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ABSTRACT
The study area is about the evaporitic-dominated Middle Miocene sequence situated in the 
southwest of the Kağızman Basin in Eastern Anatolia. The aim of this study is to investigate the 
formation conditions and diagenetic development of pseudomorph gypsum formed after halite. 
Pseudomorph gypsum formations are intriguing geological features found in terrestrial deposits. 
These formations are replaced by primary halite crystals during the very early phases of diagenesis, 
giving the appearance of halite crystals but being composed of gypsum. The development of these 
pseudomorphs is indicative of specific paleoenvironmental conditions. The fact that these gypsum 
pseudomorphs are found in shallow depths of the lake and are well-preserved, smooth-surfaced, 
and varying in size suggests that they were the result of intense evaporation and rapid fluctuations 
in the water and pH level. This evaporation likely led to a decrease in the lake level and changes 
in the concentration of saltwater over time. The correlation coefficient relationships and element 
concentration values of these gypsums show that these elements are both continental in origin and 
subject to microbial influence. These pseudomorph gypsum and the clastic materials (transported by 
fluvial activity) that were interbedded gave important insights into the hot, long-drought, and low-
humidity climate of the era and adapted to the Middle Miocene global warming conditions
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1. Introduction

The Miocene saw significant tectonic and climatic 
events (Potter and Szatmari, 2009). There existed a 
warm period known as the Middle Miocene Climatic 
Optimum during the Miocene. Long-term cooling that 
had been occurring during the Cenozoic was broken 
during this time (Methner et al., 2020). High-amplitude 
climate variability was a defining feature of the Middle 
Miocene Climatic Optimum, which occurred between 
approximately 14.7 and 13.8 million years ago. The 
primary proof of this shift was found in the rise in δ18O 

observed in the benthic foraminiferal records (e.g. 
Holbourn et al., 2005; Shevenell et al., 2008; Lear 
et al., 2010). According to paleobotanical and fossil 
research, temperatures were higher globally and in 
the East and Central Paratethys during the Langhian 
(Ivanov et al., 2011). Halite and gypsum are common 
evaporitic deposits found in the Kağızman Basin and 
other regions of the Central Paratethys that date back to 
the Middle Miocene (Rögl, 1999). The global climate 
and a favorable tectonic environment are responsible 
for the presence and distribution of the Miocene brine 
deposits in the Kağızman Basin (Kayseri-Özer, 2013). 
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Furthermore, it was discovered that the Arecaceae 
and Lauraceae plant families were representative of 
the hot, subtropical climate that prevailed at the time 

(Kayseri-Özer, 2013). These evaporite units, which 
are distributed Tuzluca formation between Kağızman 
and Tuzluca districts (Figures 1a, b) are generally 

Figure 1- a) Location map of the study area, b) 1/25000 scale relief map of the study area and sampling points (from K1 K50), c) the evaporitic 
general succession (from bottom to top).
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within the Tuzluca Formation, located in the Kağızman 
Basin, have not been examined in detail before. This 
makes it an important research focus to understand 
the paleoclimatic conditions specific to this region. 
Therefore the goals of the study can be summarized 
as follows:

a) Paleoenvironmental Conditions Analysis: 
This aspect of the study aims to reconstruct the 
ancient environment in which the evaporitic sequence 
was deposited. It involves analyzing various 
sedimentological, petrographic, and geochemical data 
to infer factors such as climate, water depth, ecological 
conditions, salinity, pH levels, and the presence of 
organic activity during deposition. 

b) Sedimentation and Diagenetic Processes: 
The study intends to investigate how sediments 
accumulated and were subsequently altered through 
diagenetic processes over time. Understanding these 
processes will provide insights into the geological 
history of the sequence and the transformations it 
underwent.

2. Methods

A total of 50 samples labeled as K1 to K50 were 
collected. These samples mainly consist of carbonate, 
silt, clay, mud-included gypsum pseudomorphs, 
halite, and primary gypsum (Figure 1c). Petrographic 
and mineralogical analyses were conducted on the 
collected samples. Scanning Electron Microscopy-
Energy Distribution Spectroscopy (SEM-EDS) 
examinations were carried out at the Van Yüzüncü 
Yıl University Scientific Research and Application 
Center. Microparticles from the samples were coated 
with Au-Pd for 90 seconds. The samples were 
examined using a ZEISS Sigma 300 model SEM 
microscope and photographed with an SE2 detector. 
Elemental analyses of seven samples were conducted 
at ACME Analytical Laboratories in Canada. X-ray 
fluorescence (XRF) and inductively coupled plasma 
emission spectroscopy (ICP-ES) were used for 
elemental analysis. Concentrations in parts per million 
(ppm) were determined in gypsum samples using 
specific standards (STD DS11, STD GS 311-1, STD 
OREAS262, and STD SO 19) according to reference 
Norrish and Chappel (1977).

classified as Middle Miocene aged shallow sea-lake 
deposits according to their stratigraphic position 
(Şenalp, 1969; Jrbashyan et al., 2001; Papworth and 
Aghabalyan, 2002; Şen et al., 2011; Metais et al., 
2015; Varol et al., 2016). Whereas Eocene sandstone, 
conglomerate siltstone, and limestone units form the 
base of these deposits, they are overlain by Pleistocene 
volcanic agglomerated tuff, tuffite and basalts (Havur, 
1968; Yurdagül, 1971).

This study focuses on gypsum replacing halite, 
which developed in a shallow basin and during very 
early diagenetic conditions. Halite replacement 
with gypsum is linked to temperature variations and 
changes in the solubility of both minerals following 
chemical changes in the brine composition during 
the early-diagenetic dissolution–precipitation cycles 
(Hovorka, 1992; Schreiber and Walker, 1992). The 
pseudomorphic replacement of gypsum with halite 
is a known phenomenon and has been recorded in 
ancient sediments worldwide (Görgey, 1912; Schaller 
and Henderson, 1932; Stewart, 1949; Jones, 1965; 
Holdoway, 1978; Lowenstein, 1982, 1983; Warren 
and Kendall, 1985; Babel, 1991; Hovorka, 1992). 
In Türkiye and the Çankırı-Çorum Basin in Central 
Anatolia, it is also observed in the Late Miocene 
Bozkır Formation and generally is intercalated with 
gypsiferous mudstones and claystones (Gündoğan 
and Helvacı, 2001). Another example of these 
pseudomorphs is found in the Kağızman Basin, 
which constitutes our study area. Eastern Türkiye’s 
Kağızman Basin is a compressional intermontane 
ramp-valley basin located east of the Karlıova Fault 
System, near Armenia (Şen et al., 2011). This type of 
pseudomorphs resulting from this diagenetic replacing 
are considered valuable indicators for understanding 
the Middle Miocene Climatic Optimum, a period of 
global warming. They may provide insights into the 
climatic conditions of the study area during that time. 
The gypsum pseudomorphs are more common in areas 
with salty units and cover an area of about 15 km2 in 
the study area. This indicates that they are a significant 
features of the basin under investigation.

This study in Türkiye adds to the existing 
knowledge of such occurrences. Pseudomorphic 
gypsum interbedded with clastic, carbonate units 
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3. Results

3.1. Sedimentological Parameters of the Evaporitic 
Succession

Sedimentological parameters; the sedimentary 
structure was differentiated according to lithology and 
texture and examined by considering the lithofacies 
distinction. The sequence consists of a variety of 
sedimentary rocks, including claystone, siltstone, 
sandstone, limestone and evaporites (Figure 1c). 
Evaporites dominate and include gypsum and halite 
units. 

In the middle and upper levels of the section, 
these units are intercalated and alternated with 
one another. Post-halite pseudomorph gypsum and 
selenite are the two types of gypsum that make up 
gypsum layers. These various gypsum species could 
be a sign of alterations in the mineralogical processes 
and depositional environment over time. Selenitic 
gypsums are observed in the field as transparent, white 
and sometimes brownish. These selenite crystals are 
generally observed in prismatic, tabular, lensoidal 
and fibrous shapes, with crystal sizes ranging from 
0.5 cm to 30 cm (Figures 2a, b, c). These selenites 
are sometimes intercalated with clastic rocks and 
sometimes cemented to fill their cracks. Their fibrous 
filling of mud cracks indicates that they are involved 
in the consolidation of sediment. 

Pseudomorphic gypsums, which are the subject of 
the study, is observed in the field, replacing halite. The 
cubic shape of halites is preserved. Although the cubic 
shape of halite is preserved, a mineralogical change 
is observed. These are observed intercalated with 
mudstones in the field (Figure 2d). Brown color is 
observed in places because of organic activity in these 
gypsum pseudomorphs buried within the compacted 
carbonate mud under shallow-moderate burial 
conditions during the early diagenesis (Figure 2d). 
The inner crystal surfaces of this halite, which then 
turns into gypsum, are hopper-shaped and concave 
with prominent edges (Figure 2e). Post-halite gypsum 
pseudomorphs size range from 2 to 20 cm in size (Figures 
2f, g). Gypsum-hopper-cubes more than 10 cm in size, 
almost always show vertically oriented long sides and 
grown displacively within the soft mud (Figure 2f). 
Because some of these hopper-shaped gypsum-cubes 

became deformed during the sedimentation process 
due to mud compaction, the hoppers are not evident 
(Figure 2h). The microcrystalline primary (selenitic) 
gypsum formations, crystallized in dissolution 
cavities of a halite hopper-cube or on its surface, are 
macroscopically observed (Figures 2i, j). The outer 
surfaces of gypsum-pseudomorphs are sometimes 
macroscopically anhedral (Figure 2i). Partial white 
anhydritization areas are occasionally observed in 
some parts of these samples (Figure 2i). This change is 
a component of the diagenetic change processes, that 
result in the compaction of sediment from deposition 
and dehydration.

Halite was described as layered, banded, laminated, 
and sometimes primary and sometimes recrystallized. 
The sizes of primary halite vary between 0,5 and 20 
cm. These cubes formed as the primary mineral in 
the sediment. Halite layers have been eroded both 
vertically and laterally due to the dissolution of 
meteoric waters. This implies a history of exposure to 
surface conditions and the influence of groundwater 
on sedimentary layers. The sequence is also included 
sedimentary features like folds, laminations, 
corrugations, and cross-beddings (Figure 1c).

3.2. Petrography and Mineralogy

In optical microscopy studies on post-halite 
pseudomorph gypsum samples, it is seen that primary 
gypsum crystals first start from the grain boundaries 
of the halite and then replace with halite towards 
the inner surface (Figures 3a, b). These gypsums are 
observed as small aggregates, ranging in size from a 
few micrometers to approximately 200 μm (Figures 
3b, c). At the same time, areas, where these gypsums 
were partially anhydritized, were observed in some 
thin sections. In some thin sections, it is clearly seen 
that these anhydritized aggregates combine to form a 
nodular appearance (Figure 3c). 

In some thin sections, halite was observed to 
show curved edges and irregular patterns forming a 
puzzle texture (polygonal mosaic) (Figure 3d). Within 
the fibrous gypsums, celestine and late diagenetic 
carbonate minerals (calcite and rhombohedral 
dolomite) were encountered in SEM-and petrographic 
studies (Figures 3e, f, g). In addition, traces of 
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Figure 2- Sedimentological properties of clay and carbonate intercalated gypsum in different lithologies in the evaporitic sequence; a) clayey-
carbonate fibrous gypsum (Fg) and lensoidal gypsum (Lg), b) fine grained tabular gypsum (Tg) and prismatic gypsum, perpendicular 
to the bedding and organic contented, filling mud cracks, c) transparent selenite (S) with coarse grain filling mud cracks, d) smooth-
surfaced with organic material content  pseudomorph gypsum cube after displacively grown halite within the soft mud (brown 
areas: rich in organic material), e, f) pseudomorph gypsum (Psg) which hopper-shaped (Hsg) inner surface zoning and greater than 
10 cm in diameter, showing long vertically oriented sides, g) pseudomorph gypsum cubes of different sizes, h) deformed gypsum 
pseudomorph cubes, i) selenitic gypsum (Sel) replacing halite and white anhydritization (An. areas) of these gypsum in the some 
areas, j) microcrystalline primary selenitic (Sel.) gypsum crystallizing in the dissolution cavities or surface of the halite cube.
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dissolution and clay and carbonate minerals filling 
their cracks were detected in some halite samples and 
tabular and prismatic gypsums (Figures 3h, i). It was 
found that some element contents such as Ca, Sr, Rb, 
Zr, Zn, Mg and Fe were at distinct peaks in the gypsum 
pseudomorphs (K-1, K-6 and K-10) examined in the 
EDS analysis (Figure 4).

3.3. Element Geochemistry

Si, Al, Fe, Na, and K major oxides in pseudomorph 
gypsum samples exhibit positive correlation 
coefficients (r2) with each other, with values of 
up to r2 = +0.95 (Table 1). This suggests that these 
elements tend to co-occur in gypsum samples. Major 

oxides in gypsum pseudomorph samples, specifically 
Si, Al, Fe, Na, and K, exhibit a negative correlation 
coefficient (up to r2 = –0.89) with CaO. This means 
that, as the concentration of CaO in gypsum samples 
decreases, the concentrations of these major oxides 
tend to increase, and vice versa. Ba content in all 
samples is noteworthy, with Ba ratios ranging from 68 
to 600 ppm (Table 1). Ba values in gypsum samples 
demonstrate a moderate to high positive correlation 
(r2 = +0.95) with Rb. This indicates that Ba and Rb 
tend to co-occur in gypsum samples. The Sr content of 
pseudomorph gypsum samples was higher than other 
gypsum samples and increased up to approximately 
3000 ppm (Table 1). Metallic elements such as Co, Ni, 

Figure 3- Optical and SEM images of carbonate-containing pseudomorph gypsum samples; a) primary gypsums observed at grain boundaries 
of the isotropic halite (crossed polars), b) euhedral and randomly distributed or lattice-shaped clustered gypsums (Gyp) and anhydrite 
laths (Anl) dispersed in or replacing halite (Ha), c) formation of anhydrite lath (Anl) aggregates and gypsum (gyp) within the 
anhydrite nodule (An. nodule) structure (after halite), d) polygonal mosaic-textured halite (plane light), e) secondary gypsums and 
euhedral calcite which developed at the margins of isotropic halites (crossed polars), f) rhombohedral dolomite (Dol) in the fibrous 
gypsums, g) gypsum replacing by euhedral celestine, clay-carbonate in the gypsum cracks, h) prismatic (Pg)-tabular (Tg) shaped 
primary gypsum with clay (smectite), i) dissolution traces (dis.) in halites with clay and carbonate (Cl-Ca) formations which filled 
the dissolution surfaces of these halites.
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Figure 4-  Element peaks in SEM-EDS analysis performed on clayey carbonate pseudomorph gypsum
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Cu, Zn, Zr, and Mo in gypsum samples show positive 
correlation coefficients (r2 = up to +0.98) with each 
other.

In summary, the major and trace element analysis 
of the gypsum and halite samples reveals various 
significant correlations and relationships between 
the elements present in these evaporite rocks. These 
findings can provide valuable insights into the 
geological and geochemical processes that have 
influenced the composition of these rocks.

4. Discussion

4.1. Sedimentary Environment and Diagenetic and 
Paleoenvironment Conditions of the Basin

4.1.1. Sedimentological and Petrographic 
Interpretations

Some lithofacies (massive, laminated, nodular, 
radial, etc.) minerals and sedimentary structures 
(cross-bedding, ripples, chicken-wire, etc.) in the 
basin provide evidence about the paleodepositional 
conditions (Figures 5a–g). Gypsum pseudomorphs are 
observed at lower levels of the geological succession, 
replacing old halite cubes. The variability in the 
texture of halite indicates that depositional conditions 
and diagenetic processes have changed.

With a relative increase in Ca and SO4, the water 
becomes supersaturated with gypsum, and the present 
halite slowly begins to dissolve at 35-50°C (Hovarka, 
1992; Bell and Suarez, 1993). With a further increase 
in temperature and salinity, it dissolves completely 
(Schreiber and Walker, 1992) (Figures 5h-1, 2 and 

5h-3). Halite cubes (Figures 5d, 5h-1, 2), displacive 
growing in soft mud (host-sediment), are deformed 
due to sedimentation. Afterwards, dilute fluids migrate 
into the cubes, whose shape is preserved, and the plaster 
pseudomorph is formed (Figure 5h-2). Dissolution 
usually first concentrates at the grain boundaries 
of halite, then creates larger and longer voids
(Figures 3a, b, 5e and 5h-3) (e.g., Shearman, 1970). 
Dissolution of the salt is followed by the build-up of a 
thin, carbonate-mud layer precipitated from brackish 
water, resulting from the incorporation of less saturated 
water immediately after a flood event (Figures 5h-2, 
5h-3). These processes probably started at the surface 
and were completed during early diagenesis (initial 
stages of burial) (e.g., Casas and Lowenstein, 1989). 
In addition, another data showing that this early 
burial diagenesis took place is the presence of mosaic 
texture and recrystallization observed in halite (Figure 
3d), (K-23-27) (Spencer and Lowenstein, 1989; 
Rahimpour-Bonab and Alijani, 2003; Ercan et al., 
2017) (Figures 5b-c). Primary gypsum observed in 
some post-halite cubes loses water due to compaction 
in the sedimentary-early diagenetic process. It is 
then rehydrated first to anhydrite due to dilution of 
saltwaters. Then to secondary gypsum, as a result 
of interaction with meteoric waters. (Figures 2i, 3e). 
The pseudomorph gypsum cubes and selenite crystals 
appear various sizes (Figures 2a-b-g), indicating 
changes in salinity and pH conditions and mixing 
of different compositions of waters (marine, fresh, 
brackish waters) (Babel, 2004). For instance, the field-
observed tabular and lenticular gypsum shapes and the 
brownish colors resulting from the increased organic 

Table 1- Major oxide (%) and trace element (ppm) composition of evaporites from Kağızman Basin.

Sample 
no

Rock type SiO2 Al2O3 Fe2O3 CaO Na2O K2O Co Ni Cu Zn Zr Mo Ba       Sr Rb

K-1 Pseudomorphic 
gypsum

9.76 2.45 1.53 25.89 3.45 0.74 16.7 33.6 72.1 85 30.1 5.9 405 1149 15.3

K-4 Pseudomorphic 
gypsum

1.09 1.2 0.45 32.73 0.05 0.03 3.2 18 24 5.8 13.4 2.4 600 780 30.8

K-6 Pseudomorphic 
gypsum 

11.93 1.35 2.28 32.32 2.11 0.43 8.5 21.7 4.8 56 23.2 4.1 378 3154 14.9

K-12 Pseudomorphic 
gypsum

8.3 3.58 1.94 26.72 3.85 0.08 12.7 19.8 38 76 20.7 4.7 306 2405 13.7

K-15 Fibrous gypsum 3.23 1.21 0.94 31.57 0.03 0.19 2.9 15 18 6.4 12.8 1.6 500 530 24.9

K-42 Tabular gypsum 2.03 0.42 0.76 33.78 0.04 0.21 1.4 10.3 4.1 3.3 4.6 1.3 253 320 1.9

K-49 Lensoidal gypsum 2.27 1.69 0.38 32.74 0.02 0.97 1.7 13.3 4.2 7 10.2 2.6 68 440 0.5
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Figure 5- a) Diagram showing the depositional environments of evaporites in the study area, b) bedded halite layers (the width of the holes 
is about 2m), c) clayey and silty recrystallized (Re) salts, d) displacive cubic halite within the mud related to high evaporation and 
temperature (then replaced by gypsum), e) microcrystalline selenitic gypsum (MSG) crystals on the surface of cubic halite, f) contact 
boundary of gypsum and halite layers with clayey and silty units, g) silty and clayey units, h) Formation mechanism stages of 
pseudomorphic gypsums; 1) displacive hopper cubic halite (DH) within the soft mud, 2) dissolution cavities (DC) and minor primary 
gypsum that begin to replace these cavities after storm flooding and seepage, 3) microcrystalline selenitic gypsum (MSG) and minor 
anhydrite nodules (AN) replacing cubic halite in compacted mudstone under the high salinity (S) and temperature effects (T), 4) 
pseudomorphic secondary alabastrine gypsum (PSG) which formed after halite during shallow-medium burial as then rehydrated.
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matter content suggest that these gypsums have a 
higher clay content, a slower rate of crystallization, 
and higher salinity, temperature, and pH levels (Cody 
and Cody, 1989; Calvert and Pedersen, 1996; Aref et 
al., 1997). In addition, the high element concentrations 
(Zr, Cu, Ni, Mg, Ba, Fe, Rb and Co) in the examined 
pseudomorphic gypsum are important, as they show 
that both these high salinity conditions and organic 
activity prevail in the basin (e.g., Averty and Paytan, 
2003; Guo et al., 2019). (Figures 5g-j and Table 1). 
This halite-gypsum replacement occurs in hot and arid 
climatic conditions with low humidity and rapid, high 
evaporation (Logan, 1987; Leitner et al., 2013). These 
post-halite gypsum pseudomorphs are interpreted as 
products accumulating in the salty coastal lagoon and 
shallow inland environments (Salt Lake or Pan) (Bell 
and Suarez, 1993). Banded halite observed together 
with pseudomorphs in the evaporitic sequence support 
both these climatic conditions and the existence of a 
Salt Pan or Salt Lake environment (e.g., Rosen, 1994) 
that is subject to repeated floods and dilution. As a 
result, these pseudomorph gypsums, along with other 
rocks (selenite, halite, plastics, and carbonates) and 
sedimentary structures in the basin, evoke shallow 
water environments that are later irrigated by floods. 
Examples of these environments are salt mud flats, 

playa, and sabkha, which become exposed when lakes 
dry up. In addition, structures such as cross bedding, 
parallel lamination, fold corrugations and bedding 
in gypsum in the study area are evidence of regional 
tectonic, climate and strong diagenesis (Schreiber et 
al., 1976; Warren and Kendall, 1985; Magee, 1991).

4.1.2. Mineralogical and Geochemical 
Interpretations

Positive correlations between SiO2 and other 
Al (r2 = 0.52), Fe (r2 = 0.95), Na (r2 = 0.84) and 
K (r2 = 0.18) in the major oxides and Zr/Al2O3 ratio 
(mean 10) in gypsum samples (Table 2) indicate that 
the paleodepositional environment became shallower 
due to evaporation and clastic material was carried 
into the basin (Pye and Krinsley, 1986; Folkoff and 
Meentemeyer, 1987; Haug et al., 2003; Chaudhri 
and Singh, 2012) (Tables 1, 2). Additionally, the 
negative correlations of these major oxides with CaO 
also support this (Table 2). The presence of these 
clastic materials (such as quartz, feldspar, smectite, 
illite, and kaolinite) was observed in SEM studies 
(Figures 3g-h-i). Because Zr and Si can be trapped 
in clastic materials such as quartz and zircon, they 
can easily settle in lake water under the influence of 
gravity (Guo et al., 2019). Therefore, the high peaks 

Table 2- Correlation coefficient (r2) relationships of major and trace elements with each other.

 SiO2 Al2O3 Fe2O3 CaO Na2O K2O Ni Co Cu Zn Mo Ba Sr Rb Zr

SiO2 1,00

Al2O3 0,52 1,00

Fe2O3 0,95 0,51 1,00

CaO -0,60 -0,87 -0,53 1,00

Na2O 0,84 0,84 0,82 -0,89 1,00

K2O 0,18 0,08 -0,09 -0,10 0,05 1,00

Ni 0,72 0,54 0,55 -0,78 0,76 0,27 1,00

Co 0,82 0,77 0,73 -0,92 0,96 0,14 0,90 1,00

Cu 0,41 0,64 0,29 -0,90 0,70 0,09 0,86 0,84 1,00

Zn 0,89 0,78 0,83 -0,87 0,99 0,14 0,84 0,98 0,72 1,00

Mo 0,83 0,77 0,70 -0,85 0,93 0,31 0,90 0,96 0,76 0,96 1,00

Ba 0,02 -0,12 0,08 -0,09 0,00 -0,63 0,31 0,13 0,32 0,03 0,01 1,00

Sr 0,86 0,47 0,92 -0,34 0,70 -0,13 0,41 0,57 0,08 0,70 0,62 0,08 1,00

Rb -0,01 0,03 0,04 -0,12 0,00 -0,56 0,29 0,11 0,30 0,01 0,04 0,95 0,11 1,00

Zr 0,86 0,64 0,74 -0,79 0,85 0,22 0,95 0,93 0,75 0,91 0,94 0,26 0,64 0,28 1,00
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observed in the SEM-EDS study (Figure 4) and the 
higher concentrations in the elemental geochemistry 
study (Table 1) prove this. This kind of clay minerals 
is indicative of hot-humid climates (Jackson, 1964; 
Foth and Truck, 1973; Singer and Navrot, 1977; Pal et 
al., 1989; Deepthy and Balakrishnan, 2005; Chaudhri 
and Singh, 2012; Corentin et al., 2019), shallow 
environments (such as salty, saline lakes) (Weaver, 
1989) and pH fluctuations (Ingles and Anadon, 1991). 
Therefore, these climatic conditions are compatible 
with the climatic conditions prevailing during the 
Middle Miocene. 

In the evaporation cycle, Sr can precipitate as rare 
strontianite (SrCO3) and celestine (SrSO4) (Forjanes et 
al., 2020). During the first stage of evaporation, brine’s 
strontium concentration can be seen to increase. A 
small amount of strontium is absorbed at this stage by 
calcite crystallization. The Sr-concentration in the brine 
drops during the subsequent evaporation stage. This 
has to do with the crystallization of calcium sulfates, 
where the crystal lattice contains most of the strontium 
(Forjanes et al., 2020). Consequently, as shown by 
EDS-peaks (Figure 4) and element analyses high Sr 
(Table 1) in pseudomorphic gypsum is expressed 
by the formation of celestite replacing gypsum. At 
the same time, dissolved Sr2+ entering the lake basin 
usually precipitates together with carbonates in the 
dry period, causing a high Sr/Rb ratio (mean 222) in a 
humid environment (Scheffler et al., 2006; Chen et al., 
2018). Therefore, the high Sr/Rb ratio in the study area 
(Table 1) represents a period when humid climate and 
continental basin conditions dominated. In addition, 
high Rb concentrations and peaks correspond to 
an increase in dolomite content in some gypsum 
(Scholle et al., 1992) (Figure 4 and Table 1). The 
high concentrations of Mo, Co, Ni, and Cu elements 
(Table 1) and the high positive correlations between Zn 
and Fe2O3 (r

2 = 0.83) mark microbiologic origins for 
the trace elements (Table 2) in pseudomorph-gypsums 
may confirm the presence of microorganisms in these 
gypsums and that the lake is in very salty-brackish 
phases (Guo et al., 2019; Patteson et al., 1986). In 
addition, high correlation relationships between Ni, 
Co, Cu, Zn and Mo elements (Table 2) indicate that the 
salinity in the environment is increasing (Oren, 2009). 
The strong positive correlation of Ba-Rb (r2 = 0.95), 

Ni-Co (r2 = 0.90), and Cu-Zn (r2 = 0.72) elements refer 
to their continental origin (Gaillardet et al., 2004). 

According to all these data, the diagenetic ranking 
scheme is as follows: Primary halite is formed with 
the lenticular and tabular gypsum during the syn-
depositional stage, whereas in the early diagenetic 
process (shallow- burial) gypsum replaces primary 
halite (Figure 5h-1). At the same time, depending 
on flooding, halite undergoing dissolution-
recrystallization processes creates a mosaic texture 
image. Gypsum, which later replaced the halite 
cube, is preserved as a pseudomorph during the early 
diagenetic process (shallow- moderate burial) (Figures 
5e and 5h-4). Then, anhydrite, celestine, calcite 
and dolomite are replaced gypsum during the late 
diagenetic stage (exhumation). In addition, some of 
the clays and some siliciclastic minerals were formed 
during the syn-sedimentary process, whereas the other 
part was transported to the basin post-sedimentation 
by fluvials (Figures 5f-g).

5. Conclusion

The Kağızman Basin in Eastern Anatolia had 
a warmer, less humid climate during the Middle 
Miocene, according to this study. In this shallow 
basin, diagenetic processes, periodic flooding, 
drought, and rapid evaporation all had an impact. 
During these diagenetic processes, gypsum was 
replaced by minerals such as halite, anhydrite, 
celestite, dolomite and calcite and secondary minerals 
were formed. The presence of various types of selenite 
and smooth-surfaced, differently-sized pseudomorph 
gypsum suggests that the temperature, salinity and 
pH conditions in the basin have increased, and that 
a variety of waters have been mixing in the basin. 
Additionally, element concentrations in the basin have 
revealed that not only do these support the increase 
in salinity conditions, but there is also a microbial 
effect on them. The development of halite/gypsum 
alternation in a hypersaline environment was caused 
by diagenetic processes that were active during or 
immediately after sedimentation at surface-shallow 
depths. A significant amount of detrital material, 
consisting of feldspar grains and clay minerals, was 
carried to the basin by the surrounding fluvial activity 
during the late diagenetic phase and precipitated 
interbedded the evaporites.
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