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I. INTRODUCTION 

The dawn of the antibiotic era marked a pivotal moment in human history.  Antibiotics, those wonder drugs capable 

of combating bacterial infections that once ravaged humanity, revolutionized healthcare. Their introduction 

dramatically reduced mortality rates and ushered in an era of improved global health. Antibiotics are among the 

most widely used drugs worldwide. They are natural, synthetic, or semi-synthetic complex molecules capable of 

killing microorganisms or inhibiting their metabolic activities. Due to different functional groups in their chemical 

structures, these biological agents have antibacterial, antiparasitic, and antifungal effects. Antibiotics are drugs 

specifically designed to treat infections in humans and animals. The first antibiotics were natural compounds 

produced by microorganisms, such as penicillin, from the culture of Penicillium notatum. Antibiotics can be 

classified in three distinct ways. Based on their chemical structure, antibiotics can be classified as beta-lactams, 

sulfonamides, aminoglycosides, macrolides, tetracyclines, and fluoroquinolones. According to their spectrum of 

action, antibiotics can also be categorized into narrow-spectrum, broad-spectrum, and extended-spectrum 

antibiotics. Antibiotics can also be classified according to their mechanism of action. These mechanisms include 

inhibition of cell wall synthesis, alteration of cell membranes, inhibition of protein synthesis, inhibition of nucleic 

acid synthesis, competitive antagonism, and anti-metabolite activity [1-5]. Since Fleming's discovery of penicillin, 

more than 250 types of antibiotics have been produced worldwide. This variation allows antibiotics to effectively 

combat different types of bacterial species and treat different infections. Antibiotics are used extensively in various 

fields, such as medicine, veterinary medicine, agriculture, and aquaculture. Their main purpose is to combat 

A R T I C L E  I N F O 
 

A B S T R A C T  

Article history: 
Received 25 April 2024 
Received in revised form 3 June 2024 
Accepted 24 June 2024 

Available online 

 Our reliance on antibiotics, life-saving medications that combat bacterial infections, has inadvertently 
introduced them into the environment. This paper explores the environmental consequences of this unintended 
release, focusing on the persistence of antibiotics and their disruption of ecological balance. We delve into the 
rise of antibiotic-resistant bacteria as a major public health concern linked to this environmental 
contamination. Recognizing the limitations of existing degradation techniques, the paper emphasizes the need 
for innovative solutions. We explore the potential of novel materials like engineered nanoparticles and biochar 
alongside investigating unconventional degradation mechanisms found in extreme environments. Ultimately, 
the paper underscores the importance of collaborative research efforts and the development of sustainable 
solutions to mitigate the environmental impact of antibiotics and safeguard the future effectiveness of these 
critical medications. 

Keywords: 
Antibiotic degredation 
Elimination pathways of antibiotics 
Removal methods of antibiotics 
Environmentel impact of antibiotics 

 

 
  

mailto:dbulut@pau.edu.tr
https://orcid.org/0000-0001-6691-7813
https://orcid.org/0000-0002-0404-2828
https://orcid.org/0000-0001-5308-8884


 

J. Innovative Eng. Nat. Sci., vol. 4, no.2, pp. 684-698, 2024.                                                       Antibiotic degradation 
 

685 
 

bacterial infections and protect human, animal, and plant health. However, as with many technological 

advancements, this triumph comes with unforeseen environmental consequences [6-10]. 

Unfortunately, our reliance on antibiotics has led to their unintended release into the environment.  Improper 

disposal of unused medications, often due to a lack of public awareness or inadequate infrastructure, allows these 

life-saving drugs to enter landfills and wastewater streams.  Furthermore, even after a course of antibiotics, residual 

amounts are excreted through human waste.  These combined factors contribute to a growing problem – the 

presence of persistent antibiotic pollutants in soil and water sources [11, 12]. 

Antibiotics have a multifaceted environmental impact.  Unlike many natural compounds, antibiotics often exhibit 

high persistence, meaning they resist natural degradation processes and linger in the environment for extended 

periods.  This persistence disrupts the delicate balance of microbial communities within soil and water ecosystems.  

These communities play essential roles in nutrient cycling, decomposition, and maintaining overall ecosystem 

health.  The presence of antibiotics can disrupt these vital functions, leading to unforeseen consequences for entire 

ecological systems [13, 14]. 

The rise of antibiotic-resistant bacteria is perhaps the most concerning consequence of environmental antibiotic 

contamination [14, 15]. The specter of antibiotic resistance presents a chilling possibility – a return to the pre-

antibiotic era where even minor infections could prove fatal.  Addressing this issue requires a multi-pronged 

approach.  Stricter regulations on antibiotic use in agriculture and medicine are crucial to minimizing 

environmental release.  Research and development of new antibiotics with improved degradability is another 

crucial step.  Furthermore, public awareness campaigns can promote responsible antibiotic use and proper disposal 

of unused medications [16-18]. 

By acknowledging the environmental impact of antibiotics and taking proactive steps to mitigate it, we can ensure 

that these life-saving drugs continue to be effective for generations to come.  The fight against infectious disease 

is a continuous battle, and safeguarding the effectiveness of antibiotics is an essential front in this ongoing war. 

This review focuses on the environmental problems caused by antibiotic usage and analyzes the degradation of 

antibiotic pollution by natural and enhanced methods.  

 

II. ENVIRONMENTAL IMPACT OF ANTIBIOTICS 

Antibiotics are one of the most important pollutants, and they have been used increasingly in various sectors since 

penicillin was discovered in 1929 [19-21]. Global antibiotic consumption is predicted to be between 100,000 and 

200,000 tons per year [22, 23]. 

The World Health Organization (WHO) report on the medical use of antibiotics indicates that total consumption 

in the 65 countries monitored was 14,000 tons, with the highest consumption observed in Brazil, Turkey, and Iran. 

Within the European region, the amount of antibiotic usage in 2015, defined by the daily defined dose (DDD) rate, 

was 19.5 per 1000 inhabitants per day, with the greatest values in Turkey, Greece, and Serbia, with values of 38.2, 

33.9, and 31.6, respectively [24]. Conversely, data reported by the European Center for Disease Prevention and 

Control show that overall antibiotic usage in the European Economic Area in 2021 averaged 16.4 DDD, ranging 
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from 8.3 in the Netherlands to 25.7 in Romania, indicating the likely overuse of antibiotics in several regions of  

Europe [25, 26]. 

Antibiotics can treat bacterial infections and kill or inhibit bacterial growth, which promotes animal growth and 

improves nutritional performance [27, 28]. Unfortunately, due to the low absorption capacity of animal and human 

intestines, approximately 30-90% of significant antibiotics are excreted in urine or feces [27, 29]. In 2013, humans 

and animals in China excreted about 54,000 tons of antibiotics, of which over 99% were released into the 

ecosystem [30]. Non-metabolized antibiotics have been introduced into soil and water via wastewater irrigation 

and through animal manure and sludge manure [31, 32]. Antibiotics have been extensively found in soil and water 

systems such as agricultural soils [33, 34], urban green spaces [35], forest lands [36], surface water [37 ,38], 

groundwater [39], and seawater [40]. Figure 1 shows pathways for antibiotic residues into the environment. 

Antibiotics in the environment can affect the environment and human health through microbial growth inhibition, 

poisonous to algae and plants, and the evolution of antibiotic resistance [2, 41]. The presence of low levels of 

antibiotics in the environment aids in the spread of antibiotic-resistant bacteria and antibiotic-resistance genes and 

increases the resistance of pathogenic bacteria. The uptake of antibiotics and antibiotic-resistance genes from the 

environment through food chains poses serious threats to human health, further affecting human gut health and the 

effectiveness of treatment against bacterial infections. Many derivative compounds (TPs) resulting from the natural 

degradation of antibiotics, technical water treatment, and metabolism of humans and animals may confer 

antimicrobial resistance and toxicity due to their structural similarity to the main compounds [42]. 

 

 

Figure 1. Pathways for antibiotic residues into the environment 
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Perhaps the most concerning consequence of environmental antibiotic contamination is the rise of antibiotic-

resistant bacteria.  The constant existence of these drugs in the environment exerts a selective pressure on bacterial 

populations.  Bacteria with mutations or genetic adaptations that allow them to avoid the effects of antibiotics are 

more likely to survive and reproduce.  Over time, this selection pressure leads to the emergence and propagation 

of antibiotic-resistant bacteria, commonly referred to as "superbugs" [9, 43-45]. 

These superbugs pose a significant threat to public health as they render previously effective antibiotics useless in 

combating infections.  Once easily treatable, simple infections can become life-threatening when traditional 

antibiotic therapies fail.  This scenario could potentially lead to a return to the pre-antibiotic era, where even minor 

infections could prove fatal.  The potential societal and economic costs associated with widespread antibiotic 

resistance are staggering, highlighting the urgency of addressing this issue [46-48]. 

In Organization for Economic Cooperation and Development (OECD) countries, antibiotic resistance rates, 

including combinations of eight different antibiotics and bacteria, are estimated to have increased from 3%-33% 

in 2005 to 3%-39% in 2015. If the current trends in resistance and associated factors persist, this range is estimated 

to increase by 6-40% by 2030. Figure 2 shows the projected rates of antibiotic resistance for some OECD countries 

by 2030. In addition, between 2005 and 2015, the projected ratio of infections caused by resistant bacteria 

increased considerably faster than predicted for 2015-2030. However, these averages conceal significant variations 

across countries and among antibiotic-bacterium combinations [49]. 

 

 
Figure 2. The projected rates of antibiotic resistance for some OECD countries for eight antibiotic-bacterium combinations in 2005, 2015, and 

2030 (49) 

 

Addressing the environmental impact of antibiotics and the subsequent rise of antibiotic resistance requires a 

multifaceted approach.  On the regulatory front, stricter control of antibiotic use in agriculture and medicine is 
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crucial to minimize environmental release.  The agricultural sector, in particular, relies heavily on antibiotics for 

prophylactic use in livestock, contributing significantly to environmental contamination.  Developing and 

implementing stricter regulations on the use of antibiotics in agriculture, coupled with the exploration of alternative 

treatments and preventative measures, is essential [50-52]. 

In medicine, promoting responsible antibiotic use through targeted education campaigns for healthcare 

professionals and the public alike is crucial. Overprescription and misuse of antibiotics in human healthcare 

contribute to resistance development. Educating healthcare professionals on appropriate antibiotic prescribing 

practices and encouraging patients to complete prescribed antibiotic courses are essential steps in tackling this 

issue [53-56]. 

The scientific community plays a vital role in developing new strategies to combat antibiotic resistance.  Research 

and development efforts should focus on novel antibiotics with improved degradability, minimizing their 

persistence in the environment.  Additionally, exploring alternative treatment options such as bacteriophages 

(viruses that specifically target bacteria) and immunomodulatory therapies holds promise for future generations of 

antibacterial treatments [57-59]. 

Finally, fostering international collaboration is essential to effectively address the problem of antibiotic resistance.  

The spread of resistant bacteria transcends national borders, highlighting the need for coordinated efforts across 

the globe.  Sharing best practices on antibiotic stewardship, promoting research collaboration, and facilitating 

knowledge transfer are all crucial steps toward mitigating this global threat. The story of antibiotics serves as a 

poignant reminder that even the most revolutionary medical advancements can have unforeseen consequences.  

Our collective reliance on these life-saving drugs has inadvertently led to their release into the environment, 

disrupting ecosystems and fueling the emergence of antibiotic-resistant bacteria.  Addressing this complex issue 

requires a multi-pronged approach that encompasses stricter regulations, responsible antibiotic use practices, and 

ongoing research and development.  By acknowledging the environmental impact of antibiotics and taking 

proactive steps to mitigate it, we can ensure that these wonder drugs continue to be effective for generations to 

come.  The fight against infectious disease is a continuous battle, and safeguarding the effectiveness of antibiotics 

is an essential front in this ongoing war [58, 60]. 

In the battle against antibiotic resistance, the 'One Health' policy of the WHO is of critical importance. One Health 

is an integrated approach aimed at sustainably balancing and optimizing the health of people, animals, and 

ecosystems. This policy recognizes the direct link between people, animals, and the environment. It aims to address 

various health issues, such as the spread of infectious diseases, antimicrobial resistance, food and water security. 

The policy also elaborates on the need for monitoring and surveillance systems to prevent and control health 

threats. Additionally, WHO, in collaboration with the Group of 20 (G20) countries, will promote international 

cooperation and knowledge transfer to guide the implementation of the One Health policy. Global efforts to use 

antibiotics responsibly and reduce their environmental impact will thus set the course for the future of infectious 

disease management. Antibiotics will remain the cornerstone of global health [61]. 
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III. DEGRADATION TECHNIQUES OF ANTIBIOTICS 

Antibiotics are ionizable compounds and can exist in nature as neutral or charged (positive or negative). Because 

of their different chemical properties, antibiotics have different absorption and degradation mechanisms in soil. 

There are many biotic and abiotic factors that influence the rate of degradation of these compounds in nature. 

Therefore, the half-life and degradation mechanism of each antibiotic compound in the soil is different. For 

example, β-lactams are more sensitive to abiotic degradation than macrolides or sulfonamides, while quinolones 

and tetracyclines are more sensitive to photodegradation [2, 62-64]. 

Unfortunately, traditional wastewater treatment methods are not adequate for the removal of antibiotics with high 

polarity. Hence, many different techniques have been or are being tried by researchers to degrade the 

environmental impact of antibiotics. These include physical, chemical and biological processes, each of which has 

its own advantages and disadvantages. In this review article, some of the widely used and high-potential 

degradation techniques for the degradation of antibiotics are discussed.  Table 1 summarizes of the advantages and 

disadvantages of the antibiotic degradation methods discussed in this review. 

Microbial augmentation offers a promising strategy for remediating contaminated sites. This technique involves 

the deliberate introduction of specifically chosen microbial strains known to possess potent antibiotic degradation 

capabilities.  These strains are equipped with specialized enzymes that can efficiently break down targeted 

antibiotics.  By introducing these "super degraders" into contaminated soil or water, the overall degradation rate 

can be significantly accelerated. However, biodegradation of antibiotics with the help of microbial strains depends 

on the type of antibiotic, the microbial species used, temperature, wastewater components, carbon and nitrogen 

sources present in the environment [65]. In recent years, many microbial species capable of antibiotic degradation 

have been isolated. For example, in a laboratory setting, the antibiotic 10 mg/L sulfamethoxazole was completely 

inhibited within three days using the bacterium Shewanella sp. MR-4 [66]. In another study using hospital 

wastewater, 5 mg/L Ciprofloxacin antibiotic was inhibited by 74% in fourteen days using Bacillus sp. (KM504129) 

bacteria [67]. However, the implementation of microbial augmentation requires careful consideration and 

planning.  The introduction of foreign microbial strains into an existing ecosystem can disrupt the delicate balance 

of native microbial communities.  Furthermore, the potential for horizontal gene transfer exists, whereby antibiotic 

resistance genes harbored by the introduced strains could be transferred to resident bacteria, potentially 

exacerbating the problem of resistance.  To make sure this method works and lasts, strict criteria must be used to 

choose the strains that are introduced and close attention must be paid to how they affect the ecosystem [68-70]. 

Another area of exploration involves the use of enzymes for targeted antibiotic degradation.  Enzymes, nature's 

biological catalysts, can be harnessed to break down specific antibiotics with remarkable efficiency.  One such 

enzyme receiving significant attention is laccase, which exhibits the ability to degrade a broad spectrum of 

antibiotics.  By introducing laccase to contaminated environments, the breakdown of targeted antibiotics can be 

significantly accelerated. In a study investigating the degradation mechanisms of thirty-eight different antibiotics, 

the laccase enzyme produced by T. Versicolor was used. In the study, 96.6% degradation rate was obtained for 

amoxicillin and 88.6% degradation rate for ampicillin, which are included in the penicillin group, while this rate 

was reported to vary between 50.1% and 59.4% for ofloxacin, ciprofloxacin, enrofloxacin, danofloxacin and 

marbofloxacin antibiotics included in the fluoroquinolone group. Finally, it was found that this rate varied between 
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26.0% and 48.4% for antibiotics included in the tetracycline group, such as oxytetracycline, chlortetracycline, 

doxycycline, and tetracycline. These differences between the removal rates are thought to be due to the molecular 

structure of antibiotics [71, 72]. However, the use of enzyme-based techniques also presents limitations.  The 

breakdown products generated from antibiotic degradation by enzymes like laccase might possess novel properties, 

including residual antimicrobial activity.  These breakdown products could contribute to the overall pool of 

environmental contamination, negating the intended benefits of remediation.  Therefore, a thorough understanding 

of the breakdown products and their potential environmental impact is crucial before the widespread application 

of this technique.  Furthermore, the cost-effectiveness and scalability of enzyme-based remediation for large-scale 

environmental applications require further investigation [73-75]. 

 

Table 1. Advantages and disadvantages of antibiotic degradation techniques 
Degradation Method Advantages Disadvantages 

Microbial Augmentation 

• Natural Process 
• Wide range of activity in 

degrading different pollutants 
• Cost-effectiveness 

 

• Disruption of the delicate 
balance of local microbial 
communities. 

• Antibiotic-resistant bacteria may 
occur owing to horizontal gene 
transfer 

Enzyme Degradation 

• Mild operation conditions 
• Environmentally friendly 
• Biodegradability 

 

• Stability and standardization 
issues 

• Antibiotic-resistant bacteria may 
occur owing to horizontal gene 
transfer 

Membrane Filtration 
• High separation efficiency 
• Small space requirements 
• Environmental friendly 

• High maintenance cost 
• Not degraded, only filtered 
• Membrane fouling 

Electrocoagulation 

• Simple installation and 
operation 

• No need for chemical processing 
• Can be fully automated 
• Large treatment capacity 
• Relatively short time 

 

• The formation of passive films 
on the electrode surface leads to 
increased operation time and 
energy consumption 

• High operating cost of the 
reactor 

 

Photocatalytic Degradation 
• Fast reaction rate 
• No secondary pollution 
• Natural energy source 

• Special reactor design 
• Catalysts usually include rare 

metals 
• Low quantum efficiency 

 

Advanced treatment techniques are being explored for large-scale antibiotic removal from water sources.  

Constructed wetlands and bioreactors utilize naturally occurring microbial communities housed within a controlled 

environment.  Contaminated water is channeled through these systems, allowing the resident microbial 

communities to degrade the antibiotics present.  This approach leverages the power of natural degradation 

processes within a managed setting, offering a potential solution for wastewater treatment.  However, the 

effectiveness and scalability of constructed wetlands and bioreactors for broader environmental remediation efforts 

require further investigation [76-78]. 

Membrane technology is a new approach to separation method that includes selectively permeable membranes 

with a wide range of applications for removing antibiotics from water sources. Membrane technology is classified 

into three groups depending on their driving forces: low-pressure (microfiltration, ultrafiltration, and distillation), 

high-pressure (nanofiltration, and reverse osmosis), and osmotic pressure (forward osmosis, electrodialysis, and 

liquid membrane). Membrane filtration is a physical technique that does not require any chemical additives and 

provides a high degree of separation. Also, this method is environmentally friendly, offers good selective filtration, 
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and has small space requirements. For example, in one study, a tetracycline hydrochloride antibiotic was found to 

be filtered by 89% in a treatment process with a sulfated cellulose nanocrystal composite membrane [79, 80]. In 

another study, a two-stage reverse osmosis membrane filtration system was examined for pig farm wastewater 

treatment. The presence of sixteen different target antibiotic resistance genes, which accounted for 72.64% of the 

total antibiotic resistance genes in pig farm wastewater, was monitored at each stage of the membrane filtration 

process. After the integrated membrane filtration process, it was reported that more than 99.02% of total 

contaminants and 99.79% of antibiotic-resistant genes were filtered out of the tested effluents [81]. However, this 

technology does not remove or degrade the pollutant. The process only transfers the contaminants to a new phase 

(membrane), where they accumulate in a denser form within the membrane filter. As a result of the small size of 

the antibiotic molecules and the tendency of other contaminants to clog the pores, the membrane module needs to 

be changed frequently, incurring an extra maintenance cost [65, 79, 82]. 

The emergence of enhanced degradation techniques represents a significant step forward in combating antibiotic 

contamination in the environment.  Techniques such as microbial augmentation, enzyme-based degradation, and 

advanced treatment systems offer promising solutions for accelerating antibiotic removal and mitigating their long-

term environmental impact.  However, each technique presents its own limitations and requires careful 

consideration.  Ultimately, a multifaceted approach combining responsible antibiotic use, enhanced degradation 

techniques, and ongoing research and development is crucial to ensure the continued effectiveness of antibiotics 

and protect the health of our planet [83-85].  

In recent years, the electrocoagulation process has emerged as a promising technology. With low sludge production 

and low treatment costs, it effectively removes a wide range of contaminants from water and wastewater [86, 87, 

88]. Electrocoagulation is a new approach for the removal of pharmaceutical compounds, including antibiotics, 

from water and wastewater. Electrocoagulation offers the advantages of both traditional chemical coagulation and 

electrochemical methods [89-91]. This process involves immersing iron or aluminum electrodes into a wastewater-

containing electrolytic solution and applying direct current. The coagulant is generated through the oxidation of 

the anode and simultaneously produces hydroxyl ions and hydrogen gas at the cathode. The gases generated at the 

electrodes cause a flotation effect, which separates contaminants from the floc-foam layer on the water surface. 

The generation of metal hydroxide from the dissolved metal cations combines with the hydroxyl ions to form metal 

hydroxide. Ultimately, it removes pollutants in the wastewater through complexation or electrostatic attraction. 

The generation of Fe(OH)n(s) can be divalent or trivalent. It is strongly related to the water's pH and electrolyte 

concentration, so the optimal pH of the water must be maintained. Electrocoagulation has been found to be efficient 

in removing pharmaceutical compounds, including antibiotics, from water and wastewater [92]. For instance, a 

study reported that electrocoagulation using an iron electrode was effective in degrading 100% of tetracycline 

antibiotic from water in 15 minutes, with an initial pH of 4.3, a current density of 4.17 A/m², and a conductivity 

of 1000 µS/cm [93]. Another study reported that, in comparison to an iron anode, an aluminum electrode was 

capable of removing 99.8% of 10 mg/L TC within the first 20 minutes under optimized parameters with a 9 V 

voltage and 2 cm electrode spacing. This was in contrast to the 83.8% removal rate observed for the iron electrode 

in the same period [91]. However, energy consumption plays a vital role in the electrocoagulation method. The 

energy consumption is related to the electric current and applied voltage, and the mass of iron electrodes dissolved 

in the solution is described by Faraday's law. Therefore, optimizing the operating conditions, such as the electrode 
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material, current density, pH, and electrolyte concentration, is crucial to achieving efficient and cost-effective 

removal of pharmaceutical compounds from water and wastewater [94-97]. 

Due to recent nanotechnology and green chemistry developments, photocatalysis is a potential approach for 

degrading pharmaceutical contaminants. Photocatalysis, a novel method in wastewater treatment, has shown 

significant potential for reducing antibiotic residues. Hence, advanced oxidation processes such as photocatalysis, 

which provide the possibility of total mineralization of organic compounds via the in situ production of hydroxyl 

radicals, which are strong oxidants that unselectively oxidize organic molecules, have been adopted as an 

alternative to water remediation [98, 99].  In the photocatalysis method, antibiotic molecules are first adsorbed to 

the surface of the material used as photocatalysts. Antibiotic molecules adsorbed on the surface of the photocatalyst 

degrade under the influence of light absorbed by the photocatalyst. This allows antibiotic molecules to be converted 

into simpler and harmless components. Photocatalytic materials are generally active at specific wavelengths, such 

as ultraviolet (UV) or visible light. Consequently, semiconductor compounds or metal-organic frameworks 

(MOFs) are generally preferred as photocatalysts. In recent years, visible light active semiconductors such as Cu2O 

[100], WO3 [101], BiVO4 [102], Fe2O3 [103], g-C3N4 [104, 105], have been widely used as photocatalysts. Metal-

organic frameworks (MOFs) are highly porous structures with customizable functions. Due to these properties, 

they can be used to adsorb and degrade specific antibiotics [106]. TiO2 semiconductor, which is often used as a 

photocatalyst by researchers in recent years, has been reported to degrade 0.5 mg/L oxytetracycline antibiotic 

100% in eighty minutes under natural sunlight [107, 108]. Another widely used semiconductor, Bi2WO4, was used 

to reduce the antibiotic levofloxacin. This study varied the catalyst dose and levofloxacin concentration to 

determine the optimum degradation conditions. As a result of the experimental studies, 0.4 g/L Bi2WO4 was used 

for 20 mg/L levofloxacin concentration, and the degradation efficiency was 100%. In the further study, the 

levofloxacin dose varied in the 10-40 mg/L range for 0.4 g/L Bi2WO4 concentration. With increasing levofloxacin 

dose, the degradation rate was found to decrease from 98% to 49% [109]. The effectiveness of photocatalytic 

methods in reducing antibiotics depends on the properties of the photocatalyst used, the processing conditions 

(e.g., light intensity and wavelength, pH value of the solution), and the chemical structures of the antibiotic 

molecules. Therefore, the process must be optimized and studied carefully to achieve the best results [98]. 

 

IV. CONCLUSIONS 

The environmental impact of antibiotics presents a complex challenge demanding a multifaceted response. While 

existing degradation techniques play a vital role, the limitations they present necessitate a focus on innovation. 

The development of novel materials like engineered nanoparticles and biochar, coupled with exploration of 

unconventional degradation mechanisms, holds tremendous promise for the future of antibiotic remediation.  By 

fostering collaborative research efforts and prioritizing these innovative approaches, we can safeguard our 

environment from the deleterious effects of antibiotic contamination.  Ultimately, our collective well-being hinges 

on securing a sustainable future where antibiotics remain effective tools in the fight against infectious diseases 

while ensuring the health of the ecosystems upon which we all depend. 
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