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Abstract

This paper presents dynamic models of a three-phase induction machine in various reference frames widely employed in
alternating-current (ac) machine analysis. The main objective is to derive and explain the machine model in relatively
basic terms by using the idea of rotating reference frame theory. Many matrix manipulations and complex frame-to-frame
transformations performed to obtain an advanced model from primitive dynamical equations are presented in a more
compact and easy-to-understand way. Therefore, this paper reviews a detailed, yet simple and understandable
mathematical background on the dynamic models of the induction machine. Furthermore, a unified and broadly applicable
simulation model is proposed for simulating the dynamic behavior of the machine in any desired reference frame. The
simulation model has also a modular and user-friendly structure. For the simulation studies, Matlab/Simulink environment
is preferred due to its popularity. A Simulink machine model with several subsystems is explicitly given. The simulation
study is realized for a small power induction machine operating under both load and no-load conditions. The variations
of three-phase currents, electromagnetic torque, and rotor mechanical speed as well as the rotor flux-linkage components
are shown. The key features of each reference frame are discussed, especially through the measured rotor flux-linkage
components.

Keywords: Induction machine, Reference frame theory, Dynamic model, Simulation model.

Simetrik U¢ Fazhi Asenkron Makinanin Cesitli Referans Cercevelerinde
Dinamik Modelleri Uzerine Matematiksel Bir inceleme Calismasi

Oz

Bu makale, alternatif akim (aa) makine analizinde yaygin olarak kullanilan gesitli referans ¢ercevelerinde ii¢ fazli
asenkron makinanin dinamik modellerini sunmaktadir. Temel amag, donen referans ¢ergeve teorisi fikrini kullanarak
makina modelini nispeten basit terimlerle tiiretmek ve agiklamaktir. flkel dinamik denklemlerden gelismis bir model elde
etmek i¢in gergeklestirilen birgok matris manipiilasyonu ve karmasik ¢erceveden cergeveye doniisiimler, daha kompakt
ve anlagilmasi kolay bir sekilde sunulmaktadir. Bu nedenle, bu makale asenkron makinanin dinamik modellerine iligkin
ayrintili, ancak basit ve anlasilir bir matematiksel arka plan1 gézden gegirmektedir. Bundan bagka, makinanin dinamik
davramisini istenen herhangi bir referans gergevesinde simiile etmek i¢in birlesik ve genis c¢apta uygulanabilir bir
simiilasyon modeli 6nerilmektedir. Simiilasyon modeli ayn: zamanda modiiler ve kullanict dostu bir yapiya sahiptir.
Simiilasyon ¢aligmalarinda popiilerligi nedeniyle Matlab/Simulink ortami tercih edilmektedir. Birkag alt sisteme sahip
bir Simulink makina modeli agik¢a verilmistir. Simiilasyon ¢aligmas1 hem yiik hem de yiiksiiz kosullar altinda ¢aligan
kiigiik guiclii bir asenkron makina igin gerceklestirilmistir. Ug fazli akimlarin, elektromanyetik torkun ve rotor mekanik
hizinin yani sira rotor aki bilesenlerinin degisimleri gdsterilmektedir. Her bir referans g¢ergevesinin temel 6zellikleri,
ozellikle 6lgiilen rotor aki bilesenleri araciligiyla tartisilmaktadir.

Anahtar Kelimeler: Asenkron makina, Referans cerceve teorisi, Dinamik model, Benzetim modeli.
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1. Introduction

The induction machine is used extensively in a great number of industrial applications,
especially in variable-speed drives. They are considered to be the workhorses of the electric power
industry (Vas, 1998; Krause et al., 2002). This is because it has many needful features in comparison
with a direct-current (dc) machine, e.g., simple and rugged structure, low-cost, low-maintenance
requirement, high efficiency, reliability, and so on. However, unlike a dc machine, the control of an
induction machine is quite sophisticated, and they require various complex types of hardware and
software equipment to solve its control problem. So far, there have been many advances in power
converters, microprocessor technologies, and control techniques to fulfill these control requirements.
Therefore, induction motor drives have now gained a considerable place in the world market and
replaced variable-speed dc drives.

The dynamic model of the induction machine is used to simulate the transient and steady-state
behaviors of the machine not only under balanced conditions but also under various unbalanced
conditions. The dynamic model is also necessary to develop and analyze the control structures. The
dynamic behavior of any rotary machine is defined by a system of differential equations. In ac
machines, these equations contain time-varying coefficients and are inherently nonlinear. The reason
is that the mutual inductances change in the form of a function of rotor speed as the rotor phase
windings rotate relative to the stator. Reference frame theory is used to eliminate all these time-
dependent inductances and hence transform them into a linear system. The main idea of the theory is
based on the redefinition of machine variables (rotor and stator side voltages, currents, flux-linkages)
with their corresponding equivalents in the desired reference frames. Herein, a “reference frame” is
referred to as a set of direct and quadrature axes (dq axes) that rotate at a particular angular speed (or
do not rotate when angular speed is zero). The development of the reference frame theory can be
given as follows:

= The stator variables were transferred into a reference frame rotating with the rotor (Park, 1929).

In other words, all three-phase abc (rotor and stator) quantities were referred to a dq” reference

frame fixed to the rotor. The Park’s transformation was first applied to a synchronous machine.

Then, Brereton et al. (1957) was used it in a similar way to analyze a symmetrical induction

machine. This reference frame is commonly called the rotor reference frame.

= The rotor variables were transferred into a reference frame which is stationary with respect to
the stator (Stanley, 1938). In this case, all three-phase abc (rotor and stator) quantities were
referred to a dq® reference frame fixed to the stator. This reference frame is commonly called

the stationary reference frame.
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= The stator and rotor variables were transferred into a reference frame rotating in synchronism
with the rotating magnetic field (Kron, 1951). In other words, all three-phase abc (rotor and
stator) quantities were referred to a dq® reference frame rotating with synchronous speed. This
reference frame is commonly called the synchronous reference frame.

Initially, it was believed that the three reference frames given above was different, and these
were applied individually to help with the study of ac machines for a long time. However, Krause and
Thomas (1965) described that all these reference frames are contained in one general reference frame.
This is called the “arbitrary reference frame” in which the dq axes rotate at an arbitrary speed. Other
reference frames correspond to specific applications of this arbitrary reference frame. That is, the dq
axes are rotated at a specified speed rather than an arbitrary speed. As mentioned above, there are
three reference frame speeds in the analysis of ac machine. These are; (i) (stationary reference frame)
the dq axes do not rotate, (ii) (synchronous reference frame) the dq axes rotate at synchronous speed,
and (iii) (rotor reference frame) the dq axes rotate at rotor speed. The readers can refer to (Lee et al.,
1984; Q’Rourke et al., 2019) for a more comprehensive description of reference frames. As a result,
a unified model that can be easily arranged to simulate an induction machine in any desired reference
frame is developed in (Krause and Thomas, 1965). In the following years, an analytical method for
introducing stator and rotor leakage inductance saturation into this simulation model is developed
(Lipo and Consoli, 1984). In addition, several linear and nonlinear models suitable for transient and
steady-state analysis are also presented (Slemon, 1988).

The machine model based on the theory of rotating reference frame is quite proper for the study
of transient and steady-state behaviors and the design of control structures. It has proven to be reliable
and accurate by many studies. To this end, many graduate-level textbooks (Novotny and Lipo, 1996;
Vas, 1998; Krishnan, 2001; Krause et al., 2002; Bose, 2002; Wack, 2011; Abu-Rub et al., 2012;
Melkebeek, 2018) discuss and present the reference frame theory and the dg axes machine model in
different ways. Some textbooks even show in detail how to perform complex mathematical operations
to derive an advanced model from primitive dynamical equations. This paper aims to derive the
dynamic models of the induction machine in a more compact and simple way. In addition, this study
complements previous studies due to the following contributions:

= This study first obtains all the primitive dynamic equations step by step before the machine
model is expressed in the arbitrary reference frame. These are provided from an interrelated
three-step workflow. Each stage corresponds respectively to “three-phase model”, “two-phase
slip-ring model” and “two-phase commutator model” of the machine. Subsequently, the general
machine model in the arbitrary reference frame is obtained, and the ready-to-use advanced

model is presented. Throughout this process, all the mathematical operations are given in a
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simple and compact form. Hence, it can be said that a simple and understandable mathematical
background on the dynamic models of the induction machine is reviewed by this study.

This study specifically focuses on the arbitrary reference frame, and how this relates to other
reference frames. It is introduced how to transfer the machine model from the arbitrary
reference frame to other reference frames. The key features of each reference frame are briefly
highlighted.

This study presents three distinct state-space models for the induction machine. Each state-
space model is given in a compact form on the arbitrary reference frame. From this point of
view, it is shown that an induction machine can be defined by a total of nine dynamic models.
This study presents a general simulation block diagram that is valid for all the reference frames.
Various software packages can be used for simulation studies such as Pscipe (Akherraz, 1997),
Labview (Li and Hu, 2010), and Matlab (Shi et al., 1997; Ozpineci and Tolbert, 2003; Abu-
Rub et al., 2012). Among them, Matlab/Simulink environment is very popular, and it was
preferred for simulation studies. The simulation model is divided into many sub-models. It
allows us to access all the machine variables for monitoring, comparison, and control purposes.
Therefore, it has a modular and user-friendly structure. The simulation model can be easily
altered so that it can be simulated in three different reference frames without any modifications
to sub-models. This shows that the simulation model has a unified and universally applicable
structure.

This paper is organized into eight sections. In Section 2, the primitive machine models are

presented, and the advanced machine model is obtained in the arbitrary reference frame. Sections 3

and 4 present the space-phasor forms of voltage and flux-linkage equations, and three different state-

space models, respectively. Section 5 discusses the mechanism of electromagnetic torque production

in ac machines, and the torque equations are given in different forms. Section 6 explains widely used

reference frames in the analysis of ac machines. Sections 7 and 8 present simulation studies, obtained

results, and discussions. Finally, the drawn conclusions are evaluated in Section 9.

2. Modeling of Induction Machine

Fig. 1 illustrates the schematic view of an induction machine under consideration. In order to

simplify the analysis and modeling stages, the following assumptions are considered:

= It has a symmetrical two-pole structure with a smooth air-gap.

= Stator and rotor have three-phase windings placed by 120 electrical degrees from each other.
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= The phase windings are composed of distributed windings that generate sinusoidal magneto-
motive force (mmf) waves centered on the magnetic axes of the corresponding phases. The
effects of mmf space harmonics are neglected.

= The iron losses and end-effects are neglected, such that the flux density is radial in the air-

gap and the iron parts have infinite permeability.

cs N i
_3 . ; --(F Y} --- stator windings
I¥les |
, ! r
Nabc

1 4 :
Cs v “m-" rotor windings
CT

Figure 1. Schematic view of an elementary symmetrical three-phase machine
2.1. Three-Phase Model

The first step in modeling is to obtain the three-phase stator and rotor voltage equations in three-
phase (natural) reference frames. Therefore, the stator voltage equations are defined in the stationary
reference frame fixed to the stator, and the rotor voltage equations are defined in the rotating reference

frame fixed to the rotor. The three-phase stator and rotor voltage equations are as follows:

Ugbes = Rslapes T PWabes

_ _ - (1)
Ugper = Relaper + PWanber
where p = d/dt is the differential operator. The stator and rotor resistance matrices are
R, 0 0 R, 0 0
R,=|0 R, 0|, R,=[0 R 0 2)
0 0 Ry 0 0 R,

where R, and R, are the resistances of a stator and rotor phase winding, respectively. @ pcxs Labex

and Y45, (the subscript x is s or r) denote the column matrices for the stator and rotor quantities.
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; = — t = — t 7 =T i i Jt 7 =
These are dEmed by Ugbes = [uas Ups ucs] y Ugbper = [uar Upy ucr] v Labes [las lps Lcs] v Laber

[iar ibr icr]t’ l/_Jab::s = [lpas l/)bs l/)cs]tv and l/jabcr = [lpar lpbr lpcr]t- AISO’ the stator and rotor flux-
linkages are defined by

l/)abcs = Labcs(s)Tabcs + Labcs(r)fabcr

_ ) _ ©)
wabcr = Labcr(s)labcs + Labcr(r)Labcr

There is no change in the magnetic circuit for a machine with a smooth air-gap when its rotor
rotates. Thus, the self-inductance of a stator phase winding L, and the mutual inductance between

two stator windings M, do not depend on the rotor electrical angle 6,.. Then, the inductance matrix
between the stator windings Lgpcs(s) 1S

Ly Mg M
Labcs(s) = I\ZIS l_;s 1\_715 (4)
s s L
and
_ _ 2T 1
Li=L+Lps , Mg=Lpycos <?> = _EL"‘S (5)

where L;; and L,,; are the leakage inductance and magnetizing inductance of a stator phase winding,
respectively. Similarly, the self-inductance of a rotor phase winding L, and the mutual inductance

between two rotor windings M,. are independent of the rotor electrical angle 8,.. Then, the inductance
matrix between the rotor windings Lpc () IS

L, M, M,
Labcr(r) = I\zr l;r 1\_47’ (6)
r r Ly

and

_ _ 21 1
L.=Ly,+Ly , M,=L,,cos (;) = _ELmT (7)
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where L,;, and L,,, are the leakage inductance and magnetizing inductance of a rotor phase winding,
respectively. On the contrary, since the rotor phase windings rotate relative to the stator, the mutual
inductance between the rotor and stator phase windings change depending on the rotor electrical angle

6,. Then, the rotor-stator mutual inductance matrix Lgpcs(ry IS

M., cos8, M cosf, Mg, cos0;
Labesiry = Ailsr cos 63 I\LIST cos 6, ]%sr cos 6, (8)
M, cos8, M,.cosf; M, cosb,

where M, is the maximum value of the stator-rotor mutual inductance. The angles 6,, 8, and 65 are
definedas 6, = 6,., 6, = 6, + 2n/3 and 8; = 68, — 2w /3. For the number of pole-pairs p = 1, 6,. is

equal to 6,,, where 6,,, is the rotor mechanical angle. A similar definition can be made for the stator-

rotor mutual inductance matrix Lpc(s). Due to the symmetry of the machine structure, it is given by

Labcr(s) = LileS(T) (9)

On the other hand, the relationship between the magnetizing inductance of the stator or rotor

winding (L s OF L,,,) and the maximum value of the mutual inductance M, is formulated by
Lyps = NMg , Ly = NMj, (10)
where N is the effective turn ratio and is equal to NS,./NZ,.. It also follows that L, = N2L,,,. For

convenience, the stator and rotor voltage equations of a three-phase machine can be combined into a

single matrix form as follows:
_ _ d _
Ugpe = Rigpe + Ewabc (11.a)

where Ugpe = [ﬁabcs ﬁabcr]tv labe = [Iabcs Tabcr]ta Yabe = [lpabcs lpabcr]t- Since Yabe = Labclape:

Eg. (11.a) can be rearranged by

Ugpe = (R+ pLgpe)lape (11.b)

and
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R = [Rs 0] L _ l[‘abcs(s) Labcs(r)l
0 RT ’ abe LileS(T') Labcr(r)

The mathematical model of induction machine in three-phase reference frame is represented by
Eqg. (11.b). In this model, the impedance matrix Z,;,. = R + pLg;. is nonlinear, and contains variable,
time-dependent coefficients, because the rotor angle varies with time. Consequently, it is not possible

to solve the system of differential equations derived from this fully coupled impedance matrix.

Bs Bs
Br A A
: ro—h
Nag ”BS:?}V‘“
stator--fe’vl- R
o .S
HEEW:
P,

stator--fe’vl-
r
rotor --m-

rotor --m-

(b)

Figure 2. Schematic view of two-phase machine models; (a) two-phase slip-ring model, (b) two-
phase commutator model

2.2. Two-Phase Slip-Ring Model

The two-phase slip-ring model is obtained as shown in Fig. 2a when the three-phase quantities
(voltages, currents, flux-linkages) in the previous voltage equations are replaced by their two-phase
equivalents expressed in the same reference frame. In this case, assuming that there are no zero-
sequence voltages and currents on the stator and rotor, only four voltage equations can be written in
total. They correspond to alpha- and beta-axis (a8 axes) stator and rotor voltage equations. The phase
transformation matrix C, is applied to the three-phase quantities to obtain the two-phase equivalent

quantities. The transformation matrix C, is

C,=cM (12)

where
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_1 1 1_
2 2
2 2

1 1 1

V2 V2 V2

and c is a constant. For the power-invariant case, c is equal to /2 /3. However, for the non-power-
invariant case, ¢ = 2/3. Then, the relationship between the two-phase voltage components and their

three-phase components is defined by
ﬁaﬂs] [Cl ] [uabcs]
_ = 13
[uaﬁr 0 Ugber ( )
where i, g5 = [Ugs uﬁs]t and fgp, = [Ugr uﬁr]t. It should be noted that the zero-sequence voltages

on the stator and rotor are ignored. This means that the third row of M is discarded for the above

transformation. Similar transformations hold for the stator and rotor currents.
Taﬁs] [ ] [ abcs]
_ 14
[laﬁr 0 C1 Laber ( )

where 7,5 = [igs iﬁs]t and Tpp, = [igr i[;r]t.

The inverse transformations are performed by

Ugpe = Cl_llaaﬁ v lape = C11 lap (15)
_ _ _ t _ _ _ t .
where ti,g = [Ugps Ugpr] and Tyg = [Taps lapr] - AlsO, Cyy i

5 oot 3
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and for the non-power-invariant case, it is obtained by

M 0

C_11=[0 Mt

Thus, by substituting Eq. (15) into Eq. (11.b) and after some algebraic manipulation, the machine

model takes the following form:

_ _ d _
uaﬁ = Rla[g + E(Laﬁlaﬁ) (16)

where the total inductance matrix is

Lg 0 Mg, cos 8, —M,, sin@,
0 L M, sin 6 Mg, cos 6
— -1 _ N sr r sr r
Lap = CirlapcCir = M, cos B, M, sin6, L, 0 (17)
—M,, sin6, M, cos 0, 0 L,
and L, L,, and M., are obtained by using Egs. (5) and (7) as
_ _ 3 _ _ 3
Ls:Ls_Ms:Lls"i'ELms ) Lr:Lr_Mr:Llr‘l'ELmr
(18)

3 _
Mg, = EMsr

where L and L, represent the total three-phase stator and rotor inductances, respectively. M, is the
three-phase magnetizing inductance.

The two-phase slip-ring model of the induction machine is represented by Eg. (16). In this
model, the total inductance matrix still contains the rotor angle. It is noted that when the phase
transformation is applied to the three-phase model, the stationary three-phase is reduced to the two-
phase fixed to the stator while the rotating three-phase is reduced to the two-phase fixed to the rotor.

Therefore, the transformed impedance matrix Z,z = R + pL,z includes time-dependent terms even

if all of the machine parameters are considered to be constant.
2.3. Two-Phase Commutator Model

The two-phase commutator model is obtained as shown in Fig. 2b if the rotor quantities of the

two-phase slip-ring model are transferred into a new reference frame fixed to the stator, providing
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that the stator quantities are unchanged. In this case, in the absence of the zero-sequence components,
there will still be four voltage equations, but these resulting equations are now purified from the rotor
angle. The rotor voltages and currents are transferred to the pseudo-stationary windings fixed to the

stator by the transformation matrix C,. The transformation matrix C, is

_ [cos 6, —sind,
, =

sinf, cos@, (19)

Then, the corresponding stator and rotor quantities to the commutator model are obtained by
anl=lo cllinl - [Enl=lo el
20
I aﬁrl 0 C Uapr aﬁr 0 G Lapr (20)
where 55, = [uS, ugr]t and 5, = [i5, igr]t. It should be noted that all the stator quantities are
already stationary with respect to the stator and no transformations are made for them.
The inverse transformations are performed by
aaﬁ = Cz_zlazﬁ ) Taﬁ = Cz_zlffzﬁ (21)
_ _ _ t _ _ _ t .
Where uiﬂ = [uaﬁs ug_,ﬁr] and liﬁ = [laﬁs liﬁr] . AISO, CZZ IS
I 0
¢2=o )

and C, is an orthogonal matrix, that is C;; = C%,. Thus, by substituting Eq. (21) into Eq. (16) and
after some algebraic manipulation, the two-phase commutator model is obtained by

do,

Ugp = Rigg + Ly —-Top + Gop—lap (22)
where
Ly 0 My, O
0 L 0 M
L B C22LaﬁC22 - Msr OS L, Y (23)
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and

do d
Zeﬁ d_tr =Cy; E (LaﬁC52)

where d6,./dt = w, is the rotor electrical angular speed, and the speed matrix Gz is

0 0 0 0
0 0 0 0
S j—
= 0 M, 0 L (24)
M, 0 —L. 0

Eventually, from Egs. (23) and (24), the two-phase commutator model can be given in a more

compact form as follows:

or it is more explicitly as

[Yas]  [Rs+ Lsp 0 Mg,.p 0 [Las]
|Uss| _| O Rs + Lgp 0 Mgp ||%s| 25 b
[uJ | Myp  Mgw, R+l Lo, ||is] (25.0)
ulsir —Mg 0y Mg p —L,w, Ry +Lyp liErJ

It is seen that the impedance matrix Z;; = R + L gp + Gy, in the commutator model does
not now include a function dependent on the rotor angle, but only includes the rotor electrical angular
speed in the rotor voltage equations. Therefore, this system of differential equations will be linear if

all the parameters of the machine are constant.
2.4. Machine Model in Arbitrary Reference Frame

In the two-phase commutator model, the stator and rotor voltage equations are defined relative
to a reference frame fixed to the stator (which is often called the stationary reference frame). However,
a more general machine model can be obtained when a general (arbitrary) reference frame rotating at
an arbitrary angular speed w, is used rather than the stationary reference frame. The machine model
in the arbitrary reference frame is shown in Fig. 3, where 6, is the angle between the real axes of the

stationary and arbitrary reference frames.
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Figure 3. Schematic view of machine model in the arbitrary reference frame

The transformation matrix C is used to transform the stator and rotor quantities in the stationary

reference frame into the arbitrary reference frame.

C, = [ cosf, sing, (26)

—sinf, cosé,

and hence, the following can be written:
R 0 e e R
ﬁgqr 0 C3 aﬁ'r ' igqr 0 C3 aﬁ'r

where 8gs = [ul us|, @qr = [l u%]", s = [i& i&]', and 1&g, = [i& %],

The inverse transformations are performed by
g = C338gg , Top = C33Tg, (28)
where @, = [ug,s ﬁgqr] and 13, = [13,s qur] Also, C35 is
C
Cs33 = [03

and Cs; is an orthogonal matrix, that is C33 = C&;. Thus, by substituting Eq. (28) into Eq. (22) and

after some algebraic manipulation, the machine model in the arbitrary reference frame is obtained by

d o, . de,
Ugq = Rigg + Lgg — dt lgq + ( dq(wa) "g¢ + Gag(w,) dt ) laq (29)
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where L, = Ly g, Ggg(w,) = Ggp and

do d
Ggq(wa) d_ta = C33foﬁ E C§3

where df,/dt = w, is the arbitrary angular speed and the speed matrix Ggq(wa) is

0 -L, 0 -M,,
L 0 M 0

Giqon) = ()S —M,, ()Sr —L, (30)
M, 0 L0

Consequently, the machine model can be written more explicitly from Eq. (29) as follows:

[ugs—l Rg+ Lgp —Lsw, Mg,p —M,,w, [if}s]
uis|_|  Lswa Ry + Lsp Mg Mop | gy
ufilr B Mg-p —M, ((‘)a - wr) R, +Lyp _Lr((‘)a - wr) i&lr
lugrj Msr (wa - wr) Msrp Lr(wa - wr) Rr + Lrp ling

In the above model, ug,, ug, and ig,, ig,. are the voltage and current quantities on the rotor side.
To produce the final per-phase equivalent circuit for an induction machine, it is necessary to refer the
quantities of the rotor side to the stator side. As in an ordinary transformer, the voltages and currents

on the rotor side can be referred to the stator side by means of the effective turn ratio of the machine.

r s

e = qu o - _ qu —ar 32

aqr — ars dqr ldqr - nIT ldqr ( )
qu qu

where

s s s
Nabc _ af _ qu _

= = =N
Ngbc N(Zﬁ N(gq

It should be noted that the effective turn ratio N is never unchanged, no matter which axis
transformation is applied to the machine model. As mentioned earlier, Eq. (31) holds for a machine
with a symmetrical two-pole structure, i.e., p = 1 and w, = w,,, Where w,, is the rotor mechanical
angular speed. When p > 1, the rotor electrical angular speed w, is replaced by pw,,. Then, for p >

1 and the manipulation of Eq. (31) with Eq. (32) gives
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[Uds] R+ Lsp —Liw,
|ugs|_ Lw, R, + Lep
lug;j B me _Lm((‘)a - p(‘)m)
ug; L (wa - pwm) Linp (33)
Lyp —Lywq [igS
Lin®a Linp |ids |
Rr+Lp  —Li(wg—pwn)||igy

Ly(we—pwn)  Ri+Lp  iz]

where L,, = NM,,, and by using Eq. (10) and Eqg. (18), it can be written by
53
Ly, = ELms V. Lp=N ELmr

and also, we can write

3
R. =N?R, , L, =NZ2L, =N? (Ll, +§Lmr> =L, + Ly

3
Lg = Ly +§Lms = Lig+ Ly

where the ' superscript represents the rotor quantities reduced to the stator side. On the other hand,

since ¥g, = L%, 15, in Eq. (29), the stator and rotor flux-linkages are given by

lﬁgqs __ya ngs
@gqr _qu ngr (34)

where ¥g,s =[5 ¢gs]t and ¥, = ¥, wgr]t. Y&, & and ig,, i% are the flux-linkage and

current quantities on the rotor side. When these rotor quantities are referred to the stator side by using

— 1 _
a —_ al Ta — —al
d)dqr - N¢dqr v lagr = Nldqr

the flux-linkages reduced to the stator side are

g , [t
| =L |-ar (35)
dqr Lagr
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where since Lg, = Li 5, we obtain

[ Lg 0 NM,, 0 ]
| 0 Ly 0 NM|
al
dq — 2 (36)
q [NMsr 0 N2L. O J
0 NM, 0 NZ2L,

Then, the flux-linkage matrix becomes

Yas] [Ls 0 Lp 0 7[ids
g L 0 L ig
dr m r lar
@ 0 L, 0 Llfiw

qar qr

The stator and rotor voltage equations and flux-linkage equations in the arbitrary reference
frame are written by using Egs. (33) and (37), respectively. It follows that these equations are suitable

for simulating the operation of induction machines and for designing various control schemes.
3. Space-Phasor Representation of Equations
In this section, the voltage and flux-linkage space-phasor equations will be presented only in

the arbitrary reference frame. Then, the space-phasor of the stator quantities (current, voltage, flux-

linkage) are described through their direct- and quadrature-axis components in the arbitrary reference

frame as

o= if+jigs g =ufotjufs W= Y+ g (38)
and similarly

Lo=if +jig . Wo=ug tjug W= vh vl (39)

Using the above definitions of the current and flux-linkage space-phasors, the stator and rotor

flux-linkage equations in Eg. (37) can be put into the following space-phasor form:

W, = L, + L1, (40.2)
Wy = Ly + Ly, (40.b)
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Similar space-phasor forms of the voltage equations can be derived from Eq. (33). Then, by
utilizing the space-phasor definitions and equations in Egs. (38), (39), and (40), the stator and rotor
voltage equations can be put into the following space-phasor form:

dy .
i, = R, + % +jw, P, (41.3)
=2/ 127 d$’ . _),
u, = R, 1, + dtr +](wa - pwm)lpr (41.b)

The per-phase equivalent circuit for an induction machine is shown in Fig. 4a, where the space-
phasor quantities are given. The direct- and quadrature-axis equivalent circuits are also illustrated in
Fig. 4b and 4c, respectively. In these equivalent circuits, the rotor terminals are short-circuited, i.e.,

u,. = 0. This means that the induction machine under consideration has a squirrel-cage-type rotor.
4. State-Space Equations in Arbitrary Reference Frame

The stator voltages and currents can be directly sensed from the fixed stator windings. Similarly,
the rotor voltages and currents can be measured from the rotating rotor windings, but it is almost
impossible in the case of a squirrel-cage-type rotor. Therefore, the rotor currents are not preferred as
the state variables in the state-space machine models. However, the stator and rotor flux-linkages can
be chosen as state variables since they can be observed from measurable quantities. In this case, three
different state-space models of the machine can be derived according to the state variables to be
selected. For this study, the state variables were taken for Models #1, #2, and #3 as follows:

Model #1: The space-phasor of the stator current 1 and the space-phasor of the stator flux-

linkage EJ’S are selected as the state variables. From Eqg. (41.a), we obtain

A,
dt

= —Ri, — jo P + U (42)

From Egs. (40.a) and (40.b), we have

1 -, L

I =—y— _Si)s (43.2)
L L

—, L. LJL.

g, = i s— 0 Zmr s (43.b)
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where o = 1 — (L2,/LL,) is the total leakage factor. Firstly, Egs. (43.a) and (43.b) are substituted

into Eq. (41.b) and subsequently if it is rearranged with Eq. (42) for u. = 0, it yields
di, R, 1 1 1\— 1
== —j - i —j — u 44
dt [ (aLS * O'TT) j(wa pwm)] s+ (O’Lsfr JPOm O'LS) s + oL Us (44)

where 7,. = L. /R;. is the rotor time-constant. The state-space equations are now represented by Egs.

(42) and (44). When these space-phasors are expanded by using the phasor definitions of u;, 1 and

W, in Eq. (38), the machine model is written by

ldqs I [All A12 l i_gqs l Bl] aa C lqu I (45)
dt I:bdqs Az Ay lpgqs B, das lpdqs

The output C matrix and the sub-matrices of the system A and input B matrices are given in

Table 1, where the matrices I, J and 0 that expand the terms are as in

1 0 0 -1 0 0
=l 4 0= o=y ol
0 1 J 1 0 0 0
1. R L L R. T
4 1 s @ s ir @ r 1
jwall_;s jlwg — pwmﬁ;'r
l_is @Lm ﬁ;:o
(@)
walpgs (wq — Pwm)ll)f#
ue 3im ug =0
(b)
R L L R! -ar
lgs s 7\ s r lgr
+ +— 41 SR — +
A\
wags ( pwm)Var
ud 3 im ug =0
(c)

Figure 4. Per-phase equivalent circuit in the arbitrary reference frame; (a) space-phasor equivalent
circuit, (b) direct-axis equivalent circuit, (c) quadrature-axis equivalent circuit
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Model #2: The space-phasor of the stator current 1, and the space-phasor of the rotor flux-

linkage W}’r are selected as the state variables. From Eqgs. (40.a) and (40.b), we obtain

—)’ L
- _lIJr - , (46-3-)
—_— Lm -, N
Y, = L_,lljr + oLl (46.b)
T
Firstly, if substituting Eq. (46.a) into Eq. (41.b), (for u;. = 0) it results in
dy,. L, 1 _,
_rr_-ms - - ! 47
e e (C Ry LT L (47)

Secondly, Eq. (46.b) is substituted into Eq. (41.a) and then if the obtained is rearranged with
Eq. (47), we have

i, R, 1-0 L, (1 1
— = - 4 i 4+ —1 48
dt (O’LS * oT, +]wa) oL.L ( ]pwm)lll oL (48)

N

The system of differential equations is now represented by Eqgs. (47) and (48). When the space-

phasors are expanded by using the phasor definitions of uj, i, and ﬁ’r in Egs. (38) and (39), the
machine model is written by

ldqs l [All AlZ [Eﬁqs l + [Bl] aa za — C igqs I (49)
dqr Az A22 l/)(cil(’p’ B, das v Tdas lpdqr

where the output C matrix and the sub-matrices of A and B are given in Table 1.

Model #3: The space-phasor of the stator flux-linkage $S and the space-phasor of the rotor

flux-linkage $’r are selected as the state variables. From Eqgs. (40.a) and (40.b), we obtain

i)s = P + lll;« (50.6.)
Lg oL,

[ W r (50.b)
L oL,
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Table 1. Sub-matrices of the system A and input B matrices, and the output C matrix for the state-

space models #1, #2, and #3

Model #1

X = (W5 $iqs| Where 8., = [i% i&]" and Yoy, = [ds &

(RS N 1 )l ( ) 1 [ 1 1
A= oLy oT, ©a = Pm)] oL, P&m O'LS] , B=|oL, I]
—R,I —w,] I
c=[1 0]
Model #2

Tar t . . t Tar ! ! t
X = [[Ggs Waar] Where 15, = [ig; i&] and 5, =[5 v ]
R 1-— L 1
R I
A= | \oLs; o7,

oL,y \z,} ~Peml )| '
L 1 J » B=ol,
z, . (wg — pwm)) 0
[1 0]
Model #3
T Tal t T t Tar ! ! t
X = [lpgqs l'bgqr] where 1nl)((ilqs = [wgs Wfs] and l/)giqr = [ éllr gr]
R, I R 1- Gl
[ oL, ¥a S L, ] I
B
[ w170, 1 ( )J 0
T O_Lm oT wa pwm ]

T

c= [ G_lq
oL, oL,

In a similar manner to the previous algebraic manipulations, by using Egs. (50.a) and (50.b),
the system of differential equations is obtained from Eqgs. (41.a) and (41.b) as follows:

dﬁs RS — 1 — 0 —
—[— i R U T 51
dt ( O_LS ](‘)a) ll‘,S + S O_Lm lIJT' + uS ( )

1 —
=R’ — —j — ! 52
T = R W+ | o —pan) | (52

and the above space-phasors are expanded as
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d T,a A A 7,0 B 7,a
= gl B e | Vgl B P I 53)
dt dqr 21 22 l/qur 2 dqr

where the output matrix and the sub-matrices are given in Table 1.
5. Electromagnetic Torque in Induction Machine

The main output variables of the machine are the produced torque t, and the rotor mechanical
speed w,,. The mechanical output power P, is also equal to t,w,, or t,w,/p for p > 1. Then, the

produced torque is defined as

P,
te=p— (54)

Wy

The mechanical output power can be derived from the instantaneous value of the input power
supplied to the machine by considering the principle of conservation of energy. The definition of the
output power is first obtained for the three-phase model. Thereafter, the relevant transformations are
applied, and their corresponding expressions to the other two-phase models are found. After some

complex algebraic operations, the output power in the arbitrary reference frame is obtained by

dé
Pn=k- (qutGgq(wr) d_trigq) (55)

where Gg,,,) = Ggp- Using Egs. (54) and (24), the electromagnetic torque is given as
te=k- pMsr(igsigr - igsigr) (56)
where k is a torque constant. For the power-invariant form of the phase transformation, k = 1, but

for the non-power-invariant case, k = 3/2. On the other hand, when the rotor currents are reduced

to the stator side, it becomes
te = k- me(igsigrl" - igsig;") (57)

The electromagnetic torque can also be expressed in the space-phasor form. By considering the

space-phasor definitions of 1 and 1., the torque equation can be put into the following form:
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te =k pLny (¥ X 1) (58.a)

where X denotes the cross product of two vectors. Considering Egs. (43.a), (46.a), and (50.a), other

equivalent expressions for the electromagnetic torque can be defined as

te =k p(Ws x1y) = k- p(P&id — Y&id) (58.9)
te = =k- pL_,(lpr XT ) =k- pL_,(l/)dr qs — g;lgs) (58b)
te=k- pﬁ(‘l’r X lI"s) k-p—"m-— oL, L' (1/) lpqs l/) l/st) (58.c)

where Egs. (58.b), (58.¢), and (58.d) are respectively proper torque equations for Models #1, #2, and
#3. Finally, the state-space and torque equations of the machine hold under both transient and steady-

state conditions. However, the equation of motion

dw
te =t +J,— + fawp, (59)

dt
is also required for transient conditions, where t; is the load torque, J; is the inertia of the rotor and f;
is the damping constant which denotes dissipation due to windage and friction. The motion equation
introduces the relationship between the developed torque and rotor mechanical speed, and hence it is

used to determine the rotor speed in simulation studies.
6. Reference Frames Used in Machine Model

The dynamic behavior of any induction machine can be simulated by using the general block
diagram in Fig. 5. As seen in Fig. 5, the inputs of the model are the stator voltages and load torque.
The outputs are the stator currents, developed torque, and rotor mechanical speed. The transformation

angle 4, is obtained by
B = f g dt (60)

where w,, is an arbitrary angular speed. Since the state-space models in Table 1 are expressed in the
reference frame rotating with an unspecified angular speed, the machine model cannot be simulated

as such. To make the machine model more suitable for simulation, the state-space equations need to
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be re-expressed in one of the following reference frames. The main function of the “Reference Frame

Selector” sub-block is to perform this operation.

C, c; o G ;!
u Ugs _ Ugs _ lgs _ las -~ .
as—>|\ aff >\ dq? > >\ af >\ abc [ las
Ups — u u State-Space | ;a i >lbs
Ups — abc Bs > af 2, Model of , dq® Bs > af >ics
Induction
ea_f Machine Lga
Reference Wq—> i
Frame Selector s

0— :
PW, ::\-:—49‘1 |_> Torque te Motion of o,
! Calculation Equation

e L sw, Y or ;.
t1—1

Figure 5. General simulation block diagram of an induction machine

Fig. 6 depicts commonly used reference frames in ac machine analysis. It follows that the
machine model can be described in three different reference frames, namely stationary, rotor, and
synchronous reference frames. How to transfer the state-space models in Table 1 from the arbitrary
reference frame to other reference frames will be shown below, and their basic features will be briefly
introduced.

1. The machine model is expressed in the stationary reference frame if the arbitrary reference
frame coincides with the phase-a axis of the stator. Then, when w, is zero in Table 1, the
state-space equations in the stationary reference frame are obtained. Since w, = 0, the
arbitrary reference frame does not rotate. Therefore, the stator and rotor quantities change
sinusoidally with synchronous angular speed wg, Where wg = 27tf; and f; is the fundamental
frequency of the stator currents or voltages.

2. The machine model is expressed in the rotor reference frame if the arbitrary reference frame
coincides with the phase-a, axis of the rotor. Then, if w, is taken as w,- or pw,, in Table 1,
the state-space equations in the rotor reference frame are achieved. Since w, = w,, the
arbitrary reference frame rotates at the rotor electrical speed w,. Therefore, the stator and
rotor quantities change sinusoidally with slip angular speed wg;, where wy; = wg — @,

3. The machine model is expressed in the synchronous reference frame if the arbitrary reference
frame coincides with the reference frame rotating with synchronous speed wg. Then, if w,
is replaced by w, in Table 1, the state-space equations in the synchronous reference frame
are attained. Since w, = wy, the arbitrary reference frame rotates at the synchronous speed
w,. Similarly, the stator and rotor quantities change sinusoidally with synchronous speed w;.

Thus, these ac quantities convert into dc quantities in the synchronous reference frame.
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Arbitrary Reference
Frame (d% — q%)

Wa Synchronous Reference

wV;/ Frame (d° — q°)
dll
bs

Or _ Rotor Reference
y Frame (d" — q")

Qar

ps.(d®=avq®=p)

Figure 6. Commonly used reference frames in AC machine analysis

The above three reference frames provide the state-space models that can be used to analyze
and/or simulate the induction machine. The most convenient reference frame is determined by the
operating conditions. In general, to study balanced conditions, either the stationary or synchronously
rotating reference frame is preferred rather than the rotor reference frame. However, if the stator
voltages are unbalanced and the rotor voltages are balanced or zero, then the stationary reference
frame is more convenient. On the contrary, if the rotor voltages are unbalanced and the stator voltages
are balanced, then the rotor reference frame is more convenient. Moreover, the synchronously rotating

reference frame is more useful in variable frequency applications for balanced conditions.

Table 2. Equivalent circuit and other parameters of induction machine

Parameter Symbol Value Unit
Stator resistance Ry 2.65 Q
Rotor resistance R, 2.85 Q
Stator self-inductance Ly 0.2082 H
Rotor self-inductance L, 0.2122 H
Mutual inductance L 0.1941 H
Number of pole-pairs p 2 —
Moment of inertia J; 0.025 kg - m?
Damping coefficient f; 0.001 Nm - s/rad
Rated torque te 15 Nm

Rated base speed Ny 1500 rpm
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uas uas uds P uds ids P ids ias
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delta

|

ias
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Scope Reference Frame
Selector

T_load

Figure 7. Simulink model of a symmetrical three-phase induction machine

—>| —a11*u(1)+u(8)*u(2)+a12*u(3)+u(7)"a13*u(4)+b1*u(5 |—>D
dids/dt
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digs/dt

»—>| at4*u(1)-a15*u(3)+(u(8)-u(7))u(4)
dphidr/at
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dphiqr/dt

phldr >4 » 7]
phir
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Figure 8. Simulink models of subsystems in the machine model
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7. Simulation Studies

All the simulation studies on the presented machine models are realized in Matlab environment.
The schematic simulation model and each sub-models of the machine given in Fig. 5 are created by
using the blocks under Simulink library. Fig. 7 shows the simulation model of an induction machine,
where its subsystem models are separately given in Fig. 8. An induction machine with 220/380V,
50Hz, 2.2kW is examined in the simulation studies. The equivalent circuit parameters are given in
Table 2. The following can be said for this simulation model:
= The phase transformation is carried out by using the non-power-invariant form of C;; that
is, while the coefficient ¢ in Eq. (12) is taken as 2/3 in the transformation from abc to af,
C;! = Mt is used in the inverse transformation from a8 to abc.
= The transformation angle for af to dq and vice versa is determined under the “Reference
Frame Selector” subsystem. The stationary, rotor, and synchronously rotating reference
frames can be chosen when the input w is 1, 2, and 3, respectively.

= Model #2 among the state-space models in Table 1 is simulated; that is, the components of

1, and ﬁ)’r space-phasors are selected as the state variables. In this case, the auxiliary model

parameters seen in Fig. 8a are as follows:

Ry 1-o0 Ly 1
T = oL, o1, ' Mz = oLl T,
L, L, 1 1
a13=TsL,r ) aM:Z ) a15=; ) bl:aLs

= The developed torque is calculated by Eq. (58.c). Because this torque equation is expressed
in terms of the state variables of Model #2. In addition, since the non-power-invariant form
of C, is applied in the phase transformation, the torque constant k is taken as 3/2. The
mechanical rotor speed is calculated by solving Eg. (59) under the "Equation of Motion™

subsystem.

8. Results and Discussions

The simulations were realized for two case studies. Firstly, the free acceleration characteristic
of the machine and secondly, the dynamic performance during sudden changes in the load torque are
examined. For both cases, the stator windings are supplied by the rated and balanced voltages. The

torque vs. speed characteristic and the machine variables during free acceleration are shown in Figs.
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9a and 10a, respectively. Since the machine is initially at rest and the rated voltage is applied, the
starting current and thusly the starting torque are considerably greater than their rated values. The
friction and windage losses are so small that they can be neglected. Hence, the rotor shaft accelerates

up to around synchronous speed and the produced torque is almost zero at this speed.

60 : . . 15
2

40+ 1 10+
8 B
Z 20 Z 5

0 Or 1
-20 -5
0 50 100 150 145 150 155 160
Wy, (rad/s) Wy, (rad/s)
(@) (b)

Figure 9. Torque-speed characteristics; (a) during free acceleration, (b) during step changes in load
torque from zero to 10 Nm to zero
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g g 10+

20
5 é 0 Nm 0 Nm
WL 0 0 Nm 2 0

-20 10

200 180
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< ~ 160 { 151.04 rad/s /
S 100} 1 S
= 5l | < 140} |
5 %0 3
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Figure 10. Machine currents, rotor mechanical speed, and electromagnetic torque; (a) during free
acceleration, (b) during step changes in load torque from zero to 10 Nm to zero

The dynamic behavior of the machine during sudden changes in the load torque is shown in

Fig. 10b. Initially, (before changing the load torque), the machine is operating at synchronous speed.
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The load torque is first stepped up from zero to 10 Nm and for a while, the machine is allowed to
move to this new operating point. Next, the load torque is again stepped down from 10 Nm to zero.
The machine returns to its original operating point. The transition trajectories between these two
operating points can be seen from the torque-speed characteristic in Fig. 9b. The transition directions
between the two operating points are also indicated by the arrows. Due to the characteristics of the

examined machine, the machine variables approximate each operating point in an overdamped way.

0 0.25 0.5 0.75 1.0

Figure 11. Variations of rotor flux-linkage components in the stationary, rotor and synchronously
rotating reference frame, respectively (from top to bottom)

Finally, it will be instructive to observe the d and g components of the machine variables in
various reference frames. Fig. 11 shows the components of the rotor flux-linkage in the stationary,
rotor, and synchronous reference frames during two operating conditions. All the stator and rotor
quantities change sinusoidally with synchronous speed in the stationary reference frame. However,
these are in the form of dc quantities in the synchronous reference frame. This is respectively evident
from the top and bottom figures of Fig. 11. The remaining middle figure shows the variation of the
rotor flux-linkage in the rotor reference frame. These quantities change sinusoidally with slip speed.
The sinusoidal changes occur in the range of a long period of time as the slip is very small initially.
Under the load torque of 10 Nm, the slip increases compared to the no-load condition. Thus, the

changes of these components become more pronounced depending on the increasing slip speed.
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9. Conclusions

This study presents a mathematical investigation on the dynamic models of a symmetrical three-
phase induction machine. All the primitive machine equations are derived in relatively simple terms
by using the idea of rotating reference frame. Moreover, the ready-to-use advanced machine equations
are derived in the arbitrary reference frame. The evolution of machine equations from primitive to
advanced forms is presented as comprehensibly as possible and in a more compact form. This study
also proposes three different state-space models derived from the advanced machine equations in the
arbitrary reference frame. It is shown how to transform these state-space models from the arbitrary
reference frame to the stationary, rotor, or synchronous reference frames. A general simulation block
diagram is further presented which can be used in all the reference frames without any modifications
to its structure. The given machine model and reference frames are discussed through some simulation
studies, and the expected results are achieved. In future work, the development of vector control
methods for the control of induction machines as well as observer designs for flux and speed

estimation can be discussed comprehensively using the given machine models.
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