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Abstract 

This paper presents dynamic models of a three-phase induction machine in various reference frames widely employed in 

alternating-current (ac) machine analysis. The main objective is to derive and explain the machine model in relatively 

basic terms by using the idea of rotating reference frame theory. Many matrix manipulations and complex frame-to-frame 

transformations performed to obtain an advanced model from primitive dynamical equations are presented in a more 

compact and easy-to-understand way. Therefore, this paper reviews a detailed, yet simple and understandable 

mathematical background on the dynamic models of the induction machine. Furthermore, a unified and broadly applicable 

simulation model is proposed for simulating the dynamic behavior of the machine in any desired reference frame. The 

simulation model has also a modular and user-friendly structure. For the simulation studies, Matlab/Simulink environment 
is preferred due to its popularity. A Simulink machine model with several subsystems is explicitly given. The simulation 

study is realized for a small power induction machine operating under both load and no-load conditions. The variations 

of three-phase currents, electromagnetic torque, and rotor mechanical speed as well as the rotor flux-linkage components 

are shown. The key features of each reference frame are discussed, especially through the measured rotor flux-linkage 

components. 

Keywords: Induction machine, Reference frame theory, Dynamic model, Simulation model. 

 

 

Simetrik Üç Fazlı Asenkron Makinanın Çeşitli Referans Çerçevelerinde 

Dinamik Modelleri Üzerine Matematiksel Bir İnceleme Çalışması 

 

Öz 

Bu makale, alternatif akım (aa) makine analizinde yaygın olarak kullanılan çeşitli referans çerçevelerinde üç fazlı 

asenkron makinanın dinamik modellerini sunmaktadır. Temel amaç, dönen referans çerçeve teorisi fikrini kullanarak 

makina modelini nispeten basit terimlerle türetmek ve açıklamaktır. İlkel dinamik denklemlerden gelişmiş bir model elde 

etmek için gerçekleştirilen birçok matris manipülasyonu ve karmaşık çerçeveden çerçeveye dönüşümler, daha kompakt 

ve anlaşılması kolay bir şekilde sunulmaktadır. Bu nedenle, bu makale asenkron makinanın dinamik modellerine ilişkin 

ayrıntılı, ancak basit ve anlaşılır bir matematiksel arka planı gözden geçirmektedir. Bundan başka, makinanın dinamik 

davranışını istenen herhangi bir referans çerçevesinde simüle etmek için birleşik ve geniş çapta uygulanabilir bir 

simülasyon modeli önerilmektedir. Simülasyon modeli aynı zamanda modüler ve kullanıcı dostu bir yapıya sahiptir. 

Simülasyon çalışmalarında popülerliği nedeniyle Matlab/Simulink ortamı tercih edilmektedir. Birkaç alt sisteme sahip 

bir Simulink makina modeli açıkça verilmiştir. Simülasyon çalışması hem yük hem de yüksüz koşullar altında çalışan 

küçük güçlü bir asenkron makina için gerçekleştirilmiştir. Üç fazlı akımların, elektromanyetik torkun ve rotor mekanik 

hızının yanı sıra rotor akı bileşenlerinin değişimleri gösterilmektedir. Her bir referans çerçevesinin temel özellikleri, 

özellikle ölçülen rotor akı bileşenleri aracılığıyla tartışılmaktadır. 

Anahtar Kelimeler: Asenkron makina, Referans çerçeve teorisi, Dinamik model, Benzetim modeli. 
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1. Introduction 

 

The induction machine is used extensively in a great number of industrial applications, 

especially in variable-speed drives. They are considered to be the workhorses of the electric power 

industry (Vas, 1998; Krause et al., 2002). This is because it has many needful features in comparison 

with a direct-current (dc) machine, e.g., simple and rugged structure, low-cost, low-maintenance 

requirement, high efficiency, reliability, and so on. However, unlike a dc machine, the control of an 

induction machine is quite sophisticated, and they require various complex types of hardware and 

software equipment to solve its control problem. So far, there have been many advances in power 

converters, microprocessor technologies, and control techniques to fulfill these control requirements. 

Therefore, induction motor drives have now gained a considerable place in the world market and 

replaced variable-speed dc drives. 

The dynamic model of the induction machine is used to simulate the transient and steady-state 

behaviors of the machine not only under balanced conditions but also under various unbalanced 

conditions. The dynamic model is also necessary to develop and analyze the control structures. The 

dynamic behavior of any rotary machine is defined by a system of differential equations. In ac 

machines, these equations contain time-varying coefficients and are inherently nonlinear. The reason 

is that the mutual inductances change in the form of a function of rotor speed as the rotor phase 

windings rotate relative to the stator. Reference frame theory is used to eliminate all these time-

dependent inductances and hence transform them into a linear system. The main idea of the theory is 

based on the redefinition of machine variables (rotor and stator side voltages, currents, flux-linkages) 

with their corresponding equivalents in the desired reference frames. Herein, a “reference frame” is 

referred to as a set of direct and quadrature axes (𝑑𝑞 axes) that rotate at a particular angular speed (or 

do not rotate when angular speed is zero). The development of the reference frame theory can be 

given as follows: 

▪ The stator variables were transferred into a reference frame rotating with the rotor (Park, 1929). 

In other words, all three-phase 𝑎𝑏𝑐 (rotor and stator) quantities were referred to a 𝑑𝑞𝑟 reference 

frame fixed to the rotor. The Park’s transformation was first applied to a synchronous machine. 

Then, Brereton et al. (1957) was used it in a similar way to analyze a symmetrical induction 

machine. This reference frame is commonly called the rotor reference frame. 

▪ The rotor variables were transferred into a reference frame which is stationary with respect to 

the stator (Stanley, 1938). In this case, all three-phase 𝑎𝑏𝑐 (rotor and stator) quantities were 

referred to a 𝑑𝑞0 reference frame fixed to the stator. This reference frame is commonly called 

the stationary reference frame. 
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▪ The stator and rotor variables were transferred into a reference frame rotating in synchronism 

with the rotating magnetic field (Kron, 1951). In other words, all three-phase 𝑎𝑏𝑐 (rotor and 

stator) quantities were referred to a 𝑑𝑞𝑠 reference frame rotating with synchronous speed. This 

reference frame is commonly called the synchronous reference frame. 

Initially, it was believed that the three reference frames given above was different, and these 

were applied individually to help with the study of ac machines for a long time. However, Krause and 

Thomas (1965) described that all these reference frames are contained in one general reference frame. 

This is called the “arbitrary reference frame” in which the 𝑑𝑞 axes rotate at an arbitrary speed. Other 

reference frames correspond to specific applications of this arbitrary reference frame. That is, the 𝑑𝑞 

axes are rotated at a specified speed rather than an arbitrary speed. As mentioned above, there are 

three reference frame speeds in the analysis of ac machine. These are; (i) (stationary reference frame) 

the 𝑑𝑞 axes do not rotate, (ii) (synchronous reference frame) the 𝑑𝑞 axes rotate at synchronous speed, 

and (iii) (rotor reference frame) the 𝑑𝑞 axes rotate at rotor speed. The readers can refer to (Lee et al., 

1984; Q’Rourke et al., 2019) for a more comprehensive description of reference frames. As a result, 

a unified model that can be easily arranged to simulate an induction machine in any desired reference 

frame is developed in (Krause and Thomas, 1965). In the following years, an analytical method for 

introducing stator and rotor leakage inductance saturation into this simulation model is developed 

(Lipo and Consoli, 1984). In addition, several linear and nonlinear models suitable for transient and 

steady-state analysis are also presented (Slemon, 1988). 

The machine model based on the theory of rotating reference frame is quite proper for the study 

of transient and steady-state behaviors and the design of control structures. It has proven to be reliable 

and accurate by many studies. To this end, many graduate-level textbooks (Novotny and Lipo, 1996; 

Vas, 1998; Krishnan, 2001; Krause et al., 2002; Bose, 2002; Wack, 2011; Abu-Rub et al., 2012; 

Melkebeek, 2018) discuss and present the reference frame theory and the 𝑑𝑞 axes machine model in 

different ways. Some textbooks even show in detail how to perform complex mathematical operations 

to derive an advanced model from primitive dynamical equations. This paper aims to derive the 

dynamic models of the induction machine in a more compact and simple way. In addition, this study 

complements previous studies due to the following contributions: 

▪ This study first obtains all the primitive dynamic equations step by step before the machine 

model is expressed in the arbitrary reference frame. These are provided from an interrelated 

three-step workflow. Each stage corresponds respectively to “three-phase model”, “two-phase 

slip-ring model” and “two-phase commutator model” of the machine. Subsequently, the general 

machine model in the arbitrary reference frame is obtained, and the ready-to-use advanced 

model is presented. Throughout this process, all the mathematical operations are given in a 
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simple and compact form. Hence, it can be said that a simple and understandable mathematical 

background on the dynamic models of the induction machine is reviewed by this study. 

▪ This study specifically focuses on the arbitrary reference frame, and how this relates to other 

reference frames. It is introduced how to transfer the machine model from the arbitrary 

reference frame to other reference frames. The key features of each reference frame are briefly 

highlighted. 

▪ This study presents three distinct state-space models for the induction machine. Each state-

space model is given in a compact form on the arbitrary reference frame. From this point of 

view, it is shown that an induction machine can be defined by a total of nine dynamic models. 

▪ This study presents a general simulation block diagram that is valid for all the reference frames. 

Various software packages can be used for simulation studies such as Pscipe (Akherraz, 1997), 

Labview (Li and Hu, 2010), and Matlab (Shi et al., 1997; Ozpineci and Tolbert, 2003; Abu-

Rub et al., 2012). Among them, Matlab/Simulink environment is very popular, and it was 

preferred for simulation studies. The simulation model is divided into many sub-models. It 

allows us to access all the machine variables for monitoring, comparison, and control purposes. 

Therefore, it has a modular and user-friendly structure. The simulation model can be easily 

altered so that it can be simulated in three different reference frames without any modifications 

to sub-models. This shows that the simulation model has a unified and universally applicable 

structure. 

This paper is organized into eight sections. In Section 2, the primitive machine models are 

presented, and the advanced machine model is obtained in the arbitrary reference frame. Sections 3 

and 4 present the space-phasor forms of voltage and flux-linkage equations, and three different state-

space models, respectively. Section 5 discusses the mechanism of electromagnetic torque production 

in ac machines, and the torque equations are given in different forms. Section 6 explains widely used 

reference frames in the analysis of ac machines. Sections 7 and 8 present simulation studies, obtained 

results, and discussions. Finally, the drawn conclusions are evaluated in Section 9. 

 

2. Modeling of Induction Machine 

 

Fig. 1 illustrates the schematic view of an induction machine under consideration. In order to 

simplify the analysis and modeling stages, the following assumptions are considered: 

▪ It has a symmetrical two-pole structure with a smooth air-gap. 

▪ Stator and rotor have three-phase windings placed by 120 electrical degrees from each other. 
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▪ The phase windings are composed of distributed windings that generate sinusoidal magneto-

motive force (mmf) waves centered on the magnetic axes of the corresponding phases. The 

effects of mmf space harmonics are neglected. 

▪ The iron losses and end-effects are neglected, such that the flux density is radial in the air-

gap and the iron parts have infinite permeability. 

 

 

Figure 1. Schematic view of an elementary symmetrical three-phase machine 

 

2.1. Three-Phase Model 

 

The first step in modeling is to obtain the three-phase stator and rotor voltage equations in three-

phase (natural) reference frames. Therefore, the stator voltage equations are defined in the stationary 

reference frame fixed to the stator, and the rotor voltage equations are defined in the rotating reference 

frame fixed to the rotor. The three-phase stator and rotor voltage equations are as follows: 

 

 
�̅�𝑎𝑏𝑐𝑠 = 𝐑𝑠𝑖�̅�𝑏𝑐𝑠 + 𝜌�̅�𝑎𝑏𝑐𝑠 

�̅�𝑎𝑏𝑐𝑟 = 𝐑𝑟𝑖�̅�𝑏𝑐𝑟 + 𝜌�̅�𝑎𝑏𝑐𝑟  
(1) 

 

where 𝜌 = 𝑑 𝑑𝑡⁄  is the differential operator. The stator and rotor resistance matrices are 

 

 𝐑𝑠 = [
𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

]   ,   𝐑𝑟 = [
𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟

] (2) 

 

where 𝑅𝑠 and 𝑅𝑟 are the resistances of a stator and rotor phase winding, respectively. �̅�𝑎𝑏𝑐𝑥, 𝑖�̅�𝑏𝑐𝑥 , 

and �̅�𝑎𝑏𝑐𝑥  (the subscript 𝑥 is 𝑠 or 𝑟) denote the column matrices for the stator and rotor quantities. 
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These are defined by �̅�𝑎𝑏𝑐𝑠 = [𝑢𝑎𝑠 𝑢𝑏𝑠 𝑢𝑐𝑠]
𝑡, �̅�𝑎𝑏𝑐𝑟 = [𝑢𝑎𝑟 𝑢𝑏𝑟 𝑢𝑐𝑟]

𝑡, 𝑖�̅�𝑏𝑐𝑠 = [𝑖𝑎𝑠  𝑖𝑏𝑠 𝑖𝑐𝑠]
𝑡, 𝑖�̅�𝑏𝑐𝑟 =

[𝑖𝑎𝑟 𝑖𝑏𝑟  𝑖𝑐𝑟]
𝑡, �̅�𝑎𝑏𝑐𝑠 = [𝜓𝑎𝑠 𝜓𝑏𝑠 𝜓𝑐𝑠]

𝑡, and �̅�𝑎𝑏𝑐𝑟 = [𝜓𝑎𝑟 𝜓𝑏𝑟 𝜓𝑐𝑟]
𝑡. Also, the stator and rotor flux-

linkages are defined by 

 

 
�̅�𝑎𝑏𝑐𝑠 = 𝐋𝑎𝑏𝑐𝑠(𝑠)𝑖�̅�𝑏𝑐𝑠 + 𝐋𝑎𝑏𝑐𝑠(𝑟)𝑖�̅�𝑏𝑐𝑟 

�̅�𝑎𝑏𝑐𝑟 = 𝐋𝑎𝑏𝑐𝑟(𝑠)𝑖�̅�𝑏𝑐𝑠 + 𝐋𝑎𝑏𝑐𝑟(𝑟)𝑖�̅�𝑏𝑐𝑟  
(3) 

 

There is no change in the magnetic circuit for a machine with a smooth air-gap when its rotor 

rotates. Thus, the self-inductance of a stator phase winding �̅�𝑠 and the mutual inductance between 

two stator windings �̅�𝑠 do not depend on the rotor electrical angle 𝜃𝑟. Then, the inductance matrix 

between the stator windings 𝐋𝑎𝑏𝑐𝑠(𝑠) is 

 

 𝐋𝑎𝑏𝑐𝑠(𝑠) = [

�̅�𝑠 �̅�𝑠 �̅�𝑠

�̅�𝑠 �̅�𝑠 �̅�𝑠

�̅�𝑠 �̅�𝑠 �̅�𝑠

] (4) 

 

and 

 

 �̅�𝑠 = 𝐿𝑙𝑠 + 𝐿𝑚𝑠 , �̅�𝑠 = 𝐿𝑚𝑠 cos (
2𝜋

3
) = −

1

2
𝐿𝑚𝑠 (5) 

 

where 𝐿𝑙𝑠 and 𝐿𝑚𝑠 are the leakage inductance and magnetizing inductance of a stator phase winding, 

respectively. Similarly, the self-inductance of a rotor phase winding �̅�𝑟 and the mutual inductance 

between two rotor windings �̅�𝑟 are independent of the rotor electrical angle 𝜃𝑟. Then, the inductance 

matrix between the rotor windings 𝐋𝑎𝑏𝑐𝑟(𝑟) is 

 

 𝐋𝑎𝑏𝑐𝑟(𝑟) = [

�̅�𝑟 �̅�𝑟 �̅�𝑟

�̅�𝑟 �̅�𝑟 �̅�𝑟

�̅�𝑟 �̅�𝑟 �̅�𝑟

] (6) 

 

and 

 

 �̅�𝑟 = 𝐿𝑙𝑟 + 𝐿𝑚𝑟 , �̅�𝑟 = 𝐿𝑚𝑟 cos (
2𝜋

3
) = −

1

2
𝐿𝑚𝑟 (7) 
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where 𝐿𝑙𝑟 and 𝐿𝑚𝑟 are the leakage inductance and magnetizing inductance of a rotor phase winding, 

respectively. On the contrary, since the rotor phase windings rotate relative to the stator, the mutual 

inductance between the rotor and stator phase windings change depending on the rotor electrical angle 

𝜃𝑟. Then, the rotor-stator mutual inductance matrix 𝐋𝑎𝑏𝑐𝑠(𝑟) is 

 

 𝐋𝑎𝑏𝑐𝑠(𝑟) = [

�̅�𝑠𝑟 cos 𝜃1 �̅�𝑠𝑟 cos 𝜃2 �̅�𝑠𝑟 cos 𝜃3

�̅�𝑠𝑟 cos 𝜃3 �̅�𝑠𝑟 cos 𝜃1 �̅�𝑠𝑟 cos 𝜃2

�̅�𝑠𝑟 cos 𝜃2 �̅�𝑠𝑟 cos 𝜃3 �̅�𝑠𝑟 cos 𝜃1

] (8) 

 

where �̅�𝑠𝑟  is the maximum value of the stator-rotor mutual inductance. The angles 𝜃1, 𝜃2 and 𝜃3 are 

defined as 𝜃1 = 𝜃𝑟 , 𝜃2 = 𝜃𝑟 + 2𝜋 3⁄  and 𝜃3 = 𝜃𝑟 − 2𝜋 3⁄ . For the number of pole-pairs 𝑝 = 1, 𝜃𝑟 is 

equal to 𝜃𝑚, where 𝜃𝑚 is the rotor mechanical angle. A similar definition can be made for the stator-

rotor mutual inductance matrix 𝐋𝑎𝑏𝑐𝑟(𝑠). Due to the symmetry of the machine structure, it is given by 

 

 𝐋𝑎𝑏𝑐𝑟(𝑠) = 𝐋𝑎𝑏𝑐𝑠(𝑟)
𝑡  (9) 

 

On the other hand, the relationship between the magnetizing inductance of the stator or rotor 

winding (𝐿𝑚𝑠 or 𝐿𝑚𝑟) and the maximum value of the mutual inductance �̅�𝑠𝑟 is formulated by 

 

 𝐿𝑚𝑠 = 𝑁�̅�𝑠𝑟    ,   𝐿𝑚𝑟 = 𝑁�̅�𝑠𝑟  (10) 

 

where 𝑁 is the effective turn ratio and is equal to 𝑁𝑎𝑏𝑐
𝑠 𝑁𝑎𝑏𝑐

𝑟⁄ . It also follows that 𝐿𝑚𝑠 = 𝑁2𝐿𝑚𝑟. For 

convenience, the stator and rotor voltage equations of a three-phase machine can be combined into a 

single matrix form as follows: 

 

 �̅�𝑎𝑏𝑐 = 𝐑𝑖�̅�𝑏𝑐 +
𝑑

𝑑𝑡
�̅�𝑎𝑏𝑐 (11.a) 

 

where �̅�𝑎𝑏𝑐 = [�̅�𝑎𝑏𝑐𝑠 �̅�𝑎𝑏𝑐𝑟]
𝑡, 𝑖�̅�𝑏𝑐 = [𝑖�̅�𝑏𝑐𝑠 𝑖�̅�𝑏𝑐𝑟]

𝑡, �̅�𝑎𝑏𝑐 = [�̅�𝑎𝑏𝑐𝑠 �̅�𝑎𝑏𝑐𝑟]
𝑡. Since �̅�𝑎𝑏𝑐 = 𝐋𝑎𝑏𝑐𝑖�̅�𝑏𝑐 , 

Eq. (11.a) can be rearranged by 

 

 �̅�𝑎𝑏𝑐 = (𝐑 + 𝜌𝐋𝑎𝑏𝑐)𝑖�̅�𝑏𝑐 (11.b) 

 

and 

 



The Black Sea Journal of Sciences 14(3), 1401-1430, 2024 1408 

 𝐑 = [
𝐑𝑠 𝟎
𝟎 𝐑𝑟

] , 𝐋𝑎𝑏𝑐 = [
𝐋𝑎𝑏𝑐𝑠(𝑠) 𝐋𝑎𝑏𝑐𝑠(𝑟)

𝐋𝑎𝑏𝑐𝑠(𝑟)
𝑡 𝐋𝑎𝑏𝑐𝑟(𝑟)

]  

 

The mathematical model of induction machine in three-phase reference frame is represented by 

Eq. (11.b). In this model, the impedance matrix 𝐙𝑎𝑏𝑐 = 𝐑 + 𝜌𝐋𝑎𝑏𝑐  is nonlinear, and contains variable, 

time-dependent coefficients, because the rotor angle varies with time. Consequently, it is not possible 

to solve the system of differential equations derived from this fully coupled impedance matrix. 

 

  

(a) (b) 

Figure 2. Schematic view of two-phase machine models; (a) two-phase slip-ring model, (b) two-

phase commutator model 

 

2.2. Two-Phase Slip-Ring Model 

 

The two-phase slip-ring model is obtained as shown in Fig. 2a when the three-phase quantities 

(voltages, currents, flux-linkages) in the previous voltage equations are replaced by their two-phase 

equivalents expressed in the same reference frame. In this case, assuming that there are no zero-

sequence voltages and currents on the stator and rotor, only four voltage equations can be written in 

total. They correspond to alpha- and beta-axis (𝛼𝛽 axes) stator and rotor voltage equations. The phase 

transformation matrix 𝐂1 is applied to the three-phase quantities to obtain the two-phase equivalent 

quantities. The transformation matrix 𝐂1 is 

 

 𝐂1 = 𝑐 ∙ 𝐌 (12) 

 

where 

 

  

  

  

  

  

  

  
   

   

 

 

   
   

 

 
   

    

 
   

   

rotor
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rotor
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 𝐌 =

[
 
 
 
 
 
 1 −

1

2
−

1

2

0
√3

2
−

√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 
 
 

  

 

and 𝑐 is a constant. For the power-invariant case, 𝑐 is equal to √2 3⁄ . However, for the non-power-

invariant case, 𝑐 = 2 3⁄ . Then, the relationship between the two-phase voltage components and their 

three-phase components is defined by 

 

 [
�̅�𝛼𝛽𝑠

�̅�𝛼𝛽𝑟
] = [

𝐂1 𝟎
𝟎 𝐂1

] [
�̅�𝑎𝑏𝑐𝑠

�̅�𝑎𝑏𝑐𝑟
] (13) 

 

where �̅�𝛼𝛽𝑠 = [𝑢𝛼𝑠 𝑢𝛽𝑠]
𝑡
 and �̅�𝛼𝛽𝑟 = [𝑢𝛼𝑟 𝑢𝛽𝑟]

𝑡
. It should be noted that the zero-sequence voltages 

on the stator and rotor are ignored. This means that the third row of 𝐌 is discarded for the above 

transformation. Similar transformations hold for the stator and rotor currents. 

 

 [
𝑖�̅�𝛽𝑠

𝑖�̅�𝛽𝑟
] = [

𝐂1 𝟎
𝟎 𝐂1

] [
𝑖�̅�𝑏𝑐𝑠

𝑖�̅�𝑏𝑐𝑟
] (14) 

 

where 𝑖�̅�𝛽𝑠 = [𝑖𝛼𝑠 𝑖𝛽𝑠]
𝑡
 and 𝑖�̅�𝛽𝑟 = [𝑖𝛼𝑟 𝑖𝛽𝑟]

𝑡
. 

The inverse transformations are performed by 

 

 �̅�𝑎𝑏𝑐 = 𝐂11
−1�̅�𝛼𝛽 , 𝑖�̅�𝑏𝑐 = 𝐂11

−1𝑖�̅�𝛽 (15) 

 

where �̅�𝛼𝛽 = [�̅�𝛼𝛽𝑠 �̅�𝛼𝛽𝑟]
𝑡
 and 𝑖�̅�𝛽 = [𝑖�̅�𝛽𝑠 𝑖�̅�𝛽𝑟]

𝑡
. Also, 𝐂11 is 

 

 𝐂11 = [
𝐂1 𝟎
𝟎 𝐂1

] = 𝑐 ∙ [
𝐌 𝟎
𝟎 𝐌

]  

 

and for the power-invariant case, the inverse of 𝐂11 is given by, 

 

 𝐂11
−1 = 𝐂11

𝑡 = √
2

3
[𝐌

𝑡 𝟎
𝟎 𝐌𝑡]  
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and for the non-power-invariant case, it is obtained by 

 

 𝐂11
−1 = [𝐌

𝑡 𝟎
𝟎 𝐌𝑡]  

 

Thus, by substituting Eq. (15) into Eq. (11.b) and after some algebraic manipulation, the machine 

model takes the following form: 

 

 �̅�𝛼𝛽 = 𝐑𝑖�̅�𝛽 +
𝑑

𝑑𝑡
(𝐋𝛼𝛽𝑖�̅�𝛽) (16) 

 

where the total inductance matrix is 

 

 𝐋𝛼𝛽 = 𝐂11𝐋𝑎𝑏𝑐𝐂11
−1 = [

𝐿𝑠 0 𝑀𝑠𝑟 cos 𝜃𝑟 −𝑀𝑠𝑟 sin 𝜃𝑟

0 𝐿𝑠 𝑀𝑠𝑟 sin 𝜃𝑟 𝑀𝑠𝑟 cos 𝜃𝑟

𝑀𝑠𝑟 cos 𝜃𝑟 𝑀𝑠𝑟 sin 𝜃𝑟 𝐿𝑟 0
−𝑀𝑠𝑟 sin 𝜃𝑟 𝑀𝑠𝑟 cos 𝜃𝑟 0 𝐿𝑟

] (17) 

 

and 𝐿𝑠, 𝐿𝑟, and 𝑀𝑠𝑟  are obtained by using Eqs. (5) and (7) as 

 

 

𝐿𝑠 = �̅�𝑠 − �̅�𝑠 = 𝐿𝑙𝑠 +
3

2
𝐿𝑚𝑠 , 𝐿𝑟 = �̅�𝑟 − �̅�𝑟 = 𝐿𝑙𝑟 +

3

2
𝐿𝑚𝑟 

𝑀𝑠𝑟 =
3

2
�̅�𝑠𝑟 

(18) 

 

where 𝐿𝑠 and 𝐿𝑟 represent the total three-phase stator and rotor inductances, respectively. 𝑀𝑠𝑟  is the 

three-phase magnetizing inductance. 

The two-phase slip-ring model of the induction machine is represented by Eq. (16). In this 

model, the total inductance matrix still contains the rotor angle. It is noted that when the phase 

transformation is applied to the three-phase model, the stationary three-phase is reduced to the two-

phase fixed to the stator while the rotating three-phase is reduced to the two-phase fixed to the rotor. 

Therefore, the transformed impedance matrix 𝐙𝛼𝛽 = 𝐑 + 𝜌𝐋𝛼𝛽 includes time-dependent terms even 

if all of the machine parameters are considered to be constant. 

 

2.3. Two-Phase Commutator Model 

 

The two-phase commutator model is obtained as shown in Fig. 2b if the rotor quantities of the 

two-phase slip-ring model are transferred into a new reference frame fixed to the stator, providing 
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that the stator quantities are unchanged. In this case, in the absence of the zero-sequence components, 

there will still be four voltage equations, but these resulting equations are now purified from the rotor 

angle. The rotor voltages and currents are transferred to the pseudo-stationary windings fixed to the 

stator by the transformation matrix 𝐂2. The transformation matrix 𝐂2 is 

 

 𝐂2 = [
cos 𝜃𝑟 −sin 𝜃𝑟

sin 𝜃𝑟 cos 𝜃𝑟
] (19) 

 

Then, the corresponding stator and rotor quantities to the commutator model are obtained by 

 

 [
�̅�𝛼𝛽𝑠

�̅�𝛼𝛽𝑟
𝑠 ] = [

𝐈 𝟎
𝟎 𝐂2

] [
�̅�𝛼𝛽𝑠

�̅�𝛼𝛽𝑟
] , [

𝑖�̅�𝛽𝑠

𝑖�̅�𝛽𝑟
𝑠 ] = [

𝐈 𝟎
𝟎 𝐂2

] [
𝑖�̅�𝛽𝑠

𝑖�̅�𝛽𝑟
] (20) 

 

where �̅�𝛼𝛽𝑟
𝑠 = [𝑢𝛼𝑟

𝑠  𝑢𝛽𝑟
𝑠 ]

𝑡
 and 𝑖�̅�𝛽𝑟

𝑠 = [𝑖𝛼𝑟
𝑠  𝑖𝛽𝑟

𝑠 ]
𝑡
. It should be noted that all the stator quantities are 

already stationary with respect to the stator and no transformations are made for them. 

The inverse transformations are performed by 

 

 �̅�𝛼𝛽 = 𝐂22
−1�̅�𝛼𝛽

𝑠 , 𝑖�̅�𝛽 = 𝐂22
−1𝑖�̅�𝛽

𝑠
 (21) 

 

where �̅�𝛼𝛽
𝑠 = [�̅�𝛼𝛽𝑠 �̅�𝛼𝛽𝑟

𝑠 ]
𝑡
 and 𝑖�̅�𝛽

𝑠 = [𝑖�̅�𝛽𝑠 𝑖�̅�𝛽𝑟
𝑠 ]

𝑡
. Also, 𝐂22 is 

 

 𝐂22 = [
𝐈 𝟎
𝟎 𝐂2

]  

 

and 𝐂2 is an orthogonal matrix, that is 𝐂22
−1 = 𝐂22

𝑡 . Thus, by substituting Eq. (21) into Eq. (16) and 

after some algebraic manipulation, the two-phase commutator model is obtained by 

 

 �̅�𝛼𝛽
𝑠 = 𝐑𝑖�̅�𝛽

𝑠 + 𝐋𝛼𝛽
𝑠 𝑑

𝑑𝑡
𝑖�̅�𝛽
𝑠 + 𝐆𝛼𝛽

𝑠 𝑑𝜃𝑟

𝑑𝑡
𝑖�̅�𝛽
𝑠  (22) 

 

where 

 

 𝐋𝛼𝛽
𝑠 = 𝐂22𝐋𝛼𝛽𝐂22

𝑡 = [

𝐿𝑠 0 𝑀𝑠𝑟 0
0 𝐿𝑠 0 𝑀𝑠𝑟

𝑀𝑠𝑟 0 𝐿𝑟 0
0 𝑀𝑠𝑟 0 𝐿𝑟

] (23) 
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and 

 

 𝐆𝛼𝛽
𝑠 𝑑𝜃𝑟

𝑑𝑡
= 𝐂22

𝑑

𝑑𝑡
(𝐋𝛼𝛽𝐂22

𝑡 )  

 

where 𝑑𝜃𝑟 𝑑𝑡⁄ = 𝜔𝑟 is the rotor electrical angular speed, and the speed matrix 𝐆𝛼𝛽
𝑠  is 

 

 𝐆𝛼𝛽
𝑠 = [

0 0 0 0
0 0 0 0
0 𝑀𝑠𝑟 0 𝐿𝑟

−𝑀𝑠𝑟 0 −𝐿𝑟 0

] (24) 

 

Eventually, from Eqs. (23) and (24), the two-phase commutator model can be given in a more 

compact form as follows: 

 

 �̅�𝛼𝛽
𝑠 = (𝐑 + 𝐋𝛼𝛽

𝑠 𝜌 + 𝐆𝛼𝛽
𝑠 𝜔𝑟)𝑖�̅�𝛽

𝑠  (25.a) 

 

or it is more explicitly as 

 

 

[
 
 
 
𝑢𝛼𝑠

𝑢𝛽𝑠

𝑢𝛼𝑟
𝑠

𝑢𝛽𝑟
𝑠

]
 
 
 
= [

𝑅𝑠 + 𝐿𝑠𝜌 0 𝑀𝑠𝑟𝜌 0
0 𝑅𝑠 + 𝐿𝑠𝜌 0 𝑀𝑠𝑟𝜌

𝑀𝑠𝑟𝜌 𝑀𝑠𝑟𝜔𝑟 𝑅𝑟 + 𝐿𝑟𝜌 𝐿𝑟𝜔𝑟

−𝑀𝑠𝑟𝜔𝑟 𝑀𝑠𝑟𝜌 −𝐿𝑟𝜔𝑟 𝑅𝑟 + 𝐿𝑟𝜌

]

[
 
 
 
𝑖𝛼𝑠

𝑖𝛽𝑠

𝑖𝛼𝑟
𝑠

𝑖𝛽𝑟
𝑠

]
 
 
 

 (25.b) 

 

It is seen that the impedance matrix 𝐙𝛼𝛽
𝑠 = 𝐑 + 𝐋𝛼𝛽

𝑠 𝜌 + 𝐆𝛼𝛽
𝑠 𝜔𝑟 in the commutator model does 

not now include a function dependent on the rotor angle, but only includes the rotor electrical angular 

speed in the rotor voltage equations. Therefore, this system of differential equations will be linear if 

all the parameters of the machine are constant. 

 

2.4. Machine Model in Arbitrary Reference Frame 

 

In the two-phase commutator model, the stator and rotor voltage equations are defined relative 

to a reference frame fixed to the stator (which is often called the stationary reference frame). However, 

a more general machine model can be obtained when a general (arbitrary) reference frame rotating at 

an arbitrary angular speed 𝜔𝑎 is used rather than the stationary reference frame. The machine model 

in the arbitrary reference frame is shown in Fig. 3, where 𝜃𝑎 is the angle between the real axes of the 

stationary and arbitrary reference frames. 
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Figure 3. Schematic view of machine model in the arbitrary reference frame 

 

The transformation matrix 𝐂3 is used to transform the stator and rotor quantities in the stationary 

reference frame into the arbitrary reference frame. 

 

 𝐂3 = [
cos 𝜃𝑎 sin𝜃𝑎

−sin 𝜃𝑎 cos 𝜃𝑎
] (26) 

 

and hence, the following can be written: 

 

 [
�̅�𝑑𝑞𝑠

𝑎

�̅�𝑑𝑞𝑟
𝑎 ] = [

𝐂3 𝟎
𝟎 𝐂3

] [
�̅�𝛼𝛽𝑠

�̅�𝛼𝛽𝑟
𝑠 ] , [

𝑖�̅�𝑞𝑠
𝑎

𝑖�̅�𝑞𝑟
𝑎 ] = [

𝐂3 𝟎
𝟎 𝐂3

] [
𝑖�̅�𝛽𝑠

𝑖�̅�𝛽𝑟
𝑠 ] (27) 

 

where �̅�𝑑𝑞𝑠
𝑎 = [𝑢𝑑𝑠

𝑎  𝑢𝑞𝑠
𝑎 ]

𝑡
, �̅�𝑑𝑞𝑟

𝑎 = [𝑢𝑑𝑟
𝑎  𝑢𝑞𝑟

𝑎 ]
𝑡
, 𝑖�̅�𝑞𝑠

𝑎 = [𝑖𝑑𝑠
𝑎  𝑖𝑞𝑠

𝑎 ]
𝑡
, and 𝑖�̅�𝑞𝑟

𝑎 = [𝑖𝑑𝑟
𝑎  𝑖𝑞𝑟

𝑎 ]
𝑡
. 

The inverse transformations are performed by 

 

 �̅�𝛼𝛽
𝑠 = 𝐂33

−1�̅�𝑑𝑞
𝑎 , 𝑖�̅�𝛽

𝑠 = 𝐂33
−1𝑖�̅�𝑞

𝑎
 (28) 

 

where �̅�𝑑𝑞
𝑎 = [�̅�𝑑𝑞𝑠

𝑎  �̅�𝑑𝑞𝑟
𝑎 ]

𝑡
 and 𝑖�̅�𝑞

𝑎 = [𝑖�̅�𝑞𝑠
𝑎  𝑖�̅�𝑞𝑟

𝑎 ]
𝑡
. Also, 𝐂33 is 

 

 𝐂33 = [
𝐂3 𝟎
𝟎 𝐂3

]  

 

and 𝐂33 is an orthogonal matrix, that is 𝐂33
−1 = 𝐂33

𝑡 . Thus, by substituting Eq. (28) into Eq. (22) and 

after some algebraic manipulation, the machine model in the arbitrary reference frame is obtained by 

 

 �̅�𝑑𝑞
𝑎 = 𝐑𝑖�̅�𝑞

𝑎 + 𝐋𝑑𝑞
𝑎 𝑑

𝑑𝑡
𝑖�̅�𝑞
𝑎 + (𝐆𝑑𝑞(𝜔𝑎)

𝑎 𝑑𝜃𝑎

𝑑𝑡
+ 𝐆𝑑𝑞(𝜔𝑟)

𝑎 𝑑𝜃𝑟

𝑑𝑡
) 𝑖�̅�𝑞

𝑎  (29) 

 

  

  

rotor

    

 

 

 

 

 

 

 

 

   
 

   
 

   
 

   
 

   
 

   
 

   
 

   
   

  

   
 

stator

   
 

rotor



The Black Sea Journal of Sciences 14(3), 1401-1430, 2024 1414 

where 𝐋𝑑𝑞
𝑎 = 𝐋𝛼𝛽

𝑠 , 𝐆𝑑𝑞(𝜔𝑟)
𝑎 = 𝐆𝛼𝛽

𝑠  and 

 

 𝐆𝑑𝑞(𝜔𝑎)
𝑎 𝑑𝜃𝑎

𝑑𝑡
= 𝐂33𝐋𝛼𝛽

𝑠 𝑑

𝑑𝑡
𝐂33

𝑡   

 

where 𝑑𝜃𝑎 𝑑𝑡⁄ = 𝜔𝑎 is the arbitrary angular speed and the speed matrix 𝐆𝑑𝑞(𝜔𝑎)
𝑎  is 

 

 𝐆𝑑𝑞(𝜔𝑎)
𝑎 = [

0 −𝐿𝑠 0 −𝑀𝑠𝑟

𝐿𝑠 0 𝑀𝑠𝑟 0
0 −𝑀𝑠𝑟 0 −𝐿𝑟

𝑀𝑠𝑟 0 𝐿𝑟 0

] (30) 

 

Consequently, the machine model can be written more explicitly from Eq. (29) as follows: 

 

 

[
 
 
 
 
𝑢𝑑𝑠

𝑎

𝑢𝑞𝑠
𝑎

𝑢𝑑𝑟
𝑎

𝑢𝑞𝑟
𝑎 ]

 
 
 
 

= [

𝑅𝑠 + 𝐿𝑠𝜌 −𝐿𝑠𝜔𝑎 𝑀𝑠𝑟𝜌 −𝑀𝑠𝑟𝜔𝑎

𝐿𝑠𝜔𝑎 𝑅𝑠 + 𝐿𝑠𝜌 𝑀𝑠𝑟𝜔𝑎 𝑀𝑠𝑟𝜌

𝑀𝑠𝑟𝜌 −𝑀𝑠𝑟(𝜔𝑎 − 𝜔𝑟) 𝑅𝑟 + 𝐿𝑟𝜌 −𝐿𝑟(𝜔𝑎 − 𝜔𝑟)

𝑀𝑠𝑟(𝜔𝑎 − 𝜔𝑟) 𝑀𝑠𝑟𝜌 𝐿𝑟(𝜔𝑎 − 𝜔𝑟) 𝑅𝑟 + 𝐿𝑟𝜌

]

[
 
 
 
 
𝑖𝑑𝑠
𝑎

𝑖𝑞𝑠
𝑎

𝑖𝑑𝑟
𝑎

𝑖𝑞𝑟
𝑎 ]

 
 
 
 

 (31) 

 

In the above model, 𝑢𝑑𝑟
𝑎 , 𝑢𝑞𝑟

𝑎  and 𝑖𝑑𝑟
𝑎 , 𝑖𝑞𝑟

𝑎  are the voltage and current quantities on the rotor side. 

To produce the final per-phase equivalent circuit for an induction machine, it is necessary to refer the 

quantities of the rotor side to the stator side. As in an ordinary transformer, the voltages and currents 

on the rotor side can be referred to the stator side by means of the effective turn ratio of the machine. 

 

 �̅�𝑑𝑞𝑟
𝑎 =

𝑁𝑑𝑞
𝑟

𝑁𝑑𝑞
𝑠 �̅�𝑑𝑞𝑟

𝑎′ , 𝑖�̅�𝑞𝑟
𝑎 =

𝑁𝑑𝑞
𝑠

𝑁𝑑𝑞
𝑟 𝑖�̅�𝑞𝑟

𝑎′  (32) 

 

where 

 

 
𝑁𝑎𝑏𝑐

𝑠

𝑁𝑎𝑏𝑐
𝑟 =

𝑁𝛼𝛽
𝑠

𝑁𝛼𝛽
𝑟 =

𝑁𝑑𝑞
𝑠

𝑁𝑑𝑞
𝑟 = 𝑁  

 

It should be noted that the effective turn ratio 𝑁 is never unchanged, no matter which axis 

transformation is applied to the machine model. As mentioned earlier, Eq. (31) holds for a machine 

with a symmetrical two-pole structure, i.e., 𝑝 = 1 and 𝜔𝑟 = 𝜔𝑚, where 𝜔𝑚 is the rotor mechanical 

angular speed. When 𝑝 > 1, the rotor electrical angular speed 𝜔𝑟 is replaced by 𝑝𝜔𝑚. Then, for 𝑝 >

1 and the manipulation of Eq. (31) with Eq. (32) gives 
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 [
 
 
 
 
𝑢𝑑𝑠

𝑎

𝑢𝑞𝑠
𝑎

𝑢𝑑𝑟
𝑎′

𝑢𝑞𝑟
𝑎′

]
 
 
 
 

= [

𝑅𝑠 + 𝐿𝑠𝜌 −𝐿𝑠𝜔𝑎

𝐿𝑠𝜔𝑎 𝑅𝑠 + 𝐿𝑠𝜌

𝐿𝑚𝜌 −𝐿𝑚(𝜔𝑎 − 𝑝𝜔𝑚)

𝐿𝑚(𝜔𝑎 − 𝑝𝜔𝑚) 𝐿𝑚𝜌

 

                                                                           

𝐿𝑚𝜌 −𝐿𝑚𝜔𝑎

𝐿𝑚𝜔𝑎 𝐿𝑚𝜌

𝑅𝑟
′ + 𝐿𝑟

′ 𝜌 −𝐿𝑟
′ (𝜔𝑎 − 𝑝𝜔𝑚)

𝐿𝑟
′ (𝜔𝑎 − 𝑝𝜔𝑚) 𝑅𝑟

′ + 𝐿𝑟
′ 𝜌

]

[
 
 
 
 
𝑖𝑑𝑠
𝑎

𝑖𝑞𝑠
𝑎

𝑖𝑑𝑟
𝑎′

𝑖𝑞𝑟
𝑎′ ]

 
 
 
 

 

(33) 

 

where 𝐿𝑚 = 𝑁𝑀𝑠𝑟, and by using Eq. (10) and Eq. (18), it can be written by 

 

 𝐿𝑚 =
3

2
𝐿𝑚𝑠 ∨ 𝐿𝑚 = 𝑁2

3

2
𝐿𝑚𝑟  

 

and also, we can write 

 

 

𝑅𝑟
′ = 𝑁2𝑅𝑟 , 𝐿𝑟

′ = 𝑁2𝐿𝑟 = 𝑁2 (𝐿𝑙𝑟 +
3

2
𝐿𝑚𝑟) = 𝐿𝑙𝑟

′ + 𝐿𝑚 

𝐿𝑠 = 𝐿𝑙𝑠 +
3

2
𝐿𝑚𝑠 = 𝐿𝑙𝑠 + 𝐿𝑚 

 

 

where the ′ superscript represents the rotor quantities reduced to the stator side. On the other hand, 

since �̅�𝑑𝑞
𝑎 = 𝐋𝑑𝑞

𝑎 𝑖�̅�𝑞
𝑎  in Eq. (29), the stator and rotor flux-linkages are given by 

 

 [
�̅�𝑑𝑞𝑠

𝑎

�̅�𝑑𝑞𝑟
𝑎 ] = 𝐋𝑑𝑞

𝑎 [
𝑖�̅�𝑞𝑠
𝑎

𝑖�̅�𝑞𝑟
𝑎 ] (34) 

 

where �̅�𝑑𝑞𝑠
𝑎 = [𝜓𝑑𝑠

𝑎   𝜓𝑞𝑠
𝑎 ]

𝑡
 and �̅�𝑑𝑞𝑟

𝑎 = [𝜓𝑑𝑟
𝑎   𝜓𝑞𝑟

𝑎 ]
𝑡
. 𝜓𝑑𝑟

𝑎 , 𝜓𝑞𝑟
𝑎  and 𝑖𝑑𝑟

𝑎 , 𝑖𝑞𝑟
𝑎  are the flux-linkage and 

current quantities on the rotor side. When these rotor quantities are referred to the stator side by using 

 

 �̅�𝑑𝑞𝑟
𝑎 =

1

𝑁
�̅�𝑑𝑞𝑟

𝑎′ , 𝑖�̅�𝑞𝑟
𝑎 = 𝑁𝑖�̅�𝑞𝑟

𝑎′   

 

the flux-linkages reduced to the stator side are 

 

 [
�̅�𝑑𝑞𝑠

𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] = 𝐋𝑑𝑞

𝑎′ [
𝑖�̅�𝑞𝑠
𝑎

𝑖�̅�𝑞𝑟
𝑎′ ] (35) 
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where since 𝐋𝑑𝑞
𝑎 = 𝐋𝛼𝛽

𝑠 , we obtain 

 

 𝐋𝑑𝑞
𝑎′ =

[
 
 
 

𝐿𝑠 0 𝑁𝑀𝑠𝑟 0
0 𝐿𝑠 0 𝑁𝑀𝑠𝑟

𝑁𝑀𝑠𝑟 0 𝑁2𝐿𝑟 0

0 𝑁𝑀𝑠𝑟 0 𝑁2𝐿𝑟]
 
 
 

 (36) 

 

Then, the flux-linkage matrix becomes 

 

 

[
 
 
 
 
𝜓𝑑𝑠

𝑎

𝜓𝑞𝑠
𝑎

𝜓𝑑𝑟
𝑎′

𝜓𝑞𝑟
𝑎′ ]

 
 
 
 

= [

𝐿𝑠 0 𝐿𝑚 0
0 𝐿𝑠 0 𝐿𝑚

𝐿𝑚 0 𝐿𝑟
′ 0

0 𝐿𝑚 0 𝐿𝑟
′

]

[
 
 
 
 
𝑖𝑑𝑠
𝑎

𝑖𝑞𝑠
𝑎

𝑖𝑑𝑟
𝑎′

𝑖𝑞𝑟
𝑎′ ]

 
 
 
 

 (37) 

 

The stator and rotor voltage equations and flux-linkage equations in the arbitrary reference 

frame are written by using Eqs. (33) and (37), respectively. It follows that these equations are suitable 

for simulating the operation of induction machines and for designing various control schemes. 

 

3. Space-Phasor Representation of Equations 

 

In this section, the voltage and flux-linkage space-phasor equations will be presented only in 

the arbitrary reference frame. Then, the space-phasor of the stator quantities (current, voltage, flux-

linkage) are described through their direct- and quadrature-axis components in the arbitrary reference 

frame as 

 

 �⃗�𝑠 = 𝑖𝑑𝑠
𝑎 + 𝑗𝑖𝑞𝑠

𝑎 , �⃗⃗⃗�𝑠 = 𝑢𝑑𝑠
𝑎 + 𝑗𝑢𝑞𝑠

𝑎 , �⃗⃗⃗⃗�𝑠 = 𝜓𝑑𝑠
𝑎 + 𝑗𝜓𝑞𝑠

𝑎  (38) 

 

and similarly 

 

 �⃗�𝑟
′ = 𝑖𝑑𝑟

𝑎′ + 𝑗𝑖𝑞𝑟
𝑎′ , �⃗⃗⃗�𝑟

′ = 𝑢𝑑𝑟
𝑎′ + 𝑗𝑢𝑞𝑟

𝑎′ , �⃗⃗⃗⃗�𝑟
′ = 𝜓𝑑𝑟

𝑎′ + 𝑗𝜓𝑞𝑟
𝑎′  (39) 

 

Using the above definitions of the current and flux-linkage space-phasors, the stator and rotor 

flux-linkage equations in Eq. (37) can be put into the following space-phasor form: 

 

 �⃗⃗⃗⃗�𝑠 = 𝐿𝑠 �⃗�𝑠 + 𝐿𝑚 �⃗�𝑟
′  (40.a) 

 �⃗⃗⃗⃗�𝑟
′ = 𝐿𝑟

′ �⃗�𝑟
′ + 𝐿𝑚 �⃗�𝑠 (40.b) 
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Similar space-phasor forms of the voltage equations can be derived from Eq. (33). Then, by 

utilizing the space-phasor definitions and equations in Eqs. (38), (39), and (40), the stator and rotor 

voltage equations can be put into the following space-phasor form: 

 

 �⃗⃗⃗�𝑠 = 𝑅𝑠 �⃗�𝑠 +
𝑑�⃗⃗⃗⃗�𝑠

𝑑𝑡
+ 𝑗𝜔𝑎 �⃗⃗⃗⃗�𝑠 (41.a) 

 �⃗⃗⃗�𝑟
′ = 𝑅𝑟

′ �⃗�𝑟
′ +

𝑑�⃗⃗⃗⃗�𝑟
′

𝑑𝑡
+ 𝑗(𝜔𝑎 − 𝑝𝜔𝑚)�⃗⃗⃗⃗�𝑟

′  (41.b) 

 

The per-phase equivalent circuit for an induction machine is shown in Fig. 4a, where the space-

phasor quantities are given. The direct- and quadrature-axis equivalent circuits are also illustrated in 

Fig. 4b and 4c, respectively. In these equivalent circuits, the rotor terminals are short-circuited, i.e., 

�⃗⃗⃗�𝑟
′ = 0. This means that the induction machine under consideration has a squirrel-cage-type rotor. 

 

4. State-Space Equations in Arbitrary Reference Frame 

 

The stator voltages and currents can be directly sensed from the fixed stator windings. Similarly, 

the rotor voltages and currents can be measured from the rotating rotor windings, but it is almost 

impossible in the case of a squirrel-cage-type rotor. Therefore, the rotor currents are not preferred as 

the state variables in the state-space machine models. However, the stator and rotor flux-linkages can 

be chosen as state variables since they can be observed from measurable quantities. In this case, three 

different state-space models of the machine can be derived according to the state variables to be 

selected. For this study, the state variables were taken for Models #1, #2, and #3 as follows: 

Model #1: The space-phasor of the stator current �⃗�𝑠 and the space-phasor of the stator flux-

linkage �⃗⃗⃗⃗�𝑠 are selected as the state variables. From Eq. (41.a), we obtain 

 

 
𝑑�⃗⃗⃗⃗�𝑠

𝑑𝑡
= −𝑅𝑠 �⃗�𝑠 − 𝑗𝜔𝑎 �⃗⃗⃗⃗�𝑠 + �⃗⃗⃗�𝑠 (42) 

 

From Eqs. (40.a) and (40.b), we have 

 

 �⃗�𝑟
′ =

1

𝐿𝑚
�⃗⃗⃗⃗�𝑠 −

𝐿𝑠

𝐿𝑚
�⃗�𝑠 (43.a) 

 �⃗⃗⃗⃗�𝑟
′ =

𝐿𝑟
′

𝐿𝑚
�⃗⃗⃗⃗�𝑠 − 𝜎

𝐿𝑠𝐿𝑟
′

𝐿𝑚
�⃗�𝑠 (43.b) 
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where 𝜎 = 1 − (𝐿𝑚
2 𝐿𝑠𝐿𝑟

′⁄ ) is the total leakage factor. Firstly, Eqs. (43.a) and (43.b) are substituted 

into Eq. (41.b) and subsequently if it is rearranged with Eq. (42) for �⃗⃗⃗�𝑟
′ = 0, it yields 

 

 
𝑑�⃗�𝑠
𝑑𝑡

= [− (
𝑅𝑠

𝜎𝐿𝑠
+

1

𝜎𝜏𝑟
) − 𝑗(𝜔𝑎 − 𝑝𝜔𝑚)] �⃗�𝑠 + (

1

𝜎𝐿𝑠𝜏𝑟
− 𝑗𝑝𝜔𝑚

1

𝜎𝐿𝑠
) �⃗⃗⃗⃗�𝑠 +

1

𝜎𝐿𝑠
�⃗⃗⃗�𝑠 (44) 

 

where 𝜏𝑟 = 𝐿𝑟
′ 𝑅𝑟

′⁄  is the rotor time-constant. The state-space equations are now represented by Eqs. 

(42) and (44). When these space-phasors are expanded by using the phasor definitions of �⃗⃗⃗�𝑠, �⃗�𝑠 and 

�⃗⃗⃗⃗�𝑠 in Eq. (38), the machine model is written by 

 

 
𝑑

𝑑𝑡
[
𝑖�̅�𝑞𝑠
𝑎

�̅�𝑑𝑞𝑠
𝑎 ] = [

𝐀11 𝐀12

𝐀21 𝐀22
] [

𝑖�̅�𝑞𝑠
𝑎

�̅�𝑑𝑞𝑠
𝑎 ] + [

𝐁1

𝐁2
] �̅�𝑑𝑞𝑠

𝑎 , 𝑖�̅�𝑞𝑠
𝑎 = 𝐂 [

𝑖�̅�𝑞𝑠
𝑎

�̅�𝑑𝑞𝑠
𝑎 ] (45) 

 

The output 𝐂 matrix and the sub-matrices of the system 𝐀 and input 𝐁 matrices are given in 

Table 1, where the matrices 𝐈, 𝐉 and 𝟎 that expand the terms are as in 

 

 𝐈 = [
1 0
0 1

] , 𝐉 = [
0 −1
1 0

] , 𝟎 = [
0 0
0 0

]  

 

 

(a) 

 

(b) 

 

(c) 

Figure 4. Per-phase equivalent circuit in the arbitrary reference frame; (a) space-phasor equivalent 

circuit, (b) direct-axis equivalent circuit, (c) quadrature-axis equivalent circuit 
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Model #2: The space-phasor of the stator current �⃗�𝑠 and the space-phasor of the rotor flux-

linkage �⃗⃗⃗⃗�𝑟
′  are selected as the state variables. From Eqs. (40.a) and (40.b), we obtain 

 

 �⃗�𝑟
′ =

1

𝐿𝑟
′
�⃗⃗⃗⃗�𝑟

′ −
𝐿𝑚

𝐿𝑟
′

�⃗�𝑠 (46.a) 

 �⃗⃗⃗⃗�𝑠 =
𝐿𝑚

𝐿𝑟
′

�⃗⃗⃗⃗�𝑟
′ + 𝜎𝐿𝑠 �⃗�𝑠 (46.b) 

 

Firstly, if substituting Eq. (46.a) into Eq. (41.b), (for �⃗⃗⃗�𝑟
′ = 0) it results in 

 

 
𝑑�⃗⃗⃗⃗�𝑟

′

𝑑𝑡
=

𝐿𝑚

𝜏𝑟
�⃗�𝑠 + [−

1

𝜏𝑟
− 𝑗(𝜔𝑎 − 𝑝𝜔𝑚)] �⃗⃗⃗⃗�𝑟

′  (47) 

 

Secondly, Eq. (46.b) is substituted into Eq. (41.a) and then if the obtained is rearranged with 

Eq. (47), we have 

 

 
𝑑�⃗�𝑠
𝑑𝑡

= −(
𝑅𝑠

𝜎𝐿𝑠
+

1 − 𝜎

𝜎𝜏𝑟
+ 𝑗𝜔𝑎) �⃗�𝑠 +

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′
(
1

𝜏𝑟
− 𝑗𝑝𝜔𝑚) �⃗⃗⃗⃗�𝑟

′ +
1

𝜎𝐿𝑠
�⃗⃗⃗�𝑠 (48) 

 

The system of differential equations is now represented by Eqs. (47) and (48). When the space-

phasors are expanded by using the phasor definitions of �⃗⃗⃗�𝑠, �⃗�𝑠 and �⃗⃗⃗⃗�𝑟
′  in Eqs. (38) and (39), the 

machine model is written by 

 

 
𝑑

𝑑𝑡
[
𝑖�̅�𝑞𝑠
𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] = [

𝐀11 𝐀12

𝐀21 𝐀22
] [

𝑖�̅�𝑞𝑠
𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] + [

𝐁1

𝐁2
] �̅�𝑑𝑞𝑠

𝑎 , 𝑖�̅�𝑞𝑠
𝑎 = 𝐂 [

𝑖�̅�𝑞𝑠
𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] (49) 

 

where the output 𝐂 matrix and the sub-matrices of 𝐀 and 𝐁 are given in Table 1. 

Model #3: The space-phasor of the stator flux-linkage �⃗⃗⃗⃗�𝑠 and the space-phasor of the rotor 

flux-linkage �⃗⃗⃗⃗�𝑟
′  are selected as the state variables. From Eqs. (40.a) and (40.b), we obtain 

 

 �⃗�𝑠 =
1

𝜎𝐿𝑠
�⃗⃗⃗⃗�𝑠 +

𝜎 − 1

𝜎𝐿𝑚
�⃗⃗⃗⃗�𝑟

′  (50.a) 

 �⃗�𝑟
′ =

𝜎 − 1

𝜎𝐿𝑚
�⃗⃗⃗⃗�𝑠 +

1

𝜎𝐿𝑟
′
�⃗⃗⃗⃗�𝑟

′  (50.b) 
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Table 1. Sub-matrices of the system 𝐀 and input 𝐁 matrices, and the output 𝐂 matrix for the state-

space models #1, #2, and #3 

Model #1 

𝐱 = [𝑖�̅�𝑞𝑠
𝑎   �̅�𝑑𝑞𝑠

𝑎 ]
𝑡
 where 𝑖�̅�𝑞𝑠

𝑎 = [𝑖𝑑𝑠
𝑎   𝑖𝑞𝑠

𝑎 ]
𝑡
 and �̅�𝑑𝑞𝑠

𝑎 = [𝜓𝑑𝑠
𝑎   𝜓𝑞𝑠

𝑎 ]
𝑡
 

𝐀 = [
−(

𝑅𝑠

𝜎𝐿𝑠
+

1

𝜎𝜏𝑟
) 𝐈 − (𝜔𝑎 − 𝑝𝜔𝑚)𝐉

1

𝜎𝐿𝑠𝜏𝑟
𝐈 − 𝑝𝜔𝑚

1

𝜎𝐿𝑠
𝐉

−𝑅𝑠𝐈 −𝜔𝑎𝐉
] , 𝐁 = [

1

𝜎𝐿𝑠
𝐈

𝐈

] 

𝐂 = [𝐈    𝟎] 

Model #2 

𝐱 = [𝑖�̅�𝑞𝑠
𝑎   �̅�𝑑𝑞𝑟

𝑎′ ]
𝑡
 where 𝑖�̅�𝑞𝑠

𝑎 = [𝑖𝑑𝑠
𝑎   𝑖𝑞𝑠

𝑎 ]
𝑡
 and �̅�𝑑𝑞𝑟

𝑎′ = [𝜓𝑑𝑟
𝑎′   𝜓𝑞𝑟

𝑎′]
𝑡
 

𝐀 =

[
 
 
 −(

𝑅𝑠

𝜎𝐿𝑠
+

1 − 𝜎

𝜎𝜏𝑟
) 𝐈 − 𝜔𝑎𝐉

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′
(
1

𝜏𝑟
𝐈 − 𝑝𝜔𝑚𝐉)

𝐿𝑚

𝜏𝑟
𝐈 −

1

𝜏𝑟
𝐈 − (𝜔𝑎 − 𝑝𝜔𝑚)𝐉

]
 
 
 

, 𝐁 = [
1

𝜎𝐿𝑠
𝐈

𝟎

] 

𝐂 = [𝐈    𝟎] 

Model #3 

𝐱 = [�̅�𝑑𝑞𝑠
𝑎   �̅�𝑑𝑞𝑟

𝑎′ ]
𝑡
 where �̅�𝑑𝑞𝑠

𝑎 = [𝜓𝑑𝑠
𝑎   𝜓𝑞𝑠

𝑎 ]
𝑡
 and �̅�𝑑𝑞𝑟

𝑎′ = [𝜓𝑑𝑟
𝑎′   𝜓𝑞𝑟

𝑎′]
𝑡
 

𝐀 =

[
 
 
 −

𝑅𝑠

𝜎𝐿𝑠
𝐈 − 𝜔𝑎𝐉 𝑅𝑠

1 − 𝜎

𝜎𝐿𝑚
𝐈

𝑅𝑟
′
1 − 𝜎

𝜎𝐿𝑚
𝐈 −

1

𝜎𝜏𝑟
𝐈 − (𝜔𝑎 − 𝑝𝜔𝑚)𝐉

]
 
 
 

, 𝐁 = [
𝐈
𝟎
] 

𝐂 = [
1

𝜎𝐿𝑠
𝐈    

𝜎 − 1

𝜎𝐿𝑚
𝐈] 

 

In a similar manner to the previous algebraic manipulations, by using Eqs. (50.a) and (50.b), 

the system of differential equations is obtained from Eqs. (41.a) and (41.b) as follows: 

 

 
𝑑�⃗⃗⃗⃗�𝑠

𝑑𝑡
= (−

𝑅𝑠

𝜎𝐿𝑠
− 𝑗𝜔𝑎) �⃗⃗⃗⃗�𝑠 + 𝑅𝑠

1 − 𝜎

𝜎𝐿𝑚
�⃗⃗⃗⃗�𝑟

′ + �⃗⃗⃗�𝑠 (51) 

 
𝑑�⃗⃗⃗⃗�𝑟

′

𝑑𝑡
= 𝑅𝑟

′
1 − 𝜎

𝜎𝐿𝑚
�⃗⃗⃗⃗�𝑠 + [−

1

𝜎𝜏𝑟
− 𝑗(𝜔𝑎 − 𝑝𝜔𝑚)] �⃗⃗⃗⃗�𝑟

′  (52) 

 

and the above space-phasors are expanded as 
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𝑑

𝑑𝑡
[
�̅�𝑑𝑞𝑠

𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] = [

𝐀11 𝐀12

𝐀21 𝐀22
] [

�̅�𝑑𝑞𝑠
𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] + [

𝐁1

𝐁2
] �̅�𝑑𝑞𝑠

𝑎 , 𝑖�̅�𝑞𝑠
𝑎 = 𝐂 [

�̅�𝑑𝑞𝑠
𝑎

�̅�𝑑𝑞𝑟
𝑎′ ] (53) 

 

where the output matrix and the sub-matrices are given in Table 1. 

 

5. Electromagnetic Torque in Induction Machine 

 

The main output variables of the machine are the produced torque t𝑒 and the rotor mechanical 

speed 𝜔𝑚. The mechanical output power P𝑚 is also equal to t𝑒𝜔𝑚 or t𝑒𝜔𝑟 𝑝⁄  for 𝑝 > 1. Then, the 

produced torque is defined as 

 

 t𝑒 = 𝑝
P𝑚

𝜔𝑟
 (54) 

 

The mechanical output power can be derived from the instantaneous value of the input power 

supplied to the machine by considering the principle of conservation of energy. The definition of the 

output power is first obtained for the three-phase model. Thereafter, the relevant transformations are 

applied, and their corresponding expressions to the other two-phase models are found. After some 

complex algebraic operations, the output power in the arbitrary reference frame is obtained by 

 

 P𝑚 = 𝑘 ∙ (𝑖�̅�𝑞
𝑎 𝑡

𝐆𝑑𝑞(𝜔𝑟)
𝑎 𝑑𝜃𝑟

𝑑𝑡
𝑖�̅�𝑞
𝑎 ) (55) 

 

where 𝐆𝑑𝑞(𝜔𝑟)
𝑎 = 𝐆𝛼𝛽

𝑠 . Using Eqs. (54) and (24), the electromagnetic torque is given as 

 

 t𝑒 = 𝑘 ∙ 𝑝𝑀𝑠𝑟(𝑖𝑞𝑠
𝑎 𝑖𝑑𝑟

𝑎 − 𝑖𝑑𝑠
𝑎 𝑖𝑞𝑟

𝑎 ) (56) 

 

where 𝑘 is a torque constant. For the power-invariant form of the phase transformation, 𝑘 = 1, but 

for the non-power-invariant case, 𝑘 = 3 2⁄ . On the other hand, when the rotor currents are reduced 

to the stator side, it becomes 

 

 t𝑒 = 𝑘 ∙ 𝑝𝐿𝑚(𝑖𝑞𝑠
𝑎 𝑖𝑑𝑟

𝑎′ − 𝑖𝑑𝑠
𝑎 𝑖𝑞𝑟

𝑎′) (57) 

 

The electromagnetic torque can also be expressed in the space-phasor form. By considering the 

space-phasor definitions of �⃗�𝑠 and �⃗�𝑟
′ , the torque equation can be put into the following form: 



The Black Sea Journal of Sciences 14(3), 1401-1430, 2024 1422 

 t𝑒 = 𝑘 ∙ 𝑝𝐿𝑚(�⃗�𝑟
′ × �⃗�𝑠) (58.a) 

 

where × denotes the cross product of two vectors. Considering Eqs. (43.a), (46.a), and (50.a), other 

equivalent expressions for the electromagnetic torque can be defined as 

 

 t𝑒 = 𝑘 ∙ 𝑝(�⃗⃗⃗⃗�𝑠 × �⃗�𝑠) = 𝑘 ∙ 𝑝(𝜓𝑑𝑠
𝑎 𝑖𝑞𝑠

𝑎 − 𝜓𝑞𝑠
𝑎 𝑖𝑑𝑠

𝑎 ) (58.a) 

 t𝑒 = 𝑘 ∙ 𝑝
𝐿𝑚

𝐿𝑟
′

(�⃗⃗⃗⃗�𝑟
′ × �⃗�𝑠) = 𝑘 ∙ 𝑝

𝐿𝑚

𝐿𝑟
′

(𝜓𝑑𝑟
𝑎′ 𝑖𝑞𝑠

𝑎 − 𝜓𝑞𝑟
𝑎′ 𝑖𝑑𝑠

𝑎 ) (58.b) 

 t𝑒 = 𝑘 ∙ 𝑝
𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′
(�⃗⃗⃗⃗�𝑟

′ × �⃗⃗⃗⃗�𝑠) = 𝑘 ∙ 𝑝
𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′
(𝜓𝑑𝑟

𝑎′ 𝜓𝑞𝑠
𝑎 − 𝜓𝑞𝑟

𝑎′𝜓𝑑𝑠
𝑎 ) (58.c) 

 

where Eqs. (58.b), (58.c), and (58.d) are respectively proper torque equations for Models #1, #2, and 

#3. Finally, the state-space and torque equations of the machine hold under both transient and steady-

state conditions. However, the equation of motion 

 

 t𝑒 = t𝑙 + J𝑙
𝑑𝜔𝑚

𝑑𝑡
+ f𝑑𝜔𝑚 (59) 

 

is also required for transient conditions, where t𝑙 is the load torque, J𝑙 is the inertia of the rotor and f𝑑 

is the damping constant which denotes dissipation due to windage and friction. The motion equation 

introduces the relationship between the developed torque and rotor mechanical speed, and hence it is 

used to determine the rotor speed in simulation studies. 

 

6. Reference Frames Used in Machine Model 

 

The dynamic behavior of any induction machine can be simulated by using the general block 

diagram in Fig. 5. As seen in Fig. 5, the inputs of the model are the stator voltages and load torque. 

The outputs are the stator currents, developed torque, and rotor mechanical speed. The transformation 

angle 𝜃𝑎 is obtained by 

 

 𝜃𝑎 = ∫𝜔𝑎 𝑑𝑡 (60) 

 

where 𝜔𝑎 is an arbitrary angular speed. Since the state-space models in Table 1 are expressed in the 

reference frame rotating with an unspecified angular speed, the machine model cannot be simulated 

as such. To make the machine model more suitable for simulation, the state-space equations need to 



The Black Sea Journal of Sciences 14(3), 1401-1430, 2024 1423 

be re-expressed in one of the following reference frames. The main function of the “Reference Frame 

Selector” sub-block is to perform this operation. 

 

 

Figure 5. General simulation block diagram of an induction machine 

 

Fig. 6 depicts commonly used reference frames in ac machine analysis. It follows that the 

machine model can be described in three different reference frames, namely stationary, rotor, and 

synchronous reference frames. How to transfer the state-space models in Table 1 from the arbitrary 

reference frame to other reference frames will be shown below, and their basic features will be briefly 

introduced. 

1. The machine model is expressed in the stationary reference frame if the arbitrary reference 

frame coincides with the phase-𝑎𝑠 axis of the stator. Then, when 𝜔𝑎 is zero in Table 1, the 

state-space equations in the stationary reference frame are obtained. Since 𝜔𝑎 = 0, the 

arbitrary reference frame does not rotate. Therefore, the stator and rotor quantities change 

sinusoidally with synchronous angular speed 𝜔𝑠, where 𝜔𝑠 = 2𝜋𝑓𝑠 and 𝑓𝑠 is the fundamental 

frequency of the stator currents or voltages. 

2. The machine model is expressed in the rotor reference frame if the arbitrary reference frame 

coincides with the phase-𝑎𝑟 axis of the rotor. Then, if 𝜔𝑎 is taken as 𝜔𝑟 or 𝑝𝜔𝑚 in Table 1, 

the state-space equations in the rotor reference frame are achieved. Since 𝜔𝑎 = 𝜔𝑟 , the 

arbitrary reference frame rotates at the rotor electrical speed 𝜔𝑟. Therefore, the stator and 

rotor quantities change sinusoidally with slip angular speed 𝜔𝑠𝑙, where 𝜔𝑠𝑙 = 𝜔𝑠 − 𝜔𝑟. 

3. The machine model is expressed in the synchronous reference frame if the arbitrary reference 

frame coincides with the reference frame rotating with synchronous speed 𝜔𝑠. Then, if 𝜔𝑎 

is replaced by 𝜔𝑠 in Table 1, the state-space equations in the synchronous reference frame 

are attained. Since 𝜔𝑎 = 𝜔𝑠, the arbitrary reference frame rotates at the synchronous speed 

𝜔𝑠. Similarly, the stator and rotor quantities change sinusoidally with synchronous speed 𝜔𝑠. 

Thus, these ac quantities convert into dc quantities in the synchronous reference frame. 

Motion of 
Equation

   

     

   

   

   

     

   
   

 

   
 

    

  

  

   

   
 

   
 

  
 

  

  

      

   

   

   

   

  
  

Torque 
Calculation

  or   
 

  

State-Space 
Model of 
Induction 
Machine

  

    

 

    

  

  

  

   
Reference 

Frame Selector



The Black Sea Journal of Sciences 14(3), 1401-1430, 2024 1424 

 

 

Figure 6. Commonly used reference frames in AC machine analysis 

 

The above three reference frames provide the state-space models that can be used to analyze 

and/or simulate the induction machine. The most convenient reference frame is determined by the 

operating conditions. In general, to study balanced conditions, either the stationary or synchronously 

rotating reference frame is preferred rather than the rotor reference frame. However, if the stator 

voltages are unbalanced and the rotor voltages are balanced or zero, then the stationary reference 

frame is more convenient. On the contrary, if the rotor voltages are unbalanced and the stator voltages 

are balanced, then the rotor reference frame is more convenient. Moreover, the synchronously rotating 

reference frame is more useful in variable frequency applications for balanced conditions. 

 

Table 2. Equivalent circuit and other parameters of induction machine 

Parameter Symbol Value Unit 

Stator resistance 𝑅𝑠 2.65 Ω 

Rotor resistance 𝑅𝑟 2.85 Ω 

Stator self-inductance 𝐿𝑠 0.2082 H 

Rotor self-inductance 𝐿𝑟 0.2122 H 

Mutual inductance 𝐿𝑚 0.1941 H 

Number of pole-pairs 𝑝 2 − 

Moment of inertia J𝑙 0.025 kg ∙ m2 

Damping coefficient f𝑑 0.001 Nm ∙ s/rad 

Rated torque t𝑒 15 Nm 

Rated base speed 𝑛𝑚 1500 rpm 
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Figure 7. Simulink model of a symmetrical three-phase induction machine 

 

 

(a) State-space model #2 

 

(b) Reference frame selector 

  

(c) Torque calculator (d) Equation of motion 

Figure 8. Simulink models of subsystems in the machine model 

 

 



The Black Sea Journal of Sciences 14(3), 1401-1430, 2024 1426 

7. Simulation Studies 

 

All the simulation studies on the presented machine models are realized in Matlab environment. 

The schematic simulation model and each sub-models of the machine given in Fig. 5 are created by 

using the blocks under Simulink library. Fig. 7 shows the simulation model of an induction machine, 

where its subsystem models are separately given in Fig. 8. An induction machine with 220/380V, 

50Hz, 2.2kW is examined in the simulation studies. The equivalent circuit parameters are given in 

Table 2. The following can be said for this simulation model: 

▪ The phase transformation is carried out by using the non-power-invariant form of 𝐂1; that 

is, while the coefficient 𝑐 in Eq. (12) is taken as 2 3⁄  in the transformation from 𝑎𝑏𝑐 to 𝛼𝛽, 

𝐂1
−1 = 𝐌𝑡 is used in the inverse transformation from 𝛼𝛽 to 𝑎𝑏𝑐. 

▪ The transformation angle for 𝛼𝛽 to 𝑑𝑞 and vice versa is determined under the “Reference 

Frame Selector” subsystem. The stationary, rotor, and synchronously rotating reference 

frames can be chosen when the input 𝑢 is 1, 2, and 3, respectively. 

▪ Model #2 among the state-space models in Table 1 is simulated; that is, the components of 

�⃗�𝑠 and �⃗⃗⃗⃗�𝑟
′  space-phasors are selected as the state variables. In this case, the auxiliary model 

parameters seen in Fig. 8a are as follows: 

 

 

𝑎11 =
𝑅𝑠

𝜎𝐿𝑠
+

1 − 𝜎

𝜎𝜏𝑟
, 𝑎12 =

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′

1

𝜏𝑟
 

𝑎13 =
𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′

, 𝑎14 =
𝐿𝑚

𝜏𝑟
, 𝑎15 =

1

𝜏𝑟
, 𝑏1 =

1

𝜎𝐿𝑠
 

 

 

▪ The developed torque is calculated by Eq. (58.c). Because this torque equation is expressed 

in terms of the state variables of Model #2. In addition, since the non-power-invariant form 

of 𝐂1 is applied in the phase transformation, the torque constant 𝑘 is taken as 3 2⁄ . The 

mechanical rotor speed is calculated by solving Eq. (59) under the "Equation of Motion" 

subsystem. 

 

8. Results and Discussions 

 

The simulations were realized for two case studies. Firstly, the free acceleration characteristic 

of the machine and secondly, the dynamic performance during sudden changes in the load torque are 

examined. For both cases, the stator windings are supplied by the rated and balanced voltages. The 

torque vs. speed characteristic and the machine variables during free acceleration are shown in Figs. 
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9a and 10a, respectively. Since the machine is initially at rest and the rated voltage is applied, the 

starting current and thusly the starting torque are considerably greater than their rated values. The 

friction and windage losses are so small that they can be neglected. Hence, the rotor shaft accelerates 

up to around synchronous speed and the produced torque is almost zero at this speed. 

 

  

(a) (b) 

Figure 9. Torque-speed characteristics; (a) during free acceleration, (b) during step changes in load 

torque from zero to 10 Nm to zero 

 

 

  

(a) (b) 

Figure 10. Machine currents, rotor mechanical speed, and electromagnetic torque; (a) during free 

acceleration, (b) during step changes in load torque from zero to 10 Nm to zero 

 

The dynamic behavior of the machine during sudden changes in the load torque is shown in 

Fig. 10b. Initially, (before changing the load torque), the machine is operating at synchronous speed. 
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The load torque is first stepped up from zero to 10 Nm and for a while, the machine is allowed to 

move to this new operating point. Next, the load torque is again stepped down from 10 Nm to zero. 

The machine returns to its original operating point. The transition trajectories between these two 

operating points can be seen from the torque-speed characteristic in Fig. 9b. The transition directions 

between the two operating points are also indicated by the arrows. Due to the characteristics of the 

examined machine, the machine variables approximate each operating point in an overdamped way. 

 

 

Figure 11. Variations of rotor flux-linkage components in the stationary, rotor and synchronously 

rotating reference frame, respectively (from top to bottom) 

 

Finally, it will be instructive to observe the 𝑑 and 𝑞 components of the machine variables in 

various reference frames. Fig. 11 shows the components of the rotor flux-linkage in the stationary, 

rotor, and synchronous reference frames during two operating conditions. All the stator and rotor 

quantities change sinusoidally with synchronous speed in the stationary reference frame. However, 

these are in the form of dc quantities in the synchronous reference frame. This is respectively evident 

from the top and bottom figures of Fig. 11. The remaining middle figure shows the variation of the 

rotor flux-linkage in the rotor reference frame. These quantities change sinusoidally with slip speed. 

The sinusoidal changes occur in the range of a long period of time as the slip is very small initially. 

Under the load torque of 10 Nm, the slip increases compared to the no-load condition. Thus, the 

changes of these components become more pronounced depending on the increasing slip speed. 
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9. Conclusions 

 

This study presents a mathematical investigation on the dynamic models of a symmetrical three-

phase induction machine. All the primitive machine equations are derived in relatively simple terms 

by using the idea of rotating reference frame. Moreover, the ready-to-use advanced machine equations 

are derived in the arbitrary reference frame. The evolution of machine equations from primitive to 

advanced forms is presented as comprehensibly as possible and in a more compact form. This study 

also proposes three different state-space models derived from the advanced machine equations in the 

arbitrary reference frame. It is shown how to transform these state-space models from the arbitrary 

reference frame to the stationary, rotor, or synchronous reference frames. A general simulation block 

diagram is further presented which can be used in all the reference frames without any modifications 

to its structure. The given machine model and reference frames are discussed through some simulation 

studies, and the expected results are achieved. In future work, the development of vector control 

methods for the control of induction machines as well as observer designs for flux and speed 

estimation can be discussed comprehensively using the given machine models. 
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