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Özet. Bu makalenin amacı, bir bulanık metrik uzayının dönüşüm fonksiyonu tarafından
türetilen bulanık yarıdinamik sistemler için topolojik entropi kavramını genişletmektir.
Eğer bir metrik uzayının iki düzgün denk metriği varsa o halde bulanık entropi bu iki
metriğe bağlı bir değişmezdir. Rasgele büyüklükte bulanık entropili kaotik bulanık yarı-
dinamik sistemlerin inşası için bir metot sunuyoruz. Ayrıca, bulanık entropinin bulanık
düzgün topolojik denklik bağıntısı altında kalıcı olduğunu ispatlıyoruz.†

Anahtar Kelimeler. Bulanık entropi, bulanık metrik uzayı, yarıtıkız, bulanık yarıtıkız.

Abstract. The aim of this paper is to extend the notion of topological entropy for fuzzy
semidynamical systems created by a self-map on a fuzzy metric space. We show that if a
metric space has two uniformly equivalent metrics, then fuzzy entropy is a constant up to
these two metrics. We present a method to construct chaotic fuzzy semidynamical systems
with arbitrary large fuzzy entropy. We also prove that fuzzy entropy is a persistent object
under a fuzzy uniformly topological equivalent relation.
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1. Introduction

Stability of physical and engineering systems can be considered from geometrical

[1], and topological viewpoints. In both of them, topological entropy is one of the

main tools to determine the complexity of a system. Also, it is an essential invariant

in application [12, 14, 16]. The positive topological entropy of a map implies to its

chaotic behavior [4]. Topological entropy for continuous maps first has been studied

by Bowen and Dinaburg [2, 5, 17]. This notion has been extended for discontinuous

maps in [3]. In fuzzy metric spaces [6, 7, 8, 9, 10, 13] the notion of metric has been
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extended to the rate of nearness. So we need a new concept of topological entropy to

explain the complexity of systems created by the self-maps of fuzzy metric spaces.

This notion must determine the complexity and as given in [15] it does not change

under synchronization and fuzzy topological conjugate relations. In Section 3 we

introduce the notion of fuzzy entropy and in Theorem 3.2 we show that it is an

extension of the notion of topological entropy. In Theorem 3.3 we prove that it is

a persistent object up to uniformly equivalent metrics. We prove that the set of

topological entropies is not bounded from above and this is good news for engineers

who theoretically can construct fuzzy systems with an arbitrarily large complexity.

In fact Theorem 3.5 implies that it is possible to construct security systems with an

arbitrarily large security. As a final result we show that fuzzy entropy is a constant

object up to fuzzy uniformly topological equivalent relations.

2. Preliminaries

Let us recall the notion of topological entropy for discontinuous maps. We assume

(X, d) is a compact metric space, T : X → X is a mapping and T i is the composition

of T , i times with itself, where i is a natural number. The mapping T may not be

continuous.

For a natural number n we define:

dn(x, y) = max{d(T i(x), T i(y)) : x, y ∈ X and i ∈ {0, 1, 2, ..., n− 1}}.

If F ⊆ X, ε > 0 and n ∈ N, then F is called an (n, ε) spanning subset of X with

respect to T if for given x ∈ X there is y ∈ F such that dn(x, y) ≤ ε. A subset

E of X is called an (n, ε) separated if dn(x, y) > ε when x and y are different

points in E. rn(ε,X, T ) denotes the number of elements of an (n, ε) spanning set

for X with respect to T with the smallest cardinality. Also, sn(ε,X, T ) denotes

the number of elements of an (n, ε) separated set for X with respect to T with

the largest cardinality. We define r(ε,X, T ) = limn→∞(1/n)(log(rn(ε,X, T ))) and

s(ε,X, T ) = limn→∞(1/n)(log(sn(ε,X, T ))). The entropy of T is denoted by h(T ) and

it defined by h(T ) := limε→0 r(ε,X, T ). To extend this notion for fuzzy dynamical

systems we recall the concept of continuous triangular norm [13].

A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a continuous t-norm if it satisfies

the following condition;

i) ∗ is an associative and commutative operation;
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ii) a ∗ 1 = a for all a ∈ [0, 1];

iii) a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d, where a, b, c, d ∈ [0, 1].

A fuzzy metric space is a tripe (X,M, ∗) where X is a nonempty set, ∗ is a continuous

t-norm and M : X × X × (0,∞) −→ [0, 1] is a mapping which has the following

properties:

For every x, y, z ∈ X and t, s > 0;

1) M(x, y, t) > 0;

2) M(x, y, t) = 1 if and only if x = y;

3) M(x, y, t) = M(y, x, t);

4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);

5) M(x, y, .) : (0,∞) −→ [0, 1] is a continuous map.

Definition 2.1. A fuzzy metric space (X,M, ∗) is called semicompact if for every

t > 0 and ε > 0 there is x1, x2, ..., xn ∈ X such that X =
⋃n
i=1B(xi, ε, t), where

B(xi, ε, t) = {x : M(x, xi, t) ≥ 1− ε}.

In this paper, we assume that T : X → X is a mapping and (X,M, ∗) is a semi-

compact fuzzy metric space.

For a natural number n we define:

Mn(x, y, t) = min{M(T i(x), T i(y), t) : x, y ∈ X and i ∈ {0, 1, 2, ..., n− 1}}.

If F ⊆ X, ε > 0, t > 0 and n ∈ N, then F is called an (n, ε, t) fuzzy spanning subset

of X with respect to T if for given x ∈ X there is y ∈ F such that Mn(x, y, t) ≥ 1−ε.
Subset E of X is called an (n, ε, t) fuzzy separated if Mn(x, y, t) ≤ 1 − ε, when x

and y are different points in E. rn(ε, t,X, T ) denotes the number of elements of an

(n, ε, t) fuzzy spanning set for X with respect to T , with the smallest cardinality.

Also, sn(ε, t,X, T ) denotes the number of elements of an (n, ε, t) fuzzy separated set

for X with respect to T, with the largest cardinality. We define

r(ε, t,X, T ) = lim
n→∞

1

n
(log rn(ε, t,X, T )), and

s(ε, t,X, T ) = lim
n→∞

1

n
(log sn(ε, t,X, T )).

3. Fuzzy Entropy

Let us to begin this section with the following theorem.
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Theorem 3.1. Let (X,M, ∗) be a semicompact fuzzy metric space and T : X −→ X

be a mapping. Then rn(ε, t,X, T ) and r(ε, t,X, T ) are natural numbers.

Proof. Let ε > 0, t > 0 and n ∈ N be given. Since ∗ is a continuous t-norm and

1 ∗ 1 = 1 then there is 1 > λ > 0 such that (1 − λ) ∗ (1 − λ) ≥ (1 − ε). Moreover

the semi compactness of X implies X ⊆
⋃k
i=1B(xi, λ, t/2), for some xi ∈ X, and

1 ≤ i ≤ k.

We define

A(j0,j1,...,jn−1) :=

{
x : T i(x) ∈ B

(
xji , λ,

t

2

)}
where 1 ≤ ji ≤ k.

For each non empty set A(j0,j1,...,jn−1) we choose a unique y(j0,j1,...,jn−1) ∈ A(j0,j1,...,jn−1)

and we define A := {y(j0,j1,...,jn−1) : 1 ≤ ji ≤ k}. Since for every 0 ≤ i ≤ n− 1, ji is

between 1 and k, then |A| ≤ kn, where |A| denotes the cardinality of A. We show

that A is an (n, ε, t) fuzzy spanning set for X with respect to T . Let x be an arbitrary

member of X. Since
⋃

1≤ji≤k A(j0,j1,...,jn−1) = X, then for every 0 ≤ i ≤ n − 1 there

is 1 ≤ ji ≤ k such that x ∈ A(j0,j1,...,jn−1). Therefore y(j0,j1,...,jn−1), x ∈ A(j0,j1,...,jn−1).

Now the definition of A(j0,j1,...,jn−1) implies T i(x), T i(y(j0,j1,...,jn−1)) ∈ B(xji , λ, t/2) for

each 0 ≤ i ≤ n− 1. So

M(T i(x), T i(y(j0,j1,...,jn−1), t) = M

(
T i(x), T i(y(j0,j1,...,jn−1)),

t

2
+
t

2

)
≥M

(
T i(x), xji ,

t

2

)
∗M

(
xji , T

i(y(j0,j1,...,jn−1)),
t

2

)
≥ (1− λ) ∗ (1− λ) ≥ (1− ε).

Thus

Mn(x, y(j0,j1,...,jn−1), t) ≥ 1− ε for every 0 ≤ i ≤ n− 1.

Since y(j0,j1,...,jn−1) is a member of A, then A is an (n, ε, t) fuzzy spanning set for X

with respect to T . So rn(ε, t,X, T ) ≤ kn. Thus

r(ε, t,X, T ) = lim
n→∞

1

n
log rn(ε, t,X, T ) ≤ k.

Hence rn(ε, t,X, T ) and r(ε, t,X, T ) are natural numbers. 2

Remark 3.1.

(i) If ε1 < ε2 then rn(ε1, t, X, T ) ≥ rn(ε2, t, X, T ) and r(ε1, t, X, T ) ≥ r(ε2, t, X, T ).

(ii) If ε1 < ε2 then sn(ε1, t, X, T ) ≥ sn(ε2, t, X, T ) and s(ε1, t, X, T ) ≥ s(ε2, t, X, T ).
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Now we define fuzzy entropy for a map T on a semicompact fuzzy metric space

(X,M, ∗).

Definition 3.1. Let (X,M, ∗) be semicompact and T : X → X be a mapping.

Then we define the entropy of T by hM,t(T ) := limε→0(r(ε, t,X, T )).

Since the fuzzy metric M has essential role in the above definition we denote the

fuzzy entropy by ht,M(T ).

The next theorem implies that fuzzy entropy is an extension of topological entropy.

Theorem 3.2. Let (X, d) be a compact metric space. Also, let (X,M, ∗) be a fuzzy

semicompact such that M(x, y, t) = t/(t + d(x, y)), and ∗ be an arbitrary t-norm.

Now let T : X → X be a maping. Then h(T ) = hM,t(T ).

Proof. Let t > 0 be given. Also consider F be (n, ε) spanning set for X with respect

to T . If x is a member of X, then there is y ∈ F such that dn(x, y) ≤ ε. Therefore

Mn(x, y, t) ≥ t

t+ ε
= 1− ε

t+ ε
.

So F is (n, ε/(t+ ε), t) fuzzy spanning set for X with respect to T . Thus

rn

(
ε

t+ ε
, t,X, T

)
≤ rn(ε,X, T )

and so

r

(
ε

t+ ε
, t,X, T

)
≤ r(ε,X, T ).

Then hM,t(T ) ≤ h(T ). Now Let F be (n, ε, t) fuzzy spanning set for X with respect

to T . If x is a member of X, then there is y ∈ F such that Mn(x, y, t) ≥ 1 − ε.

Therefore dn(x, y) ≤ tε/(1 − ε). So F is (n, tε/(1 − ε)) spanning set for X with

respect to T . Thus

rn

(
tε

1− ε
,X, T

)
≤ rn(ε, t,X, T )

and so

r

(
tε

1− ε
,X, T

)
≤ r(ε, t,X, T ).

Then h(T ) ≤ hM,t(T ). Therefore hM,t(T ) = h(T ). 2

Let (X1,M1, ∗1), (X2,M2, ∗2) be two fuzzy metric spaces. A function T : X1 −→ X2

is called fuzzy continuous. If for every x ∈ X1, t > 0 and ε > 0 there is δ > 0 such

that, M1(x, y, t) ≥ (1− δ) implies M2(T (x), T (y), t) ≥ (1− ε).

Now we define uniformly fuzzy continuity for a mapping T .
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Definition 3.2. Let (X1,M1, ∗1), (X2,M2, ∗2) be fuzzy metric spaces. A mapping

T : X1 −→ X2 is called uniformly fuzzy continuous. If for every t > 0 and ε > 0

there is δ > 0 such that, M1(x, y, t) ≥ (1 − δ) implies M2(T (x), T (y), t) ≥ (1 − ε),
for every x, y ∈ X1.

Also, two fuzzy metrics (X,M, ∗) and (X,M1, ∗1) on X are called uniformly fuzzy

equivalent if two mappings id : (X,M, ∗) → (X,M1, ∗1) and id : (X,M1, ∗1) →
(X,M, ∗) are uniformly fuzzy continuous.

Theorem 3.3.

(i) Let n ∈ N, t > 0 and ε > 0. Also, let λ > 0 be a number such that

(1−λ)∗(1−λ) ≥ (1−ε). Then rn(ε, t,X, T ) ≤ sn(ε, t,X, T ) ≤ rn(λ, t/2, X, T ).

(ii) Let (X,M1, ∗1) and (X,M2, ∗2) be uniformly fuzzy equivalent and T : X → X

be a mapping. Then hM,t(T ) = hM1,t(T ).

Proof.

(i) If E is an (n, ε, t) fuzzy separated subset of X with the maximum cardinality

then E is an (n, ε, t) fuzzy spanning set for X with respect to T , to prove

this, let x ∈ X. Since E have maximum cardinality then there is y ∈ E such

that Mn(x, y, t) ≥ 1 − ε. Therefore rn(ε, t,X, T ) ≤ sn(ε, t,X, T ). To show

the other inequality suppose E is an (n, ε, t) fuzzy separated subset of X with

respect to T and F is an (n, λ, t/2) fuzzy spanning set for X with respect to

T . We define φ : E → F as follows. For x ∈ E, we define φ(x) ∈ F such

that Mn(x, φ(x), t/2) ≥ (1 − λ). φ is injective, because if x1 and x2 are two

members of E such that φ(x1) = φ(x2), then Mn(x1, φ(x1), t/2) ≥ 1 − λ and

Mn(x2, φ(x2), t/2) ≥ 1− λ. So

Mn(x1, x2, t) ≥Mn(x1, φ(x1), t/2) ∗Mn(φ(x1), x2, t/2) ≥ 1− ε.

Since x1, x2 ∈ E then x1 = x2. So the cardinality of E is not greater than of

F . Hence sn(ε, t,X, T ) ≤ rn(λ, t/2, X, T ).

(ii) Let ε1 > 0 be given, choose ε2 > 0 such that

M1(x, y, t) ≥ (1− ε2)⇒M(x, y, t) ≥ (1− ε1)

and choose ε3 > 0 such that

M(x, y, t) ≥ (1− ε3)⇒M1(x, y, t) ≥ (1− ε2).
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Then

rn(ε1, t, (X,M, ∗), T ) ≤ rn(ε2, t, (X,M1, ∗), T )

and

rn(ε2, t, (X,M1, ∗), T ) ≤ rn(ε3, t, (X,M, ∗), T ).

Hence

r(ε1, (X,M, ∗), T ) ≤ r(ε2, (X,M1, ∗), T ) ≤ r(ε3, (X,M, ∗), T ).

If ε1 → 0, then ε2 → 0, and ε3 → 0 then

hM,t(T ) = hM1,t(T ).

2

Corollary 3.1. r(ε, t,X, T ) ≤ s(ε, t,X, T ) ≤ r(λ, t/2, X, T ), where (1−λ)∗(1−λ) ≥
(1− ε).

Theorem 3.4. Let (X,M, ∗) be a semicompact fuzzy metric space and T : X → X

be a mapping. Then hM,t(T
m) ≤ mhM,t(T ), where m is a natural number.

Proof. Let n ∈ N and ε > 0 be given. If F is an (nm, ε, t) fuzzy spaning set for X

with respect to T , then F is an (n, ε, t) fuzzy separated set for X with respect to

Tm. Therefore rn(ε, t,X, Tm) ≤ rnm(ε, t,X, T ). So hM,t(T
m) ≤ mhM,t(T ). 2

In the next theorem we present a condition which implies the equality instead of

inequality mentioned in Theorem 3.4.

Theorem 3.5. Let T : X → X be a mapping such that M(x, y, t) ≥M(T (x), T (y), t)

for every x, y ∈ X. Then hM,t(T
m) = mhM,t(T ), where m is a natural number.

Proof. Let n ∈ N and ε > 0 be given. Since M(x, y, t) ≥ M(T (x), T (y), t) for every

x, y ∈ X. Then Mn(x, y, t) = M(T n−1(x), T n−1(y), t). Therefore rnm(ε, t,X, T ) ≤
rn(ε, t,X, Tm). So hM,t(T

m) ≤ mhM,t(T ). 2

Let (X1,M1, ∗1) and (X2,M2, ∗2) be two semicompact fuzzy metric spaces. We

define a fuzzy metric space (X1 × X2,M, ∗), by defining a ∗ b = min{a ∗1 b, a ∗2
b} and M((x, y), (x′, y′), t) = min{M1(x, x

′, t),M2(y, y
′, t)}. Let (X1,M1, ∗1) and

(X2,M2, ∗2) be two semicompact fuzzy metric spaces. Moreover let T1 : X1 → X1

and T2 : X2 → X2 be two mappings . We define T : X1 × X2 → X1 × X2 by

T ((x, y)) = (T1(x), T2(y)). Then we have the next theorem.



114 Karami and Molaei

Theorem 3.6. hM,t(T ) ≤ hM1,t(T1) + hM2,t(T2).

Proof. Let n ∈ N and ε > 0 be given. Let F1 and F2 be (n, ε, t) fuzzy spanning sets

for X1 and X2 with respect to T1 and T2 respectively. Then F1 × F2 is an (n, ε, t)

fuzzy spanning set for X with respect to T . So

rn(ε, t,X, T ) ≤ rn(ε, t,X, T1) rn(ε, t,X, T2),

and as a result hM,t(T ) ≤ hM1,t(T1) + hM2,t(T2). 2

Definition 3.3. Let T : (X,M, ∗)→ (X,M, ∗) and S : (Y,M ′, ∗′)→ (Y,M ′, ∗′) be

two mappings. Then T and S are called fuzzy topological equivalent if there is a

fuzzy homeomorphism g : (X,M, ∗)→ (Y,M ′, ∗′) such that g ◦ T = S ◦ g.

Theorem 3.7. In Definition 3.3, let g and g−1 be two fuzzy uniformly continuous

maps. Then hM,t(T ) = hM ′,t(S).

Proof. Let ε > 0, t > 0 be given and n be a natural number. Since g is fuzzy

uniformly continuous, then there is δ > 0 such that M(x, x′, t) ≥ 1 − δ implies

M ′(g(x), g(x′), t) ≥ 1 − ε. Now let F be an (n, δ, t) fuzzy spanning set for X with

respect to T . We show that g(F ) is (n, ε, t) fuzzy spanning set for Y with respect

to S. Let y ∈ Y be given. So there is x ∈ X such that g(x) = y. Therefore there

is x′ ∈ F that Mn(x, x′, t) ≥ 1 − δ. Now we have M(T i(x), T i(x′), t) ≥ 1 − δ for

0 ≤ i ≤ n − 1. So M ′(g(T i(x)), g(T i(x′)), t) ≥ 1 − ε for 0 ≤ i ≤ n − 1. Since

g ◦ T = S ◦ g, we have M ′(Si(g(x)), Si(g(x′)), t) ≥ 1 − ε. Therefore g(F ) is (n, ε, t)

fuzzy spanning set for Y with respect to S. So rn(ε, t, Y, S) ≤ rn(δ, t,X, T ). Thus

hM ′,t(S) ≤ hM,t(T ). By a similar method, we can deduce hM,t(T ) ≤ hM ′,t(S). So

hM,t(T ) = hM ′,t(S).

2

Now let us to present an example.

Example 3.1. Let (X,M, ∗) be fuzzy semicompact such that

X = {(xi)∞i=1 : xi ∈ {0, 1}}, d((xi)
∞
i=1, (yi)

∞
i=1) =

∑
xi 6=yi

(1/2i),

M((xi)
∞
i=1, (yi)

∞
i=1, t) =

t

t+ d((xi)∞i=1, (yi)
∞
i=1)

,

and ∗ be an arbitrary t-norm. For every x = (xi)
∞
i=1 ∈ X, κx denotes the largest

natural number i such that xj = x1 for every j ≤ i. Also, if for each i ∈ N, xi = 1
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or, for each i ∈ N, xi = 0 we put κx =∞. We define T : X → X by

T (x = (xi)
∞
i=1) =


(xi+κx)∞i=1 if κx is an odd number

(xi+κx)∞i=0 if κx is an even number

x if κx is infinity

We show that the fuzzy entropy of T is positive. We define g : X → X by

g(x = (xi)
∞
i=1) =

{
(xi+κx)∞i=1 if κx is finite

x if κx is infinity

Let t > 0 be given. Moreover let λ = 1/(1 + 32t), ε = 1/32 and n ∈ N be an even

number. Then there is k ∈ N such that n = 2k. We say that x ∼ y if x1 = y1 and

κgi(x) = κgi(y) for 0 ≤ i ≤ (k − 1). It is clear that ∼ is a equivalence relation on X.

If

A = {[x] : x ∈ X, κgi(x) ∈ {1, 2}, 0 ≤ i ≤ (k − 1)},

then the number of members of A is 2k+1. For [x] ∈ A, we choose a unique y[x] ∈ [x].

If B = {y[x] : [x] is a member ofA}, then |B| = |A| = 2k+1. We take y, y′ ∈ B such

that y = (yi)
∞
i=1 6= y′ = (y′i)

∞
i=1. If y1 6= y′1, then d(y, y′) ≥ ε. If y1 = y′1, then there is

0 ≤ t ≤ (k − 1) such that κgt(y) 6= κgt(y′) and κgj(y) = κgj(y′) for 0 ≤ j < t. We know

that κgj(y) = κgj(y′), for 0 ≤ j < t. So there is m ≤ 2t such that gt(y) = (yi+m)∞i=1

and gt(y′) = (y′i+m)∞i=1. Hence d(Tm(y), Tm(y′)) ≥ ε. Thus

Mn(y, y′, t) = min

{
t

t+ d(T i(y), T i(y′))
: 0 ≤ i ≤ (n− 1)

}
≤ 1− 1

1 + 32t
= 1− 1

λ
.

So sn(λ, t,X, T ) ≥ |B| = 2k+1. Let λ0 be a number such that (1− λ0) ∗ (1− λ0) ≥
1− λ. Theorem 3.3 implies, rn(λ0, t/2, X, T ) ≥ sn(λ, t,X, T ) ≥ 2k+1 So hM,t/2(T ) ≥
(log 2)/2.

4. Conclusion

Uncertainty is a special property of human made means. Thus fuzzy systems are

more compatible with human made means or natural description of phenomena.

In this direction fuzzy entropy is a good means to describe the complexity of a

fuzzy system. In Theorem 3.5 we present a method to construct systems with an

arbitrarily large security. We suggest another method to construct complex systems

with finding a condition for the equality instead of inequality presented in Theorem

3.6, and this is a topic for further research.
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