26994.798083 164.300938 102.279917 

8 621.902557 425.773376 26994.798083 164.300938 102.279917 

9 511.364365 609.265869 26994.798083 164.300938 102.279917 

10 434.775117 508.870209 26994.798083 164.300938 102.279917 

11 515.069096 454.939941 26994.798083 164.300938 102.279917 

12 647.580460 522.117615 26994.798083 164.300938 102.279917 

13 901.831228 632.385254 26994.798083 164.300938 102.279917 

14 980.685708 851.631409 26994.798083 164.300938 102.279917 

15 822.039872 912.124084 26994.798083 164.300938 102.279917 

16 680.807493 791.598694 26994.798083 164.300938 102.279917 

17 742.926449 701.770325 26994.798083 164.300938 102.279917 

18 635.265433 759.528503 26994.798083 164.300938 102.279917 

19 657.915340 653.927856 26994.798083 164.300938 102.279917 

20 614.263058 683.931885 26994.798083 164.300938 102.279917 

21 1008.143827 637.953064 26994.798083 164.300938 102.279917 

22 1647.814246 984.621765 26994.798083 164.300938 102.279917 

23 1172.860598 1543.394043 26994.798083 164.300938 102.279917 

4. Conclusion 

This case study demonstrates the effectiveness of 

Long Short-Term Memory (LSTM) neural networks 

in wind power generation forecasting. LSTM's 

strength lies in its ability to capture long-term 

dependencies within wind data, leading to accurate 

predictions of future wind power output. This 

capability is crucial for efficiently integrating wind 

energy into the power grid, as it allows for better 

planning and management of renewable energy 

sources. The findings suggest that LSTM can 

significantly improve wind power forecasting 

methods, especially when dealing with larger 

datasets. Furthermore, its robust pattern recognition 

capability makes LSTM a valuable tool for 

organizations seeking to optimize both wind power 

generation and utilization. By leveraging LSTM, 

these organizations can make more informed 

decisions regarding wind energy production and 

integration into the grid. 
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