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Özet. Bu makale, değişmeli halkalar üzerindeki koatomik modüller ve yarıbasit modüller
hakkında iyi bilinen bazı sonuçları, değişmeli yarıhalkalar üzerindeki koatomik ve yarıbasit
yarımodüllere genelleştirmiştir. Benzer sonuçlara ulaşmadaki temel zorluk, altyarımodülle-
rin sağlaması gereken ekstra özellikleri ortaya çıkarmaktır. Yarı modüllerin çalışılmasında
yarımodüllerin k-altyarımodüllerinin önemli oldukları ispatlanmıştır.†

Anahtar Kelimeler. Yarıhalka, koatomik yarımodüller, yarıbasit yarımodüller, k-tüm-
lenmiş yarımodüller.

Abstract. This paper generalizes some well known results on coatomic and semisimple
modules in commutative rings to coatomic and semisimple semimodules over commutative
semirings. The main difficulty is figuring out what additional hypotheses the subsemimod-
ules must satisfy to get similar results. It is proved that k-subsemimodules of semimodules
are important in the study of semimodules.

Keywords. Semiring, coatomic semimodules, semisimple semimodules, k-supplemented
semimodules.

1. Introduction

Study of semirings has been carried out by several authors since there are numerous

applications of semirings in various branches of mathematics and computer sciences

(see [6],[7] and [9]). It is well known that for a finitely generated module M , every

proper submodule of M is contained in a maximal submodule. As an attempt to

generalize this property of finitely generated modules we have coatomic modules.

In [12], Zöschinger calls a module M coatomic if every proper submodule of M is

contained in a maximal submodule of M . The main part of this paper is devoted to
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extending some basic results of the notion semisimple and coatomic modules from

the theory of modules to the theory of semimodules.

For the sake of completeness, we state some definitions and notations used through-

out. By a commutative semiring we mean an algebraic system R = (R,+, ·) such

that (R,+) and (R, ·) are commutative semigroups, connected by a(b+ c) = ab+ ac

for all a, b, c ∈ R, and there exists 0 ∈ R such that r + 0 = r and r · 0 = 0 · r = 0

for all r ∈ R. Throughout this paper let R be a commutative semiring. A (left)

semimodule M over a semiring R is a commutative additive semigroup which has

a zero element, together with a mapping from R ×M into M (sending (r,m) to

rm) such that (r + s)m = rm + sm, r(m + p) = rm + rp, r(sm) = (rs)m and

0m = r0M = 0M for all m, p ∈ M and r, s ∈ R). Let M be a semimodule over

a semiring R, and let N be a subset of M . We say that N is a subsemimodule of

M , or an R-subsemimodule of M , precisely when N is itself an R-semimodule with

respect to the operations for M (so 0M ∈ N). It is easy to see that if r ∈ R, then

rM = {rm : m ∈ M} is a subsemimodule of M . The semiring R is considered to

be also a semimodule over itself. In this case, the subsemimodules of R are called

ideals of R.

Let M be a semimodule over a semiring R. A k-subsemimodule (subtractive sub-

semimodule) N is a subsemimodule of M such that if x, x+ y ∈ N , then y ∈ N (so

{0M} is a k-subsemimodule of M). A semimodule M is called a simple semimodule

if M has no non-zero k-subsemimodule. A subsemimodule (k-subsemimodule) N of

a semimodule M is called a maximal subsemimodule (maximal k-subsemimodule)

if L is a subsemimodule (k-subsemimodule) of M such that N $ L, then L = M .

A subsemimodule N of a semimodule M over a semiring R is called a partitioning

subsemimodule (= QM -subsemimodule) if there exists a non-empty subset QM of M

such that M =
⋃
{q+N : q ∈ QM} and if q1, q2 ∈ QM then (q1 +N)∩ (q2 +N) 6= ∅

if and only if q1 = q2. It is easy to see that if M = QM , then {0} is a QM -

subsemimodule of M .

Let M be a semimodule over a semiring R, and let N be a QM -subsemimodule

of M . We put M/N =
⋃
{q + N : q ∈ QM}. Then M/N forms a commutative

additive semigroup which has zero element under the binary operation ⊕ defined

as follows: (q1 + N) ⊕ (q2 + N) = q3 + N where q3 ∈ QM is the unique element

such that q1 + q2 + N ⊆ q3 + N . Then M/N is a semimodule over semiring R by

mapping R×M/N into M/N (sending (r, q+N) to rq+N) and zero element q0 +N

with q0 = 0M (see [3]). We call this R-semimodule the residue class semimodule or
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factor semimodule of M modulo N . A semimodule M over a semiring R is called an

M -cancellative semimodule if whenever rm = rn for elements m,n ∈M and r ∈ R,

then m = n.

2. k-Supplement Subsemimodules

In this section we define k-supplement subsemimodules and the k-radical of a semi-

module. We extend some definitions and results of Wisbauer [11] to semimodules

over semirings.

Definition 2.1. Let M be a semimodule over a commutative semiring R.

(a) A subsemimodule N of M is essential (k-essential) in M , abbreviated N EM

(N Ek M), if for every subsemimodule (k-subsemimodule) L of M , N ∩L = 0

implies L = 0.

(b) A subsemimodule K of M is k-superfluous (k-small) in M , abbreviated

K �k M , in case for every k-subsemimodule L of M , K + L = M implies

L = M .

(c) Let {Mλ}Λ be a non-empty family of k-subsemimodules of M . If M =∑
λ∈Λ Mλ and Mλ ∩ (

∑
µ 6=λMµ) = 0 for each λ ∈ Λ. Then M is called

the (internal) direct sum of the k-subsemimodules {Mλ}Λ. This is writ-

ten as M =
⊕

ΛMλ and Mλ are called direct summands of M . If only

Mλ ∩ (
∑

µ6=λMµ) = 0 for each λ ∈ Λ is satisfied, then {Mλ}Λ is called an

independent family of k-subsemimodules. It is easy to see that, if M is a

direct sum of the k-subsemimodules {Mλ}Λ, then 0M has a unique represen-

tation. A semimodule M is called indecomposable if M 6= 0 and it cannot be

written as a direct sum of non-zero k-subsemimodules.

(d) Let N be a subsemimodule of M . If N ′ is a subsemimodule of M maximal

with respect to N ∩ N ′ = 0, then we say that N ′ is an M -complement of

N . By Zorn’s Lemma, we can show that every subsemimodule of M has an

M -complement which is a k-subsemimodule of M .

Remark 2.2. For any infinite family {Ni}i∈Λ of subsemimodules of M , a sum is

defined by
∑

λ∈ΛNλ = {
∑r

k=1 nλk |r ∈ N , λk ∈ Λ, nλk ∈ Nλk}. This is a subsemi-

module in M . It is easy to see that every sum of k-subsemimodules is also a k-

subsemimodule of M (see [3, Lemma 2]).
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Lemma 2.3 (Semimodularity Law). Let M be a semimodule over semiring R and

let N and K be subsemimodules of M . Let L be a k-subsemimodule of M with

N ⊆ L. Then L ∩ (N +K) = N + (L ∩K).

Proof. Let x ∈ N + (L ∩K). Then x = n+ a for some n ∈ N ⊆ L and a ∈ L ∩K.

Therefore x = n + a ∈ L ∩ (N + K). Now, let y ∈ L ∩ (N + K). Then y = n′ + k

for some n′ ∈ N and k ∈ K. Hence k ∈ L, since L is a k-subsemimodule of M .

Therefore y = n′ + k ∈ N + (L ∩K). �

Proposition 2.4. Let M be a semimodule over a semiring R and N and N ′ be

k-subsemimodules of M with N ′ is a M-complement of N . Then,

(i) N ⊕N ′ EM .

(ii) If N ′ be a QM -subsemimodule of M , then (N ⊕N ′)/N ′ Ek M/N ′.

Proof. (i) Let 0 6= L be a subsemimodule of M with (N ⊕ N ′) ∩ L = 0. Now, we

show that N ∩ (N ′ ⊕ L) = 0. Let n = n′ + l for some n ∈ N , n′ ∈ N ′ and l ∈ L.

Therefore l ∈ N ⊕ N ′, since n, n′ ∈ N ⊕ N ′ and N ⊕ N ′ is a k-subsemimodule of

M by [4, Lemma 2]. Hence l ∈ (N ⊕N ′) ∩ L = 0 and n = n′ ∈ N ∩N ′ = 0. Then

N ∩ (N ′ ⊕ L) = 0 that is a contradiction with the maximality of N ′. Hence L = 0

and N ⊕N ′ EM .

(ii) Let N ′ be a QM -subsemimodule of M . Then (N ⊕N ′)/N ′ is a k-subsemimodule

of M/N ′ by [4, Theorem 3]. Let 0 6= L/N ′ be a k-subsemimodule of M/N ′. If

L ∩ (N ⊕ N ′) = N ′, then by semimodularity law, N ′ ⊕ (L ∩ N) = N ′. Therefore

L ∩ N = 0 and by maximality of N ′, L = N ′, that is a contradiction. So assume

that x ∈ L ∩ (N ⊕ N ′) and x /∈ N ′. Since N ′ is a QM ∩ L-subsemimodule of L

and a QM ∩ (N ⊕ N ′)-subsemimodule of N ⊕ N ′ by [2, Lemma 3.4], hence x ∈
(q1 +N) ∩ (q2 +N) for some q1 ∈ QM ∩ L and q2 ∈ QM ∩ (N ⊕N ′). Since x /∈ N ′,
then q1, q2 /∈ N ′. Therefore q1 = q2, since N ′ is a QM -subsemimodule of M . Then

q1 +N = q2 +N ∈ L/N ′ ∩ (N ⊕N ′)/N ′ 6= 0. �

Proposition 2.5. Let M be a semimodule over a semiring R and U be a k-sub-

semimodule of M and let M = U + V for some subsemimodule V of M . If V ′

is a maximal k-subsemimodule of V , then U + V ′ = M or U + V ′ is a maximal

k-subsemimodule of M containing U .

Proof. Let U + V ′ 6= M and L be a k-subsemimodule of M with U + V ′ ⊆ L $M .

Set L′ = L ∩ V . Then L′ = V ′ or L′ = V since V ′ is a maximal subsemimodule of
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V . But L′ 6= V since L 6= M . Therefore L′ = V ′. Let m ∈ L Therefore m = u + v

for some u ∈ U and v ∈ V . Then v ∈ V ∩L = L′ = V ′ since L is k-subsemimodule.

Thus m ∈ U + V ′ and L = U + V ′. Then U + V ′ is a maximal k-subsemimodule of

M by [4, Lemma 2]. �

Proposition 2.6. Let M be a semimodule and V be a k-subsemimodule of M . If

P is a maximal k-subsemimodule of M , then V ⊆ P or P ∩ V is a maximal k-

subsemimodule of V .

Proof. Let V * P . Then P ∩ V is a proper k-subsemimodule of V . Now, let

P ∩ V ⊆ K for some proper k-subsemimodule K of V . Then P + K is a k-

subsemimodule of M containing P . If P + K = P , then K ⊆ P this implies that

K = P ∩ V . If P + K = M , then by semimodularity law V = K + (P ∩ V ) = K

that is a contradiction. Hence P ∩ V is a maximal k-subsemimodule of V . �

Definition 2.7. Let M be a semimodule over semiring R and let U be a subsemi-

module of M . A proper k-subsemimodule V of M is called a k-supplement of U

in M if V is minimal element in the set of proper k-subsemimodules L of M with

U + L = M .

Lemma 2.8. Let M be a semimodule over a semiring R and U be a k-subsemimodule

of M . If V is a k-subsemimodule of M , then V is a k-supplement of U if and only

if M = U + V and U ∩ V �k V .

Proof. Let (U ∩ V ) + K = V for some k-subsemimodule K of V . Then M =

U + V = U + (U ∩ V ) + K = U + K. Then V = K by the minimality of V . Now

let M = U + V and U ∩ V � V . Let M = U +K for some k-subsemimodule K of

V . Then by semimodularity law, V = K + (U ∩ V ) and since U ∩ V �k V , then

V = K. Thus V is a supplement of U . �

Definition 2.9. Let M be a semimodule over semiring R. The k-subsemimodule⋂
P⊆M{P |P is a maximal k-subsemimodule of M} of M , is called the k-radical of

M , written as Radk(M).

Proposition 2.10. Let M be a semimodule over a semiring R and U be a proper

k-subsemimodule of M . If V is a k-supplement of U in M , then

(i) If M is a finitely generated semimodule, then V is also finitely generated.

(ii) If Radk(V ) = V , then V ⊆ Radk(M).
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Proof. (i) Let {x1, x2, ..., xn} be a generating set of M . Then for each i = 1, 2, ..., n,

there exists ui ∈ U and vi ∈ V such that xi = ui + vi. Set V ′ the subsemimodule

of V generated by {v1, v2, ..., vn}. Hence M = V ′ + U and by the minimality of V ,

this means V = V ′.

(ii) Let P be a maximal k-subsemimodule of M . If V * P , then P ∩V is a maximal

k-subsemimodule of V by Proposition 2.6. Since Radk(V ) = V , then P ∩ V = V

and hence V ⊆ P . Therefore V ⊆ Radk(M). �

3. Coatomic Semimodules

In this section we define coatomic semimodules and we introduce their relations with

some other semimodules.

Definition 3.1. Let R be a semiring. The R-semimodule M is called coatomic if

every proper k-subsemimodule of M is contained in a maximal k-subsemimodule.

Theorem 3.2. Every finitely generated semimodule is coatomic.

Proof. Let M be a finitely generated semimodule and N be a k-subsemimodule of

M . Let ∆ be the set of all proper k-subsemimodules M ′ of M with N ⊆M ′. Since

N is a k-subsemimodule, then ∆ is not empty. Of course, the relation of inclusion,

⊆ is a partial order on ∆. Let {Li}i∈I be a chain of elements of ∆ for some index

set I. Set L =
⋃
i∈I Li. It is clear that L is a subsemimodule of M and N ⊆ L. Let

x, x+ y ∈ L. Therefore x ∈ Ls and x+ y ∈ Lk for some element s, k ∈ I. Without

loss of generality, we can assume that Ls ⊆ Lk. Therefore y ∈ Lk ⊆ L, since Lk is a

k-subsemimodule of M . Hence L is a k-subsemimodule of M . Now, we show that

L 6= M . Let M =
∑n

i=1Rmi and L = M . Therefore mi ∈ Lki for some ki ∈ I for

each i = 1, 2, ..., n. Choose j ∈ {k1, ..., ks} such that Lj is the biggest element in

{Lk1 , ..., Lks}. Therefore mi ∈ Lj for each i = 1, 2, .., n. Hence Lj = M , that is a

contradiction. Then by using Zorn’s Lemma ∆ has a maximal element, which is a

maximal k-subsemimodule of M containing N . �

Definition 3.3. Let M be a semimodule over semiring R. Then M is called a

k-supplemented semimodule, if every k-subsemimodule of M has a k-supplement in

M .

Proposition 3.4. Let M be a k-supplemented semimodule and Radk(M) � M .

Then M is coatomic.
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Proof. Let U be a proper k-subsemimodule of M and let V be a k-supplement of

U . If Radk(V ) = V , then V ⊆ Radk(M) by Proposition 2.10. Then V �M by [10,

Proposition 3]. This implies that M = U +V = U that is a contradiction. So V has

a maximal k-subsemimodule, say V ′. Then V ′ + U is a maximal k-subsemimodule

of M containing U by Proposition 2.5, since V ′ 6= V and V is a k-supplement of U .

So M is coatomic. �

Proposition 3.5. Let M be a coatomic semimodule over a semiring R. Then

Radk(M)�k M .

Proof. Let M = Radk(M) + L for some k-subsemimodule L of M . If L 6= M , then

there is a maximal k-subsemimodule P of M containing L. Since Radk(M) ⊆ P , so

M = P is a contradiction. Thus L = M . �

Proposition 3.6. Let M be a semimodule over a semiring R and let N be a QM -

subsemimodule of M . Then the following assertions hold:

(i) If M is a coatomic semimodule, then M/N is also coatomic.

(ii) If N and M/N are coatomic, then M is coatomic.

Proof. (i) Let K/N be a proper k-subsemimodule of M/N . Therefore K is a proper

k-subsemimodule of M by [2, Theorem 3.6]. Since M is coatomic, there exists a

maximal k-subsemimodule P of M with N ⊆ K ⊆ P . It is easy to see that P/N is

a maximal k-subsemimodule of M/N by [2, Theorem 3.5].

(ii) Let N and M/N be coatomic and let X be a proper k-subsemimodule of M . If

X+N 6= M , then (X+N)/N is a proper k-subsemimodule of M/N by [4, Theorem

3] and by assumption, there is a maximal k-subsemimodule L/N of M/N containing

(X + N)/N . Thus X and X + N is contained in maximal k-subsemimodule of M .

If X + N = M , then X ∩ N is a proper k-subsemimodule of N since X 6= M . So

X∩N is contained in a maximal k-subsemimodule N ′ of N . So X+N ′ is a maximal

k-subsemimodule of M by Proposition 2.5. Then M is coatomic. �

Theorem 3.7. Let M be a semimodule over a semiring R and let N be a QM -

subsemimodule of M . If N is a small subsemimodule of M , then M is a coatomic

semimodule if and only if M/N is a coatomic semimodule.

Proof. If M is a coatomic semimodule, then M/N is also coatomic by Proposition

3.6. Suppose that M/N is a coatomic semimodule and N is a small subsemimod-

ule of M . Let L be a proper k-subsemimodule of M . If N ⊆ L, then L/N is
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a k-subsemimodule of M/N . By assumption L/N is contained in a maximal k-

subsemimodule P/N of M/N . Then L is contained in maximal k-subsemimodule

P of M . If not, Then (L + N)/N is a k-subsemimodule of M/N by [4, Theorem

3]. If (L + N)/N = M/N then L + N = M by [4, Theorem 4] and since N is a

small subsemimodule of M , then M = L that is a contradiction. So (L + N)/N

is a proper k-subsemimodule of M/N . Thus (L + N)/N is contained in a max-

imal k-subsemimodule of M/N . Thus L and L + N is contained in a maximal

k-subsemimodule of M . Then M is coatomic. �

4. Semisimple Semimodules

In this section we define semisimple semimodules and we show that every semisimple

semimodule is a coatomic semimodule.

Definition 4.1. Let {Nα}α∈Λ be an indexed set of simple k-subsemimodules of semi-

module M over a semiring R. If M is a direct sum of this set, then

M =
⊕

α∈ΛNα is a semisimple decomposition of M . A semimodule M is said

to be semisimple in case it has a semisimple decomposition.

Proposition 4.2. Let {Nλ}Λ be a family of simple k-subsemimodules of the R-

semimodule M with M =
∑

ΛNλ. Then for every proper k-subsemimodule K of M ,

there is an index set ΛK ⊂ Λ such that M = K ⊕ (
⊕

ΛK
Nλ).

Proof. Let K be a proper subtractive subsemimodule of M . If K ∩ Nλ 6= 0 for

each λ ∈ Λ. Then K ∩ Nλ = Nλ for each λ ∈ Λ, since Nλ is simple and K ∩ Nλ

is a subtractive subsemimodule of Nλ by [4, Lemma 2]. This implies that K = M .

Now, choose a subset ΛK ⊂ Λ maximal with respect to the property that {Nλ}ΛK

is an independent family of simple k-subsemimodules with K ∩
∑

ΛK
Nλ = 0. Then

L = K +
∑

ΛK
Nλ is a direct summand, that is, L = K ⊕ (

⊕
ΛK

Nλ). By Remark

2.2, L is a k-subsemimodule of M . It suffices to show that L = M . Since L ∩ Nλ

is a k-subsemimodule of Nλ and Nλ is simple for each λ ∈ Λ, then L ∩ Nλ = 0 or

L ∩ Nλ = Nλ. If for some λ ∈ Λ \ ΛK , L ∩ Nλ = 0, this is a contradiction to the

maximality of ΛK . Hence we get Nλ ⊆ L for all λ ∈ Λ and L = M . �

Example 4.3. In a semimodule every cyclic subsemimodule need not be a k-

subsemimodule. Let R = {0, 1, u} be the idempotent semiring in which 1 + u =

u+ 1 = u and M = R as an R-semimodule. Then cyclic subsemimodule N = {0, u}
is not k-subsemimodule, since 1 + u = u ∈ N but 1 /∈ N [7, Example 6.4].
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Definition 4.4. Let M be a semimodule over a semiring R. Then M is called a

subtractive semimodule, if every cyclic subsemimodule of M is a k-subsemimodule.

Example 4.5. Let R be a partitioning semiring [5, Definition 2.2] and let M = R as

an R-semimodule. Then M is a k-semimodule, since every partitioning semimodule

is a k-subsemimodule.

Theorem 4.6. Let M be a subtractive semimodule. Then the following properties

are equivalent:

(i) M is semisimple.

(ii) M is a sum of simple k-subsemimodules.

(iii) M has no proper essential k-subsemimodule.

(iv) Every k-subsemimodule of M is a direct summand.

Proof. (i) ⇔ (ii) by Lemma 4.2.

(i) ⇒ (iv) by Lemma 4.2.

(iii) ⇒ (iv): Let N be a k-subsemimodule of M and N ′ be a k-subsemimodule of

M which is an M -complement of N , then by Proposition 2.4, N ⊕N ′ EM . Hence

N ⊕N ′ = M .

(iv) ⇒ (iii) is clear.

(iv) ⇒ (ii): Let 0 6= m ∈M . Then Rm is a k-subsemimodule of M by assumption.

So Rm has a maximal k-subsemimodule U , by Proposition 3.2. It is easy to see that

U is a k-subsemimodule of M . Then M = U ⊕ V ′ for some k-subsemimodule V ′ of

M . Set V = V ′ ∩ Rm, then V is a k-subsemimodule of M by [4, Lemma 2]. We

show that V is a simple k-subsemimodule (minimal k-subsemimodule) of M . Let

K be a k-subsemimodule of V . Therefore U ⊆ U + K ⊆ Rm. If U + K = U , then

K ⊆ U ∩V ⊆ U ∩V ′ = 0. If U +K = Rm, then for every v ∈ V , v = u+k for some

k ∈ K and u ∈ U . Since V is a k-subsemimodule and K ⊆ V , then u ∈ V ∩ U = 0.

Then v = k ∈ K, hence V = K. So V is a simple k-subsemimodule of M . Therefore

every non-zero subsemimodule of M contains a simple k-subsemimodule. Let L be

the sum of all simple k-subsemimodules of M . Then L is a k-subsemimodule of M

and there is a k-subsemimodule L′ of M with M = L ⊕ L′. Since L′ cannot have

any simple k-subsemimodule, it must be zero. �

Lemma 4.7. Let M be a semisimple semimodule over semiring R. Then every

k-subsemimodule of M is semisimple.
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Proof. Let M =
⊕

λ∈Λ Nλ such that Nλ is a simple k-subsemimodule of M for every

λ ∈ Λ and let K be a k-subsemimodule of M . Then there is an index set ΛK ⊂ Λ

such that M = K ⊕ (
⊕

ΛK
Nλ) by Proposition 4.2. Set I = Λ \ ΛK . We show that

K =
⊕

λ∈I Nλ. Let λ ∈ I. Then K ∩ Nλ 6= 0 and since Nλ is simple we have

K ∩Nλ = Nλ. Therefore
⊕

λ∈I Nλ ⊆ K. Now, let x ∈ K. Then x = a+ b for some

a ∈
⊕

ΛK
Nλ and b ∈

⊕
I Nλ. Then b ∈ K and since K is a k-subsemimodule of M ,

we have a ∈ K. Thus a ∈ K ∩ (
⊕

ΛK
Nλ) = 0. Therefore x = b ∈

⊕
I Nλ. Then

K =
⊕

I Nλ. �

Definition 4.8. Let M be a semimodule over a semiring R. As socle of M , we

denote the sum of all simple (minimal) k-subsemimodules of M . If there are no

simple k-subsemimodules in M , we put Soc(M) = 0

Proposition 4.9. Let M be a subtractive semimodule. Then

Soc(M) =
∑
{K | K is a simple k-subsemimodule of M}

=
⋂
{L | L is an essential k-subsemimodule of M}.

Proof. Let L be an essential k-subsemimodule of M . Then for every simple k-

subsemimodule K of M , we have 0 6= L ∩ K. So L ∩ K = K, since L ∩ K is

a k-subsemimodule and K is simple. Then K ⊆ L. This implies that Soc(M) is

contained in every essential k-subsemimodule. Put L0 =
⋂
{L | L is a subtractive

essential subsemimodule of M}, so L0 is a k-subsemimodule of M . We show that

L0 is semisimple. Let K be a k-subsemimodule of L0 and K ′ be a M -complement

of K which is a k-subsemimodule of M . Then K ⊕K ′ EM by Proposition 2.4 and

consequently L0 ⊆ K ⊕K ′. By semimodularity, this yields L0 = L0 ∩ (K ⊕K ′) =

K ⊕ (L0 ∩ K ′). Therefore K is a direct summand of L0 and L0 is semisimple by

Theorem 4.6. Hence L0 ⊆ Soc(M). �

Theorem 4.10. Let M be a semisimple semimodule. Then M is a coatomic semi-

module.

Proof. Let M =
⊕

λ∈ΛMλ such that Mλ is a simple k-subsemimodule of M for

every λ ∈ Λ and let N be a k-subsemimodule of M . Then there is an index set

ΛN ⊂ Λ such that M = N ⊕ (
⊕

λ∈ΛN
Mλ) by Proposition 4.2. Since N 6= M , then

ΛN 6= ∅. Let β ∈ ΛN . Then L = N ⊕ (
⊕

λ∈ΛN\{β}Mλ) is a k-subsemimodule of M

and M = L⊕Mβ. We show that L is a maximal k-subsemimodule of M . Let L′ be

a k-subsemimodule of M with L ⊆ L′ $ M . Then L′ ∩Mβ = 0. Let x ∈ L′. Then
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x = y + z for some y ∈ L and z ∈ Mβ. Therefore z ∈ L′ ∩Mβ = 0 since L′ is a

k-subsemimodule. Thus L = L′. Therefore L is a maximal k-subsemimodule of M

and N ⊆ L. �

Theorem 4.11. Let M be a semimodule. Then M is semisimple if and only if M

is coatomic and every maximal k-subsemimodule of M is a direct summand.

Proof. (⇒) Let M be a semisimple semimodule. Then M is coatomic and every

maximal k-subsemimodule of M is a direct summand by Theorem 4.6 and Proposi-

tion 4.10.

(⇐) Let Soc(M) 6= M . Since Soc(M) is a k-subsemimodule of M and M is coatomic,

then Soc(M) is contained in a maximal k-subsemimodule P of M . By assumption

there is a k-subsemimodule K of M such that M = P ⊕K. Now we show that K

is a simple k-subsemimodule of M . Let K0 be a non-zero k-subsemimodule of K.

If P + K0 = P , then K0 ⊆ P ∩ K = 0 that is a contradiction. So P + K0 = M .

Therefore by semimodularity K = K0 + (P ∩ K) = K0. Thus K is a simple k-

subsemimodule of M and K ⊆ Soc(M) ⊆ P . Then P = M that is a contradiction.

So, Soc(M) = M and M is semisimple. �
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